Исследование колебательных процессов сердечной мышцы

Автоколебательные процессы в сердечной мышце. Ревербераторы и механизм фибрилляции. Обработка информации при снятии электрокардиограммы. Помехи при регистрации ЭКГ и методы их устранения. Проектирование электрокардиомонитора на базе микроконтроллера.

Рубрика Медицина
Вид курсовая работа
Язык русский
Дата добавления 27.01.2014
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Отведения от конечностей отражают динамику суммарной ЭДС сердца в целом. Однако, опыт практической электрокардиографии показал, что отведения I и aVL преимущественно выявляют признаки гипертрофии левых камер сердца и очаговые изменения миокарда в передней и боковой стенках левого желудочка; отведения III и aVF - признаки гипертрофии правых камер и очаговые изменения миокарда задненижней (задне-диафрагмальной) стенки левого желудочка. Отведение II занимает в этом отношении промежуточное положение.

Грудные отведения. Это однополюсные отведения, предложенные Вильсоном. Они регистрируют разность потенциалов между активным (+) электродом, помещенным в строго определенные точки на грудной стенке и (-) объединенным электродом Вильсона. Последний образуется при соединении трех конечностей (правой руки, левой руки и левой ноги) и имеет потенциал, близкий к нулю. Грудные отведения обозначают буквой V с указанием номера позиции активного электрода, обозначенного арабской цифрой. Позиции активного электрода при записи грудных отведений:

отведение V1 - IV межреберье у правого края грудины;

V2 - IV межреберье у левого края грудины;

V3 - между позициями V2 и V4 (примерно на уровне IV ребра по левой парастернальной линии);

V4 - в V межреберье по левой срединоключичной линии; V5 - на том же горизонтальном уровне, что V4 по левой передне-подмышечной линии.

V6 - на том же горизонтальном уровне, что V4 и V5 по левой средне-подмышечной линии.

Положительная часть оси каждого грудного отведения образуется линией, соединяющей электрический центр сердца с местом расположения активного электрода. Продолжение ее за электрический центр составляет отрицательную часть оси отведения.

Грудные отведения регистрируют изменения ЭДС сердца преимущественно в горизонтальной плоскости. Отведения V1-V2, приближенные к правым отделам сердца, называются правыми грудными и более чувствительны к изменениям электрических процессов в правом сердце. Отведения V5-V6, расположенные ближе к левому желудочку, преимущественно отражают изменения в этом отделе сердца. При очаговом поражении изменения переднее-перегородочной зоны левого желудочка находят отражение в отведениях V1-V3, области верхушки - в отведении V4 и переднебоковой стенки желудочка в отведениях V5-V6.

Дополнительные отведения. Возможности электрокардиографии могут быть существенно расширены регистрацией дополнительных отведений. Необходимость в них возникает при недостаточной информативности 12-ти общепринятых отведений. Существует множество дополнительных отведений и используются они по определенным показаниям. Например, в диагностике заднебазальных и заднебоковых инфарктов миокарда чрезвычайно полезными могут оказаться крайне левые грудные отведения V7-V9. Для записи этих отведений активный электрод устанавливается соответственно по задней подмышечной, лопаточной и паравертебральной линиям на горизонтальном уровне электродов V4-V6.

В клинической практике широкое распространение получили отведения по Небу. Это двухполюсные отведения, которые фиксируют разность потенциалов между двумя точками на поверхности грудной клетки. Отведение Dorsalis (D) - активный (+) электрод помещается на уровне верхушки сердца по задней подмышечной линии, (-) электрод - II межреберье у правого края грудины. Отведение Anterior (A) - активный (+) электрод - месте верхушечного толчка, (-) электрод - II межреберье у правого края грудины. Отведение Inferior (J) - активный (+) электрод - месте верхушечного толчка, (-) электрод на уровне верхушки сердца по задней подмышечной линии.

Отведения по Небу применяются для диагностики очаговых изменений миокарда в области задней стенки (отведение D), передне-боковой (отведение A) и верхних отделов передней стенки левого желудочка (отведение J). [16, c. 110-121]

2.3 Методика записи ЭКГ

Методика записи ЭКГ включает следующие действия:

1. Наложение электродов. С целью уменьшения наводных токов и улучшения качества записи ЭКГ необходимо обеспечить хороший контакт электродов с кожей.

2. Подключение электродов к электрокардиографу. Каждый электрод соединяется с электрокардиографом соответствующим проводом шланга отведений, имеющим общепринятую цветовую маркировку. К электроду, расположенному на правой руке, присоединяют провод, маркированный красным цветом; на левой руке - желтым, на правой ноге - черным; левой ноге - зеленым.

Грудной электрод соединяют с кабелем, обозначенным белым цветом. При многоканальной записи с одновременной регистрацией всех шести грудных отведений к электроду в позиции V1 подключают провод с красным наконечником, V2 - желтым, V3 - зеленым, V4 - коричневым, V5 - черным, V6 - синим или фиолетовым.

3. Заземление электрокардиографа.

4. Включение аппарата в сеть.

5.Запись контрольного милливольта. Регистрации ЭКГ должна предшествовать калибровка усиления, что позволяет стандартизировать исследование, т.е. оценивать и сравнивать при динамическом наблюдении амплитудные характеристики. Для этого в положении переключателя отведений "0" на гальванометр электрокардиографа нажатием специальной кнопки подается стандартное калибровочное напряжение в 1 милливольт.

Желательно проводить калибровку записи в начале и конце съемки ЭКГ.

6. Выбор скорости движения бумаги. Современные электрокардиографы могут регистрировать ЭКГ при различных скоростях движения ленты: 12,5; 25; 50; 75 и 100 мм/с. Выбранная скорость устанавливается нажатием соответствующей кнопки на панели управления.

7. Запись ЭКГ. Регистрация ЭКГ складывается из последовательной записи электрокардиографических отведений, что делают, поворачивая ручку переключателя отведений. В каждом отведении записывают не менее 4-х циклов.

а) Запись стандартных отведений производится при положении переключателя отведений в позициях I, II и III. Принято III стандартное отведение регистрировать дополнительно при задержке дыхания на глубоком вдохе. Это делают с целью установления позиционного характера изменений, нередко обнаруживаемых в данном отведении.

б) Запись однополюсных усиленных отведений от конечностей осуществляется с помощью тех же электродов и при том же их расположении, что и при регистрации стандартных отведений. В позиции переключателя отведений I записывают отведение aVR, II - aVL, III - aVF.

в) Запись грудных отведений. Переключатель отведений переводят в позицию V. Регистрацию каждого отведения производят, перемещая последовательно грудной электрод из положения V1 до положения V6 (см. выше).

г) Запись отведений по Небу. Эти дополнительные отведения регистрируются с помощью пластинчатых электродов, которые переносят с конечностей на грудную клетку. При этом, электрод с правой руки (красный маркированный провод) перемещают во II межреберье к правому краю грудины; с левой ноги (зеленая маркировка провода) - позицию грудного отведения V4 (верхушка сердца); с левой руки (желтая маркировка провода) - том же горизонтальном уровне по задней подмышечной линии.

В положении переключателя отведений I регистрирую отведение D, II - A, III - J.

Перед записью ЭКГ или после ее окончания на ленте указывают дату проведения исследования (при экстренных ситуациях фиксируется и время), фамилию, имя, отчество больного, его возраст.

Формирование элементов нормальной ЭКГ и ее характеристика.

Зубец Р - предсердный комплекс, отражающий процесс распространения возбуждения (деполяризации) предсердий. Источником его является синусовый узел, расположенный у устья верхней полой вены (в верхней части правого предсердия). Первые 0,02-0,03 с, волна возбуждения распространяется только по правому предсердию, последующие 0,03-0,06 с. идет одновременно по обоим предсердиям. В заключительные 0,02-0,03 с. оно распространяется лишь по левому предсердию, поскольку весь миокард правого предсердия к этому времени уже находится в возбужденном состоянии.

Полярность зубца Р различна в разных отведениях РI,II,aVF,V3-V6 всегда положительная. РaVR всегда отрицательный.

РIII может быть положительный, двухфазный либо отрицательный при горизонтальном положении электрической оси сердца. РaVL положительным, двухфазным или отрицательным при вертикальной электрической позиции сердца. РV1 чаще бывает двухфазным, может регистрироваться в виде невысокого положительного зубца. Изредка такую же полярность имеет РV2.

Амплитуда зубца Р составляет 0,5-2,5 мм. Продолжительность его не превышает 0,1 с (колеблется от 0,07 до 0,1 с).

Сегмент P-Q. Возбуждение атриовентрикулярного соединения, пучка Гиса, ножек пучка Гиса, волокон Пуркинье создает очень маленькую разность потенциалов, которая на ЭКГ представлена изоэлектрической линией, расположенной между концом зубца Р и началом желудочкового комплекса.

Интервал P-Q соответствует времени распространения возбуждения от синусового узла до сократительного миокарда желудочков. Этот показатель включает в себя зубец Р и сегмент P-Q и измеряется от начала зубца Р до начала желудочкового комплекса. Продолжительность интервала P-Q в норме составляет 0,12-0,20 с. (до 0,21 с при брадикардии) и зависит от частоты сердечных сокращений, увеличиваясь с урежением синусового ритма.

Комплекс QRS - желудочковый комплекс, формирующийся в процессе деполяризации желудочков. Для большей наглядности объяснения происхождения отдельных зубцов этого комплекса непрерывный процесс хода возбуждения по желудочкам разделяется на 3 основных этапа.

I этап (начальный). Он соответствует первым 0,02-0,03 с. распространения возбуждения по миокарду желудочков и обусловлены, в основном, возбуждением межжелудочковой перегородки, а также, в меньшей степени, правого желудочка. Суммарный (моментный) начальный вектор направлен вправо и вперед и имеет небольшую величину.

II этап (главный). Он имеет место на протяжении последующих 0,04-0,07 с, когда возбуждение распространяется по свободным стенкам желудочков. Суммарный (моментный) главный вектор направлен справа налево соответственно ориентации суммарного вектора более мощного левого желудочка.

Главный моментный вектор ориентирован к электродам V5-V6, здесь под его влиянием возникают положительные зубцы - зубцы R. Этот же вектор имеет направление от электродов V1-V2, поэтому в тот же период времени в них формируется отрицательный зубец - зубец S.

III этап (заключительный). Процесс деполяризации желудочков заканчивается охватом возбуждением их базальных отделов. Это происходит на 0,08-0,10 с. Суммарный (моментный) терминальный вектор имеет небольшую величину и значительно варьирует по направлению. Однако, чаще он ориентирован вправо и кзади.

В ряде отведений от конечностей, в отведениях V4-V6 под его воздействием образуются терминальные отрицательные зубцы - зубцы S. В отведениях V1-V2 этот вектор, сливаясь с главным, вносит свой вклад в формирование глубоких зубцов S.

Таким образом, одни и те же электрические процессы, регистрируемые одновременно при распространении возбуждения в желудочках, в разных отведениях могут быть представлены зубцами разной полярности и величины. Это определяется проекцией соответствующих моментных векторов на оси отведений. Иными словами, в зависимости от положения электродов, зубцы, отражающие начальный, главный и заключительный этапы деполяризации желудочков могут иметь различное направление и разную амплитуду.

При амплитуде зубца желудочкового комплекса, превышающий 5 мм, он обозначается заглавной буквой. Если же амплитуда зубца меньше 5 мм - строчной.

Зубцом Q обозначается первый зубец желудочкового комплекса, если он направлен вниз. Таким образом, в желудочковом комплексе может быть лишь один зубец Q.

Зубец R - любой зубец желудочкового комплекса, направленный вверх от изолинии, т.е. положительный. При наличии нескольких положительных зубцов их обозначают соответственно как R, R", R" и т. д.

Зубец S - отрицательный зубец, следующий за положительным зубцом, т.е. зубцом R. Зубцов S также может быть несколько и тогда они обозначаются как S", S" и т. д.

Если желудочковый комплекс представлен одним отрицательным зубцом (при отсутствии зубца R), он обозначается как QS.

Характеристика нормальных зубцов желудочкового комплекса.

Зубец Q может регистрироваться в отведениях I, II, III, aVL aVF, aVR. Его присутствие обязательно в отведениях V4-V6. Наличие этого зубца в отведениях V1-V3 является признаком патологии. Критерии нормального зубца Q:

1) длительность не более 0,03 с,

2) глубина не более 25% амплитуды зубца R в этом же отведении (кроме отведения aVR, где в норме может регистрироваться комплекс вида QS или Qr).

Зубец R может отсутствовать в отведениях aVR, aVL (при вертикальном положении электрической оси сердца) и в отведении V1. При этом желудочковый комплекс приобретает вид QS. Амплитуда зубца R не превышает 20 мм в отведениях от конечностей и 25 мм в грудных.

В практической электрокардиографии нередко большое значение имеет соотношение амплитуд зубца R в различных отведениях, чем его абсолютная величина. Это объясняется влиянием экстракардиальных факторов на амплитудные характеристики ЭКГ (эмфизема легких, ожирение). Соотношение высоты зубцов R в отведениях от конечностей определяется положением электрической оси сердца. В грудных отведениях в норме амплитуда зубца R постепенно нарастает от V1 до V4, где обычно регистрируется его максимальная высота. От V4 до V6 происходит постепенное снижение. Таким образом, динамику амплитуды зубца R в грудных отведениях можно описать формулой: RV1<RV2<RV3<RV4>RV5>RV6.

Зубец S - непостоянный зубец желудочкового комплекса. Максимальную амплитуду он имеет в отведении V1 или V2 и постепенно уменьшается к отведениям V5-V6 (где в норме может отсутствовать). Соотношение зубцов S в грудных отведениях представляет формула: SV1<SV2>SV3>SV4>SV5>SV6.

В отведениях от конечностей наличие и глубина этого зубца зависят от положения электрической оси сердца и поворотов сердца. Как правило, в этих отведениях амплитуда зубца S не превышает 5-6 мм. Ширина его - в пределах 0,04 мм.

Описанной динамике зубцов R и S в грудных отведениях соответствует постепенное увеличение отношения амплитуд R/S от правых отведений, где оно < 1,0, к левым, в которых это отношение >1,0. Грудное отведение с равными амплитудами зубцов R и S (R/S = 1,0) называется переходной зоной. Чаще у здоровых людей это отведение V3.

Общая длительность комплекса QRS, представляющая время внутрижелудочковой проводимости, составляет 0,07-0,1 с. Не менее важным показателем внутрижелудочковой проводимости служит время активации желудочков или внутреннее отклонение (intrinsicoid deflection) - ID. Он характеризует время распространения возбуждения от эндокарда к эпикарду стенки желудочка, находящегося под электродом. Внутреннее отклонение определяется для каждого желудочка отдельно. Для правого желудочка этот показатель (IDd) измеряется в отведении V1 по расстоянию от начала желудочкового комплекса до вершины зубца R (либо вершины последнего зубца R при комплексе RSR"). В норме IDd = 0,02-0,03 с. Внутреннее отклонение для левого желудочка (IDs) оценивают в отведении V6 по расстоянию от начала желудочкового комплекса до вершины зубца R. В норме IDs = 0,04-0,05 с.

Сегмент S-T - линия от конца желудочкового комплекса до начала зубца Т. Он соответствует периоду полного охвата возбуждением миокарда желудочков. При этом разность потенциалов в сердечной мышце отсутствует, либо очень мала. Поэтому сегмент S-T находится на изолинии, либо слегка смещен относительно нее.

В отведениях от конечностей и левых грудных отведениях в норме встречается смещение сегмента S-T вниз и вверх от изолинии на расстояние не более 0,5 мм. В правых грудных отведениях допускается смещение его вверх на 1,0-2,0 мм (особенно при высоких зубцах Т в этих же отведениях). Смещения вниз сегмента S-T в левых грудных отведениях в норме не бывает.

Зубец T отражает процесс быстрой конечной реполяризации миокарда желудочков. Суммарный вектор реполяризации желудочков, волна которой распространяется от субэпикардиальных слоев к субэндокардиальным, имеет то же направление, что и главный моментный вектор деполяризации. В связи с этим и полярность зубца Т в большинстве отведений совпадает с полярностью главного зубца комплекса QRS.

Зубец ТI,II,aVF,V3-V6 всегда положительный, зубец ТaVR всегда отрицательный. ТIII может быть положительным, двухфазным и даже отрицательным при горизонтальном положении электрической оси сердца. ТaVL бывает как положительным, так и отрицательным - при вертикальном положении оси сердца. ТV1 (реже ТV2) может быть как положительным, двухфазным, так и отрицательным. Он ассиметричен, имеет сглаженную вершину. Амплитуда зубца Т в отведениях V5-V6 составляет 1/3-1/4 высоты зубца R в этих отведениях. В отведении V4 (V3) она может достигать 1/2 амплитуды зубца R. Обычно в отведениях от конечностей она не превышает 5-6 мм, в грудных - 15-17 мм.

Интервал Q-T - электрическая систола сердца. Этот показатель измеряется по расстоянию от начала желудочкового комплекса до конца зубца Т. Включая в себя зубец Т, систолический показатель в значительной мере отражает изменения фазы реполяризации желудочков, имеющие множество различных причин. На длительность интервала Q-T влияют также частота сердечных сокращений и пол больного, что учитывается при его оценке.

Систолический показатель оценивается сравнением фактической величины с должной. Должную величину можно рассчитать по формуле Базета: Q-T = к R-R, где к - коэффициент равный 0,37 для мужчин и 0,40 для женщин; R-R - длительность одного сердечного цикла в секундах. Должную Q-T, соответствующую данной частоте сердечных сокращений и полу пациента, можно установить по специальной номограмме.

Интервал Q-T считается нормальным, если его фактическая величина не превышает должную более, чем на 0,04 с.

Зубец U. Единого взгляда на происхождение этого зубца ЭКГ нет. Появление его связывают с потенциалами, возникающими при растяжении миокарда желудочков в период быстрого наполнения, с деполяризацией сосочковых мышц, волокон Пуркинье.

Это небольшой амплитуды положительный зубец, который следует через 0,02-0,03 с за зубцом Т. Чаще его удается зарегистрировать в в отведениях II, III, V1-V4.

Правильная интерпретация ЭКГ требует строгого соблюдения методики ее анализа, т.е. проведения расшифровки по определенной схеме. Анализу ЭКГ должна предшествовать проверка правильности ее регистрации: отсутствие помех, вызывающих искажение элементов кривой, соответствие амплитуды контрольного милливольта 10 мм и т.д. Предварительно следует также оценить скорость движения бумаги при регистрации ЭКГ. Для этого можно ориентироваться на комплекс QRS: при скорости лентопротяжного механизма 50 мм/с ширина его составляет около 5 мм, при скорости 25 мм/с - 2-3 мм.

Расшифровка ЭКГ включает в себя следующие этапы:

I. Анализ ритма сердца и проводимости.

II. Определение положения электрической оси сердца. Определение поворотов сердца.

III. Анализ зубцов и сегментов.

IV. Формулировка электрокардиографического заключения.

I. Анализ ритма и проводимости. Этот этап складывается из определений источника ритма, оценки его регулярности и частоты, а также выяснения функции проводимости.

В норме водителем (источником) ритма является синусовый (синоатриальный) узел. Нормальный синусовый ритм определяется следующими критериями:

1) наличием зубца Р, предшествующего каждому комплексу QRS;

2) нормальной для данного отведения и постоянной формой зубца Р;

3) нормальной и стабильной длительностью интервала P-Q;

4) частотой ритма 60-90 в минуту;

5) разницей в интервалах R-R (или Р-Р) не более 0,15. Оценка последнего критерия позволяет определить ритм как

регулярный или нерегулярный. В случае нерегулярности ритма уточняется ее причина (синусовая аритмия, экстрасистолия, фибрилляция предсердий и т.д.).

Для подсчета частоты сердечных сокращений (ЧСС) при регулярном ритме используют формулу:

ЧСС = 60/R-R, где 60 - число секунд в минуте.

При нерегулярном ритме можно записать ЭКГ в одном из отведений в течение 3-4 минут. На этом отрезке подсчитывают число комплексов QRS за 3 минуты и умножают его на 20.

Чтобы оценить функцию проводимости производят измерения следующих показателей:

1) длительности зубца Р (характеризует скорость внутрипредсердного проведения);

2) интервала P-Q, который отражает состояние атриовентрикулярной проводимости;

3) комплекса QRS, что дает общее представление о внутрижелудочковой проводимости;

4) IDd и IDs, позволяющих судить о распространении возбуждения соответственно в правом и левом желудочках.

Окончательное заключение о характере нарушения внутрижелудочковой проводимости делают после анализа морфологии желудочкового комплекса.

II. Определение положения электрической оси сердца и поворотов сердца.

Электрическая ось сердца представляет собой суммарный вектор деполяризации желудочков, спроецированный на горизонтальную плоскость. Положение ее соответствует направлению среднего (главного) суммарного моментного вектора.

В норме положение электрической оси сердца близко к его анатомической оси, т.е. ориентирована справа налево и сверху вниз. У здоровых людей положение электрической оси сердца может варьировать в определенных пределах в зависимости от положения сердца в грудной клетке. Оно может изменяться в связи с поворотов вокруг переднезадней оси, при нарушении внутрижелудочковой проводимости.

Положение электрической оси сердца количественно выражается углом альфа, образованным электрической осью сердца и положительной половиной оси I стандартного отведения, смещенной в электрический центр сердца (центр треугольника Эйнтховена). Положительная половина оси I отведения принимается за исходную позицию (00) системы координат для определения угла альфа. Отрицательный полюс этого отведения соответствует + 1800. Перпендикуляр, проведенный к оси I отведения, соответствует оси отведения aVF. Положительный полюс его обращен вниз и обозначается как +900, отрицательный направлен вверх и соответствует -900.

В норме угол альфа может варьировать от 00 до +900. При этом выделяют следующие варианты положения электрической оси:

- нормальное - угол альфа от +300 до +690;

- вертикальное - угол альфа +700 до +900, встречается у лиц астенической конституции, особенно часто у молодых, при похудании, низком стоянии диафрагмы;

- горизонтальное - угол альфа от +290 до 00, наблюдается при гиперстенической конституции, при ожирении, высоком стоянии диафрагмы.

При патологии электрическая соь сердца может отклоняться за пределы сектора, расположенного между 00 и +900. Возможны следующие варианты:

- отклонение электрической оси сердца влево - угол альфа <00, т.е. находится в области отрицательных значений (например, при полной блокаде левой ножки пучка Гиса);

- отклонение электрической оси сердца вправо - угол альфа > +900 (встречается при полной блокаде правой ножки пучка Гиса).

ЭКГ дает возможность судить о поворотах сердца вокруг 3-х условных осей: переднезадней, продольной и поперечной. Повороты сердца вокруг переднезадней оси во фронтальной плоскости определяется по изменению положения электрической оси сердца, о чем сказано выше.

III. Анализ зубцов и сегментов проводится в определенной последовательности: зубец Р, комплекс QRS и составляющие его зубцы, сегмент S-T, зубцы Т и U. Он включает амплитудные характеристики, временные показатели (в частности, длительность зубца Q, длительность электрической систолы, другие же, в основном, определяются на I этапе анализа ЭКГ), анализ формы зубцов и их полярности, анализ морфологии желудочкового комплекса и соотношения амплитуд зубцов в разных отведениях.

IV. Формулировка электрокардиографического заключения должна содержать следующие сведения:

1) источник ритма сердца, его регулярность, частота;

2) положение электрической оси сердца;

3) наличие нарушений ритма сердца и проводимости;

4) наличие гипертрофии камер сердца;

5) наличие изменений миокарда очагового или диффузного характера (ишемия, повреждение, некроз, электролитные нарушения и т.д.).

Пример электрокардиографического заключения при отсутствии патологических изменений: Ритм синусовый, регулярный, с частотой 72 в минуту. Вертикальное положение электрической оси сердца. ЭКГ без отклонений от нормы.

2.4 Помехи при регистрации электрокардиограммы и методы их устранения

Усилительная система в электрокардиографе способствует резкому усилению не только полезных сигналов, но и тех незначительных помех, которые не всегда устранимы. Некоторые морфологические изменения зубцов неизбежны, но не имеют диагностического значения. Однако очень часто эти изменения ошибочно считают признаками поражения миокарда.

Причиной помех могут быть электрическая активность тканей, через которые проводится импульс (например, скелетные мышцы), сопротивление тканей, особенно кожи, а также сопротивление на входе усилителя. Примером помех такого рода является электрическая активность скелетных мышц, поэтому при регистрации электрокардиограммы необходимо рекомендовать пациенту максимально расслабить мышцы. Мышечные токи накладываются на электрокардиограмму у больных с дрожательным параличом, хореей, тетанией, паркинсонизмом, тиреотоксикозом. Колебания, вызываемые мышечными токами, иногда трудно отличить от трепетания предсердий. Артефакты, возникающие на кривой при случайном толчке аппарата или кушетки могут имитировать желудочковые экстрасистолы. Однако, при внимательном рассмотрении артефакты легко распознаются. Неравномерная работа отметчика времени или лентопротяжного механизма может симулировать аритмию.

При сопоставлении динамических изменений нельзя придавать диагностическое значение изменениям амплитуды зубцов, если серийные электрокардиограммы у одного и того же пациента зарегистрированы при разной чувствительности электрокардиографа.

Большое значение имеет постоянство нулевой (или основной) линии, от которой производится отсчет амплитуды зубцов. Стабильность нулевой линии зависит от наличия достаточно высокого входного сопротивления усилительной системы и минимального кожного сопротивления.

Нередко основная линия электрокардиограммы колеблется вместе с элементами кривой. Подобную электрокардиограмму не следует считать патологической, так как причиной могут быть нарушения режима питания аппарата, форсированное дыхание пациента, кашель, икота, чиханье, перистальтика кишечника. В грудных отведениях подобные изменения нередко проявляются при трении электрода о выступающие ребра.

Низкий вольтаж зубцов иногда обусловливается плохим контактом электродов с кожей.

Значительные помехи вызывают наводные токи («фон»), распознаваемые по правильности колебаний 50 Гц (от осветительной сети). Подобные помехи могут появиться при плохом контакте электродов с кожей, особенно при ее волосатости. Нетрудно распознать локализацию возникновения помех. Например, если «наводка» вида во II и в III отведении, а в I отведении ее нет, то провод от левой ноги имеет плохой контакт с электродом, или последний неплотно прилегает к коже. Если «наводка» видна в Iи IIотведении, то плохой контакт на правой руке. Если контакты достаточные, а «наводка» наблюдается во всех отведениях, то рекомендуется заземлить правую ногу, присоединив ее специальным кабелем к отопительным и водопроводным трубам. Иногда полезно изменить положение койки пациента, поскольку тело человека иногда можно уподобить антенне, которая в одних положениях подвержена влиянию атмосферных токов, а в других - свободна от них. Кроме того, нельзя укладывать пациента так, чтобы осветительная сеть была параллельна оси отведения. Для устранения «наводки» часто прибегают к различным фильтрам. Такого способа устранения помех следует избегать, так как при этом наряду с освобождением кривой от наводных токов нередко выбрасываются и частоты сигнала сердца. Наилучший способ, помогающий освобождению от помех, заключаются в использовании клетки Фарадея.

2.5 Усилители электрокардиосигнала. Особенности источника возбуждения

Источником возбуждения усилителя электрокардиосигнала (УсЭКС) является биологический объект - человек, который может быть представлен эквивалентным уравнением электрическим генератором. А как известно, свойства любого электрического генератора определяются характером изменения ЭДС во времени и внутренним сопротивлением.

Электрокардиосигнал является частью ЭДС сердца, измеряемой на поверхности тела при помощи электродов, расположенных определенным образом. Закон изменения ЭКС во времени может считаться квазипериодическим с периодом кардиокомплексов 0,1-3 с. Минимальное значение соответствует фибрилляции желудочков, а максимальное - блокадам сердца. Форма эквивалентного кардиокомплекса близка к треугольной с амплитудой, лежащей в диапазоне 0-5 мВ. Полоса принимаемых кардиокомплексом частот охватывает диапазон от 0,05 до 800 Гц.

Междуэлектродное сопротивление, включающее сопротивления переходов кожа-электрод, соответствует внутреннему сопротивлению источника возбуждения УсЭКС и изменяется в значительных пределах. Для технических расчетов обычно принимают диапазон 5-100 кОм.

Помимо перечисленных параметров при проектировании ЭКС необходимо учитывать ряд существенных особенностей источника возбуждения.

1. Нестабильность внутреннего сопротивления за счет изменений сопротивлений переходов кожа-электрод. При этом нужно считаться с большими значениями междуэлектродных сопротивления и их разбалансом в системе отведений ЭКС.

2. Образование на переходах кожа-электрод напряжений поляризации, создающих на входных контактах УсЭКС напряжение смещения, достигающее ±300 мВ. Такое напряжение может вызвать насыщение усилителя.

3. Медленный дрейф напряжения поляризации и резкие его изменения при смещении электродов из-за движений больного. Скачки напряжения поляризации создают трудно устранимые помехи.

4. Наличие напряжений помех, попадающих на входные зажимы УсЭКС синфазно и противофазно. Помехи могут быть биологического и физического происхождения. К биологическим помехам относятся биопотенциалы других органов и мышц, а к физическим - наведенные на объект напряжения от неэкранированных участков сетевой проводки, сетевых шнуров других приборов и проводящих поверхностей (вторичное напряжение наводки). Особенно большой уровень имеют синфазные сигналы помех напряжения сети, попадающие на объект через емкостную связь.

Наличие импульсных помех при воздействии на объект терапевтических аппаратов: кардиостимулятора и дефибриллятора. Попадая на вход УсЭКС, артефакты импульсов кардиостимулятора искажают ЭКС и вызывают в ряде случаев ложно обнаружение кардиокомплекса, а импульсы дефибриллятора могут повредить входные цепи УсЭКС.

2.6 Требования к параметрам

Достоверность передачи ЭКС во многом определяется параметрами УсЭКС - первого звена в цепи обработки сигнала. Принимая во внимание характеристики источника возбуждения, особенности подключения УсЭКС к объекту и условия сопряжения усилителя с устройством обработки сигнала, рассмотрим требования к основным параметрам УсЭКС и их влияние на искажения ЭКС.

Входное напряжение Uвх должно лежать в диапазоне не менее чем 0,03-5 мВ. Нижнее значение Uвх определяет пороговую чувствительность усилителя, ниже которой регистрация ЭКС затруднена.

На пороговую чувствительность влияет уровень внутренних шумов, приведенных ко входу усилителя. Обычные достижимые значения UшЈ10-30 мкВ.

Оптимальный выбор полосы пропускания (Df) имеет важное значение. Наиболее информативная часть ЭКС занимает полосу частот Df=0,05-120 Гц, но в практической ЭКС - диагностике используют усилители с Df=0,05-60 Гц. Чрезмерное сужение частотного диапазона со стороны нижних частот fнприводит к искажению сегмента ST и зубца T, но уменьшает смещение изолинии, а со стороны высоких fв - к сглаживанию зазубрин на QRS-комплексе и уменьшению крутизны его склонов.

Полное входное сопротивление Zвх должно быть не менее 2,5-10 МОм. При таких значениях Zвх можно пренебречь потерями в передаче напряжения ЭКС и допустить разбаланс сопротивлений кожа-электрод до 5-10 кОм. Напряжение смещения на входных зажимах УсЭКС не должно уменьшать значения Zвх и КОСС. Чтобы не увеличивать напряжение смещения, необходимо ограничить постоянный ток в цепи пациента, определяемый по входному току покоя, значением 0,1 мкА.

Аналогово-цифровой преобразователь (АЦП) переводит полученный и усиленный ЭКС в дискретную форму для ввода в устройство управления и передачи (УУиП). Дискретизированный сигнал после обработки его УУиП, на выходе которого может стоять обычная модемная схема, передается через телефонную сеть (ТС) на специальное устройство приема сигнала, либо на ЭВМ врача-диагноста.

Также обработанный УУиП сигнал подается на цифро-аналоговый преобразователь (ЦАП) для автоматического управления параметрами сигнала (амплитуды, смещения изолинии, центровки в динамическом диапазоне АЦП и т.д.).

Задача преобразования данных характеризуется рядом требований, выдвигаемых условиями применения схем АЦП и ЦАП:

- выбором вида двоичной системы кодирования;

- выбором частоты квантования (fкв) аналогового сигнала;

- определением необходимого числа уровней квантования;

- допустимыми ошибками преобразования;

- выбором соответствующего вида АЦП и ЦАП;

- фильтрацией сигнала на входе АЦП и выходе ЦАП;

- оптимизацией схемных решений.

Специфическая форма ЭКС требует большого числа уровней квантования. Наиболее часто используется 256, 512 или 1024 уровня, соответствующие в обычном двоичном коде 8, 9 или 10 разрядам. Частота квантования определяет равноотстоящие отрезки времени, в которых непрерывный сигнал представляется в виде некоторых значений, зафиксированных в эти моменты времени

Устройство управления и передачи может взаимодействовать с аналоговым сигналом через АЦП, задача которого состоит в преобразовании входного напряжения в пропорциональное ему число. Методы аналого-цифрового преобразования более разнообразны, чем цифро-аналогового. Объясняется это тем, что АЦП можно осуществить, используя целый ряд систем (параллельный, с двухтактным интегрированием, последовательного приближения и т.д.).

Рассмотрим принцип действия только преобразователя последовательного приближения, наиболее часто используемый в медицинских приборах, что объясняется простотой устройства, а также высокой скоростью и постоянным временем преобразования, не зависящим от амплитуды аналогового сигнала.

Аналоговый входной сигнал, аппроксимируется двоичным кодом с последующей проверкой каждого бита в этом коде до тех пор, пока не будет достигнуто наилучшее приближение. Значение аналогового сигнала в двоичном коде сохраняется в регистре последовательного приближения (РгПП). Поразрядно РгПП соединен с входным буферным устройством, обеспечивающим цифровой выход АЦП с необходимым уровнем выходного сигнала. Вся работа АЦП тактируется тактовым генератором. После N тактов сравнения Iвхи ЦАП на входе ЦАП получается N-разрядный двоичный код, который является эквивалентом аналогового сигнала. Преобразование происходит за N тактов, поэтому скорость формирования N-разрядного слова всегда одинакова. Установка Рr ПП в исходное состояние и запуск его в режим преобразования производится по внешнему логическому сигналу. По окончании преобразования АЦП вырабатывает сигнал “Готовность данных”.

2.7 Цифровая фильтрация электрокардиосигнала

Предварительная цифровая фильтрация ЭКС предшествует алгоритмам, осуществляющим анализ сигнала и служит для выполнения преобразований сигнала, улучшающих условия работы и повышающих эффективность этих алгоритмов. В наиболее общем виде можно выделить три этапа фильтрации, решающие отдельные задачи предобработки ЭКС: фильтрация нижних частот, верхних частот и сетевой наводки.

Предполагается, что на вход алгоритма поступает смесь полезного сигнала с аддитивной помехой. Основная доля мощности ЭКС, снимаемого с использованием стандартной ЭКГ-аппаратуры, сосредоточена в полосе частот, не превышающих 50 Гц. О спектре помех, вообще говоря, нельзя высказать никаких определенных предположений, за исключением того, что он ограничен характеристиками аналогового тракта съема и усиления ЭКС, имеющего обычно полосу пропускания от 0,1 до 100 Гц.

В первую очередь наиболее целесообразно устранить сетевую наводку, сравнительно легко поддающуюся ослаблению с помощью режекторного фильтра. Далее с использованием ФНЧ осуществляется подавление высокочастотных помех. Эту процедуру можно также интерпретировать как ограничение спектра сигнала сверху, что в принципе дает возможность на последующих этапах обработки снизить частоту отсчетов по отношению к исходной за счет прореживания отсчетов. На последнем этапе предобработки с помощью ФВЧ выполняется высокочастотная фильтрация, которая позволяет практически полностью избавиться от постоянной составляющей и смещения изолинии от движения пациента и в значительной степени снизить амплитуду T-зубцов.

Сигнал, получаемый на выходе этой цепочки фильтров, представляет собой смесь полезного сигнала, в котором сохранены основные частотные составляющие, свойственные QRS-комплексам, и той части помех, спектр которой лежит в полосе пропускания результирующей частотной характеристики используемых фильтров. Дальнейшее устранение помех методами цифровой фильтрации не представляется возможным, так как это привело бы к подавлению самого сигнала. приняв за основу приведенную последовательность процедур цифровой фильтрации ЭКС, рассмотрим цифровые методы, которые могут, быть использованы для реализации каждого из этапов предварительной фильтрации.

Представление ЭКС регулярной выборкой отсчетов, получаемой в результате его дискретизации, часто оказывается избыточным. Сократить избыточность позволяют методы сжатия данных, суть которых заключается в уменьшении объема исходной информации путем отбора меньшего числа существенных координат. Эти координаты могут быть получены либо в результате некоторого преобразования дискретного сигнала, либо выбраны непосредственно из исходной выборки отсчетов. Чаще всего сжатие данных связано с некоторой потерей информации, из-за чего исходный сигнал не может быть точно восстановлен. Возможность получения эффективного сжатия ЭКС связана с тем, что высокочастотные компоненты сигнала присутствуют на достаточно коротких отрезках сердечного цикла. Частота дискретизации рассчитывается на допустимые ошибки дискретного представления именно этих фрагментов ЭКС, поэтому описание регулярной выборкой отсчетов низкочастотных участков сигнала оказывается избыточным. Для устранения этой избыточности предложены различные методы сжатия, связанные с решением многих задач хранения, передачи и обработки ЭКС.В системах цифровой передачи данных сокращение объема передаваемых данных снижает требования к пропускной способности канала связи, что особенно актуально для телефонных линий связи.

Для оценки эффективности сжатого представления сигнала обычно применяют два показателя: коэффициент сжатия, определяемый отношением числа исходных отсчетов сигнала к числу полученных координат, и ошибка восстановления сигнала. В качестве последней чаще всего используется абсолютная или средняя квадратическая ошибка. Подход к выбору метода сжатия и оценка его эффективности должен определяться конкретной целью его применения. В задачах хранения и передачи данных обычно задается допустимый уровень искажения восстановленного сигнала, а выбор конкретного метода осуществляется исходя из условий получения наилучшего значения коэффициента сжатия при известной или допустимой сложности реализации алгоритма кодирования-декодирования сигнала. Среди существующих методов сжатия данных можно выделить группу методов, основанных на разложении сигнала по ортогональным функциям. Применение для целей сжатия разложения Карунена-Лоэва, ряда Фурье, преобразования Хаара позволяет достигать высоких коэффициентов сжатия, однако требует большого объема вычислений. Кроме того, возникает проблема предварительного выделения сердечного цикла, что затрудняет реализацию этих методов в системах реального времени. Такое сжатие используется для хранения ЭКГ в автоматизированных архивах и передачи ЭКГ на расстояние, когда нет жестких требований к сложности алгоритмов обработки и скорости вычислений.

Широкое применение получили методы сжатия, основанные на амплитудно-временных преобразованиях сигнала. К наиболее простым относится метод разностного кодирования, который обеспечивает сокращение избыточности регулярной выборки отсчетов за счет уменьшения объема каждой координаты. Важно отметить, что этот метод обеспечивает абсолютно точное восстановление дискретизованного сигнала.

Достаточно распространены методы сжатия сигнала, использующие аппроксимацию сигнала на отдельных временных отрезках различными функциями. В качестве аппроксимирующих функций могут быть взяты алгебраические полиномы разных степеней или специальные функции, но большинство алгоритмов предполагает использование низкостепенных приближающих функций (ступенчатая или линейная аппроксимация). Это объясняется в основном их относительной простотой и высоким быстродействием, что имеет решающее значение для задач передачи и обработки ЭКС в реальном масштабе времени. Среди методов описания сигнала специальными функциями известен метод кодирования ЭКС нерегулярными отсчетами. Задача аппроксимации рассматривается здесь как определение оптимального набора восстанавливающих фильтров с выбором из них линейно-независимых, которые определяют номера существенных отсчетов сигнала.

Благодаря такому способу кодирования удается достичь коэффициентов сжатия порядка 15-20 в зависимости от сложности исходных кривых ЭКГ. Успешно применяют для сжатия ЭКС аппроксимацию сигнала кубическими сплайнами.

Разработанный способ построения сглаживающего кубического сплайна с адаптивным подбором шага на сетке узлов обеспечивает сокращение объема данных в 3-14 раз. Указанные методы сжатия сигнала с применением специальных функций представляются перспективными для обработки ЭКС в текущем режиме, однако в настоящее время считаются сложными для реализации из-за большого объема вычислений.

2.9 Фильтры подавления сетевой наводки

Можно выделить три основных типа фильтров, которые находят применение для подавления сетевой наводки:

- режекторные неадаптивные фильтры;

- фильтры нижних частот или полосовые фильтры, частотные характеристики которых имеют нуль на частоте сетевой помехи;

- адаптивные режекторные цифровые фильтры.

Фильтры первого из перечисленных типов, частотные характеристики которых имеют провал на частоте сетевой наводки, применяются для оперативной обработки ЭКС сравнительно редко, так как являются достаточно сложными для реализации.

Применение фильтров второго из названных типов обычно преследует цель решить одновременно две или более различные задачи фильтрации (устранение постоянной составляющей, подавление сетевой и высокочастотной помех). Такая идея представляется весьма заманчивой, но при этом повышение эффективности решения какой либо одной из указанных задач достигается обычно в ущерб остальным. Например, достаточно простые для использования в режиме реального времени ФНЧ с нулем частотной характеристики на частоте сетевой помехи имеют, как правило, относительно низкое значение частоты среза 20-25 Гц. Это может приводить к заметному подавлению высокочастотных составляющих полезного сигнала, что не всегда допустимо.

Адаптивные режекторные фильтры сетевой наводки отличаются тем, что в процессе работы способны подстраиваться под амплитуду и фазу наводки и осуществлять благодаря этому ее полную компенсацию. Такие фильтры, в отличие от первых двух указанных типов цифровых фильтров, мало влияют на сам полезный сигнал, в частности на его составляющие, спектр которых лежит вблизи частоты сетевой наводки. Кроме того, адаптивные цифровые фильтры способны сочетать относительную простоту реализации с высокой добротностью. Их основным является то, что устойчивая фильтрация возможна лишь в случаях, когда амплитуда и фаза наводки не претерпевают резких изменений. Однако в реальных условиях оперативного анализа ЭКС параметры наводки меняются, как правило, сравнительно медленно. Поэтому адаптивная фильтрация оказывается наиболее предпочтительной.

Оптимальный выбор полосы пропускания (Df) имеет важное значение. Наиболее информативная часть ЭКС занимает полосу частот Df=0,05-120 Гц, но в практической ЭКС - диагностике используют усилители с Df=0,05-60 Гц. Чрезмерное сужение частотного диапазона со стороны нижних частот fн приводит к искажению сегмента ST и зубца T, но уменьшает смещение изолинии, а со стороны высоких fв- к сглаживанию зазубрин на QRS - комплексе и уменьшению крутизны его склонов. С другой стороны, увеличение fв приводит к увеличению помех от биопотенциалов мышц. Если при fв=100 Гц погрешность передачи QRS-комплекса составляет около 3%, то при fв=30 Гц погрешность возрастает до 15% и могут сглаживаться различия между нормальным и патологическим комплексами.

В кардиомониторах (КМ) в зависимости от назначения тракта усиления ЭКС нормируются три значения Df:

Df - для линейного выхода УсЭКС, предназначенного для подключения регистратора ЭКС;

Dfэ - для изображения ЭКГ на экране КМ;

Dfм - для мониторивания при большом уровне помех.

Типичные значения параметров АЧХ: Df=0,05-120 Гц при df=±30% (Dfэ<Df обычно из-за технических ограничений); Dfм=0,5-25 Гц при df=±30%; КfЈ6 дБ/октаву.

Помехоустойчивость КМ по отношению к синфазным сигналам определяется коэффициентом ослабления синфазных сигналов КОСС=КД/КС, где КД и КС- коэффициенты усиления дифференциального и синфазного сигналов.

Таким образом, КОСС показывает способность усилителя различать малый дифференциальный (разностный, противофазный) сигнал на фоне большого синфазного. Легко достижимое значение КОСС лежит в диапазоне 70-80 дБ. Дальнейшее увеличение КОСС до 90-120 дБ требует специальных методов и усложняет конструкцию УсЭКС.

Полное входное сопротивление Zвх должно быть не менее 2,5-10 МОм. При таких значениях Zвх можно пренебречь потерями в передаче напряжения ЭКС и допустить разбаланс сопротивлений кожа-электрод до 5-10 кОм. Напряжение смещения на входных зажимах УсЭКС не должно уменьшать значения Zвх и КОСС. Чтобы не увеличивать напряжение смещения, необходимо ограничить постоянный ток в цепи пациента, определяемый по входному току покоя, значением 0,1 мкА.

3. Микроконтроллер фирмы Analog Devices ADuC847

В разделе изложено краткое описание микроконтроллера ADuC847 компании Analog Devices, приведены примеры управляющих программ и принципиальных схем для подключения к микроконтроллеру ЖКИ DV16244, мембранной клавиатуры СК-04, дополнительного внешнего ЦАП AD5541.

3.1 Особенности микроконтроллера ADuC847

Микроконтроллер ADuC847 (далее МК) -- специализированный аналоговый микроконтроллер на базе ядра 8052, ориентированный на обработку относительно медленно меняющихся аналоговых сигналов от различных датчиков. Все изложенное в статье, в основном, справедливо и для микроконвертеров ADuC845 и ADuC848 с той лишь разницей, что в первом используются два АЦП, а во втором АЦП имеет разрядность 16.

Процессорное ядро МК одноцикловое, позволяющее выполнять однобайтовые команды за один машинный такт. В обычных контроллерах 8052 одна команда выполняется за 12 машинных тактов.

Внешняя микропроцессорная шина данных и адреса позволяет использовать до 16 Мбайт адресного пространства.

Для обеспечения высокой производительности обмена данными через интерфейс UART имеется специализированное устройство формирования синхроимпульсов, в результате этого скорость обмена может достигать 400 Кбод.

Отличительной особенностью МК является разделенные интерфейсы SPI и 12С. Интерфейс 12С выделен за пределы портов устройства, что позволяет использовать все три последовательных интерфейса одновременно. Скорость обмена по интерфейсам SPI и 12С также весьма высока.

В составе МК используется универсальный аналоговый коммутатор, позволяющий реализовать большое число вариантов включения различных датчиков. Коммутатор имеет два режима -- сигналы могут подаваться относительно общего провода и дифференциально. В дифференциальном режиме к коммутатору могут быть подключены четыре пары входов (для 52-выводного корпуса). С выхода коммутатора аналоговый сигнал поступает на вход программируемого усилителя и далее на 24-разрядный дельта-сигма АЦП. АЦП имеет 22 эффективных разряда (RMS) и очень высокие характеристики по уровню шума, смещения и температурного дрейфа. Программируемый усилитель на входе АЦП позволяет подключать непосредственно к МК датчики без использования плат нормализации.

Существует мнение, что АЦП в составе микропроцессорной системы имеет больший уровень шума и, соответственно, меньшее разрешение, но в действительности это не так. В микроконвертерах генератор тактовых сигналов выполнен на основе синтезатора частоты, которая формируется путем умножения сигнала часового резонатора. Узел часового резонатора потребляет очень небольшой ток и работает на относительно низкой частоте, поэтому он не создает значительных помех на аналоговые сигналы. И наоборот, в АЦП серии AD77xx используется внешний кварцевый резонатор с частотой в несколько мегагерц. Кроме этого, во время работы АЦП производится запрет обработки МК всех прерываний, что также снижает общий уровень шумов. Использование синтезатора частоты позволяет эффективно регулировать потребляемую мощность МК. При тактовой частоте 1,57 МГц (напряжение питания 5 В) потребление тока составляет 10 мА, а при 12,58 МГц -- 31 мА. Изменение частоты производится путем записи числа в соответствующий регистр МК.

АЦП МК имеет возможность использования двух внешних источников опорного напряжения. Эта функция позволяет работать одновременно с двумя принципиально различными типами датчиков, требующих разных схем включения источников опорного напряжения, например, термопреобразователей сопротивления и мостовых тензодатчиков.

Тактовый генератор МК питается от аналоговой части устройства, по-

этому для нормальной работы необходимо подать питающее напряжение на все выводы питания МК. Для снижения уровня помех общий провод аналоговой и цифровой частей МК выполняют раздельно и соединяют их только в одной точке. Это может быть вывод источника питания, или они соединяются через дроссель или резистор.

В составе МК имеется счетчик временных интервалов, который может быть использован в качестве системных часов реального времени или для генерации прерываний.

В микроконтроллер также введены два стабильных источника тока 200 мкА для питания датчиков, имеется один 12-разрядный ЦАП с выходом по напряжению. Сигнал ЦАП содержит внутренний буферный усилитель, но часто его бывает недостаточно, и для нормальной работы ЦАП может потребоваться внешний токовый повторитель. Кроме этого, имеются два программируемых 16-разрядных ШИМ с частотой 192 Гц.

...

Подобные документы

  • Электрические процессы сердечной мышцы, потенциал действия в отделах проводящей системы и в рабочем миокарде. Клеточные, межклеточные и внутрисердечные механизмы. Влияние симпатических и парасимпатических нервов на сердце. Экстракардиальная регуляция.

    лекция [22,9 K], добавлен 30.07.2013

  • Патогенез и формы сердечной недостаточности. Факторы сердечной деятельности. Причины развития хронической сердечной недостаточности и принципы её лечения. Классификация и действие лекарственных препаратов, применяемых при сердечной недостаточности.

    презентация [513,3 K], добавлен 17.05.2014

  • Общая характеристика системы кровообращения в организме человека. Рассмотрение строения сердца. Изучение теории мышечного сокращения "скользящих нитей". Описание правил сопряжения сердечной мышцы, фаз сердечного цикла, особенностей функций миокарда.

    презентация [4,1 M], добавлен 25.11.2015

  • Современная функциональная диагностика. Общие сведения о физиологии сердца: автоматизм, проводимость и возбудимость сердечной мышцы. Изменение потенциалов возбужденных клеток. Интервалы и сегменты электрокардиограммы, основные измеряемые параметры.

    реферат [178,1 K], добавлен 22.12.2010

  • Механизмы, вызывающие кардиогенный шок: расстройство насосной функции сердечной мышцы, нарушения сердечного ритма, тампонада желудочков, массивная эмболия. Этиология возникновения заболевания. Классификация тяжести острой сердечной недостаточности.

    презентация [1,6 M], добавлен 09.12.2015

  • Управления по типу донор — реципиент предполагает стимуляцию сердечной деятельности пациента при использовании активности сердечной мышцы другого человека. С этой целью разработан многоканальное устройство биоэлектрического управления движениями человека.

    реферат [409,7 K], добавлен 07.01.2009

  • Этиопатогенез хронической сердечной недостаточности. Стадии проявления заболевания, жалобы пациента. Противопоказания к занятию лечебной физкультурой при сердечной недостаточности. Алгоритм проведения физических нагрузок. Связь с доказательной медициной.

    презентация [48,5 K], добавлен 23.03.2011

  • Характеристика источников развития сердечной мышечной ткани, которые находятся в прекардиальной мезодерме. Анализ дифференцировки кардиомиоцитов. Особенности строения сердечной мышечной ткани. Сущность процесса регенерации сердечной мышечной ткани.

    презентация [1,1 M], добавлен 11.07.2012

  • Изучение происхождения и симптомов ишемической болезни сердца – острого поражения миокарда, обусловленного уменьшением или прекращением доставки кислорода к сердечной мышце, возникающего в результате патологических процессов в системе коронарных артерий.

    презентация [9,2 M], добавлен 18.04.2012

  • Разрастание соединительной ткани в сердечной мышце. Причины нарушения нормального кровотока в венечных артериях. Постинфарктный, миокардический и заместительный кардиосклерозы. Улучшение метаболических процессов в миокарде. Ишемическая болезнь сердца.

    презентация [2,7 M], добавлен 07.04.2014

  • Причины хронической сердечной недостаточности - синдрома, возникающего при наличии у человека систолической и (или) диастолической дисфункции. Сестринские вмешательства при хронической сердечной недостаточности, особенности ухода за пациентами.

    курсовая работа [541,5 K], добавлен 30.03.2019

  • Особенности фармакотерапии и характеристика препаратов, применяемых при сердечной недостаточности. Работа фармацевта с лекарственными препаратами, применяемыми при хронической сердечной недостаточности в аптеке "Классика". Побочные действия препаратов.

    дипломная работа [1,1 M], добавлен 01.08.2015

  • Основной патогенетический механизм ишемической болезни сердца - несоответствие потребности сердечной мышцы в кислороде и его доставки миокарду в результате снижения объемного кровотока по коронарным артериям. Хирургические методы лечения патологии.

    реферат [591,6 K], добавлен 11.05.2019

  • Причины, общий патогенез и критерии классификации сердечной недостаточности. Кардиальные механизмы компенсации сердечной деятельности. Гиперфункция миокарда: причины, виды, патогенетическая значимость. Механизм декомпенсации гипертрофированного миокарда.

    лекция [17,3 K], добавлен 13.04.2009

  • Снижение насосной функции сердца при хронической сердечной недостаточности. Заболевания, вызывающие развитие сердечной недостаточности. Клиническая картина заболевания. Признаки хронической левожелудочковой и правожелудочковой сердечной недостаточности.

    презентация [983,8 K], добавлен 05.03.2011

  • Кислотно-щелочное состояние крови. Вторая и третья фазы свертывания крови, фибринолиз. Особенности проведения возбуждения по сердечной мышце. Состав и ферментативное действие желудочного сока. Механизм газообмена между легкими и кровью, кровью и тканями.

    контрольная работа [21,4 K], добавлен 17.01.2010

  • Этиология и патогенез, особенности клиники и диагностики хронической сердечной недостаточности. Возрастные изменения органов и систем. Методы нефармакологического и хирургического лечения заболевания. Планирование сестринского ухода за пациентами.

    контрольная работа [60,6 K], добавлен 16.09.2014

  • Проверка электрической активности сердечной мышцы. Правила и порядок регистрации ЭКГ. Запись контрольного милливольта. Последовательная запись отведений с I по аVF. Запись грудных отведений. ЭКГ признаки инфаркта миокарда. Стадии инфаркта миокарда.

    презентация [732,5 K], добавлен 17.03.2016

  • Сердечнососудистые заболевания как одна из основных неинфекционных причин смертности населения. Механизм действия кардиопротекторов. Действие рибоксина, специфика ишемии сердечной мышцы. Милдронат – аналог карнитина. Действие триметазидина на миокард.

    реферат [17,4 K], добавлен 10.01.2010

  • Проект биотелеметрической системы для дистанционного контроля физиологических параметров организма - электрокардиограммы и электроэнцефалограммы. Методы измерения и регистрации. Структурная схема и алгоритм функционирования системы передачи информации.

    курсовая работа [1,7 M], добавлен 05.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.