Промышленная технология таблеток с оболочкой

Лекарственные препараты и вспомогательные вещества в производстве таблеток. Прямое прессование и гранулирование. Значение оболочек, прессованные покрытия. Влияние вспомогательных веществ и вида грануляции на биодоступность лекарственных веществ.

Рубрика Медицина
Вид курсовая работа
Язык русский
Дата добавления 30.11.2014
Размер файла 138,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Видимо, наиболее перспективным будет метод принудительной подачи прессуемых веществ на основе вибрации загрузочных воронок в сочетании с приемлемой конструкцией ворошителей.

Но, несмотря на достигнутые успехи в области прямого прессования в производстве таблеток, данный метод применяется для изготовления ограниченного количества лекарственных веществ.

3.3 Гранулирование

Гранулирование -- направленное укрупнение частиц, т. е. процесс превращения порошкообразного материала в зерна определенной величины.

Грануляция необходима для улучшения сыпучести таблети- руемой массы, которое происходит в результате значительного уменьшения суммарной поверхности частиц при их слипании в гранулы и, следовательно, соответствующего уменьшения трения, возникающего между частицами при движении. Расслоение многокомпонентной порошкообразной смеси обычно происходит за счет разницы в размерах частиц и значениях удельной плотности входящих в ее состав лекарственных и вспомогательных компонентов. Такое расслоение возможно при различного рода вибрациях таблеточной машины или ее воронки. Расслоение таблетируемой массы -- опасный и недопустимый процесс, вызывающий в ряде случаев почти полное выделение компонента с наибольшей удельной плотностью из смеси и нарушение ее дозировки. Грануляция предотвращает эту опасность, поскольку в процессе получения гранул происходит слипание частиц различной величины и удельной плотности. Образующийся гранулят, при условии равенства размеров получаемых гранул, приобретает достаточно постоянную насыпную массу. Большую роль играет также прочность гранул: прочные гранулы меньше подвержены истиранию и обладают лучшей сыпучестью.

Существующие в настоящее время способы грануляции подразделяются на основные типы:

1) сухая грануляция, или грануляция размолом;

2) влажная грануляция, или гранулирование продавливанием;

3) структурная грануляция.

Метод сухого гранулирования. Заключается в перемешивании порошков и их увлажнении растворами склеивающих веществ в эмалированных смесителях с последующим высушиванием их до комковатой массы. Затем массу с помощью вальцов или мельницы «Эксцельсиор» превращают в крупный порошок. Грануляция размолом используется в тех случаях, когда увлажненный материал реагирует с материалом при протирке. В некоторых случаях, если лекарственные вещества разлагаются в присутствии воды, во время сушки вступают в химические реакции взаимодействия или подвергаются физическим изменениям (плавление, размягчение, изменение цвета) -- их брикетируют. Из порошка прессуют брикеты на специальных брикетировочных прессах с матрицами большого размера (25--50 мм) под высоким давлением. Полученные брикеты измельчают на валках или мельнице «Эксцельсиор», фракционируют с помощью сит и прессуют на таблеточных машинах таблетки заданной массы и диаметра. Грануляцию брикетированием можно использовать также, когда лекарственное вещество обладает хорошей прессуемостью и для него не требуется дополнительного связывания частиц склеивающими веществами.

В настоящее время, применяя метод сухого гранулирования, в состав таблетируемой массы порошков вводят сухие склеивающие вещества (например, микрокристаллическую целлюлозу, полиэтиленоксид), обеспечивающие под давлением сцепление частиц, как гидрофильных, так и гидрофобных веществ.

Метод влажного гранулирования. На производстве влажное гранулирование часто проводится в грануляторах типа 3027 (Мариупольский ЗТО). Рабочий орган аппарата состоит из шнека и шести прочных стержней, что позволяет перемещать гранулируемый материал в осевом направлении. Имеется правое и левое исполнение. Производительность -- 150--1000 кг/ч. Перспективны пресс-грануляторы фирмы «ХУТТ» (Германия), рабочий орган которого -- прессующие валки в виде полых цилиндров с зубцами на поверхности, между ними в стенках расположены радиальные отверстия для продавливания порошковой массы. Получаются высококачественные гранулы идентичной чечевицеобразной формы. Грануляция, или протирание влажной массы, производится с целью уплотнения порошка и получения равномерных зерен -- гранул, обладающих хорошей сыпучестью.

Данному способу гранулирования подвергаются порошки, имеющие плохую сыпучесть и недостаточную способность к сцеплению между частицами.

В обоих случаях в массу добавляют склеивающие растворы, улучшающие сцепление между частицами.

Метод влажного гранулирования включает следующие операции:

· смешивание порошков;

· овлажнение порошков раствором связывающих веществ и перемешивание;

· гранулирование влажной массы;

· сушка влажных гранул;

· обработка сухих гранул.

Смешивание порошков. Производится с целью достижения однородной массы и равномерности распределения действующего вещества таблеток. Для смешивания и увлажнения порошкообразных веществ применяются смесители различных конструкций:

1) с вращающимися лопастями;

2) шнековые;

3) смесовые барабаны.

При смешивании порошков необходимо:

· к большему количеству добавлять меньшее;

· ядовитые и сильнодействующие вещества, применяемые в малых количествах, предварительно просеянные через сито,

· добавлять к массе отдельными порциями в виде тритураций, т. е. в разведении с наполнителем в концентрации 1:100;

· окрашенные вещества и вещества с большой удельной массой загружать в смеситель в последнюю очередь;

· легколетучие эфирные масла вводить в сухую гранулированную массу перед прессованием на стадии опудривания, во избежание их улетучивания.

Практика производства таблеток показывает, что время, необходимое для смешивания простой прописи (двух- и трехкомпонентные) в сухом состоянии, составляет 5--7 мин, для более сложной -- 10--12 мин.

После смешивания сухих порошков в массу отдельными порциями добавляют увлажнитель, что необходимо для предотвращения ее комкования.

При влажном смешивании порошков равномерность их распределения в значительной степени улучшается, не наблюдается разделения частиц и расслоения массы, улучшается ее пластичность. Перемешивание смоченных порошков сопровождается некоторым уплотнением массы вследствие вытеснения воздуха, что позволяет получать более плотные твердые гранулы. Время перемешивания влажной массы: для простых смесей 7-- 10 мин, для сложных -- 15--20 мин. Оптимальное количество увлажнителя определяется экспериментально (исходя из физико-химических свойств порошков) и указывается в регламенте. Ошибка может привести к браку: если увлажнителя ввести мало -- гранулы после сушки будут рассыпаться, если много -- масса будет вязкой, липкой и плохо гранулируемой. Масса с оптимальной влажностью представляет собой влажную, плотную смесь, не прилипающую к руке, но рассыпающуюся при сдавливании на отдельные комочки.

Гранулирование влажной массы. Влажная масса гранулируется на специальных машинах-грануляторах, принцип работы которых состоит в том, что материал протирается лопастями, пружинящими валиками или другими приспособлениями через перфорированный Цилиндр или сетку. Грануляторы бывают вертикальные и горизонтальные.

Для обеспечения процесса протирания машина должна работать на оптимальном режиме без перегрузки так, чтобы влажная масса свободно проходила через отверстия цилиндра или сетки. Если масса достаточно увлажнена и в меру пластична, то она не заклеивает отверстия и процесс проходит без затруднений. Если же масса вязкая и заклеивает отверстия, машина работает с перегрузкой и необходимо периодически выключать мотор, промывать лопасти барабана.

Выбор сит для гранулирования имеет очень большое значение. Установлено, что влажную массу необходимо пропускать через сито с диаметром отверстий 3--5 мм, а сухую -- через сито с диаметром отверстий 1--2 мм.

В настоящее время влажная грануляция -- основной вид грануляции в производстве таблеток, однако он имеет ряд недостатков:

· длительное воздействие влаги на лекарственные и вспомогательные вещества;

· ухудшение распадаемости (растворимости) таблеток;

· необходимость использования специального оборудования;

· длительность и трудоемкость процесса.

Сушка влажных гранул. Используют различные типы сушилок:

1) полочные сушилки с принудительной циркуляцией воздуха;

2) сушилки с силикагельной колонкой.

В случае необходимости регенерировать жидкости, содержащиеся в высушиваемых материалах, применяют сушилки, в которых воздух пропускается через силикагель. При этом ценные пары адсорбируются, а теплый воздух вновь используется для сушки материала.

Инфракрасные рациональные сушилки. В качестве термоизлучателей в таких сушилках применяются специальные зеркальные лампы, нихромовые спирали накаливания, помещенные в фокусе параболических отражателей, металлические и керамические панельные излучатели с электрическим, паровым или газовым обогревом.

Сублимационные сушилки. За последние годы получил широкое применение в промышленности способ сушки материалов в замороженном состоянии в условиях глубокого вакуума. Он получил название сушки сублимацией, или молекулярной сушки. Способ позволяет сохранить основные биологические качества высушиваемого материала, когда происходит испарение твердого тела без плавления, минуя жидкую фазу.

Сушилки псевдоожиженного слоя. Из известных конструкций названных сушилок на отечественных заводах используется сушилка СП-30. Применяются сушильные аппараты таких фирм, как «Мюнстер», «Аэроматик» (Швейцария).

Принцип работы сушилки СП-30. Поток воздуха, всасываемый вентилятором в верхнюю часть каркаса, нагревается в калорифере до заданной температуры, очищается в фильтре и попадает непосредственно в сушильную камеру, где проходит через резервуар с продуктом снизу вверх, псевдоожижая слой продукта. Далее увлажненный воздух проходит через рукавный фильтр, очищается от мелких частиц продукта и выбрасывается в атмосферу.

Основное преимущество сушилок -- высокая производительность: время сушки материала в зависимости от его физических свойств и формы длится от 20 до 50 мин; они потребляют мало энергии и занимают небольшую рабочую площадь.

Высушенные гранулы перед прессованием должны иметь некоторую влажность, называемую остаточной.

Остаточная влажность для каждого таблетируемого препарата индивидуальна и должна быть оптимальной, т. е. такой, при которой процесс прессования протекает наилучшим образом, Качество таблеток соответствует требования ГФ, а прочность -- наивысшая по сравнению с таблетками, получаемыми из гранул Этого же препарата с другой степенью влажности. Недосушенные гранулы прилипают к пуансонам, неравномерно заполняют матрицу и требуют повышенного количества антифрикционных веществ. Пересушенные гранулы трудно прессуются, и таблетки могут иметь нарушенные края.

Обработка гранул. В процессе сушки гранул возможно их слипание в отдельные комки. С целью обеспечения равномерного фракционного состава высушенные гранулы пропускают через грануляторы с размером отверстий сеток 1,5 мм, что в значительной степени обеспечивает постоянную массу таблеток. Затем гранулы опудривают, добавляя антифрикционные вещества, и передают на стадию таблетирования.

Структурная грануляция. Имеет характерное воздействие на увлажненный материал, приводящее к образованию округлых, а при соблюдении определенных условий -- достаточно однородных по размеру гранул.

В настоящее время существуют три способа грануляции данного типа, используемых в фармацевтическом производстве: грануляция в дражировочном котле; грануляция распылительным высушиванием и структурная грануляция.

Для грануляции в дражировочном котле загружают смесь порошков и при вращении котла со скоростью 30 об/мин производят увлажнение подачей раствора связывающего вещества через форсунку. Частицы порошков слипаются между собой, высушиваются теплым воздухом и в результате трения приобретают приблизительно одинаковую форму. В конце процесса к высушиваемому грануляту добавляют скользящие вещества.

Грануляцию распылительным высушиванием целесообразно использовать в случаях нежелательного длительного контактирования гранулируемого продукта с воздухом, по возможности, непосредственно из раствора (например, в производстве антибиотиков, ферментов, продуктов из сырья животного и растительного происхождения).

Готовят раствор или суспензию из вспомогательного вещества и увлажнителя и подают их через форсунки в камеру распылительной сушилки, имеющую температуру 150 °С. Распыленные частицы имеют большую поверхность, вследствие чего происходит интенсивный массо- и теплообмен. Они быстро теряют влагу и образуют всего за несколько секунд сферические пористые гранулы. Полученные гранулы смешивают с лекарственными веществами и, если необходимо, добавляют вспомогательные вещества, не введенные ранее в состав суспензии. Гранулы имеют хорошую сыпучесть и прессуемость, поэтому таблетки, полученные из такого гранулята, обладают высокой прочностью и прессуются при низких давлениях.

Если в удельном весе гранулята и лекарственного вещества наблюдается значительная разница, то возможно расслоение таблетируемой массы. В результате чрезмерного высушивания суспензии также возможно отслоение верхней части таблетки («кэппинг») при прессовании.

Гранулирование в условиях псевдоожижения. Для гранулирования таблеточных смесей с целью подготовки их к таблетированию в последние годы в отечественной и зарубежной химико-фармацевтической промышленности широкое применение нашел метод псевдоожижения. Отличительная его особенность состоит в том, что обрабатываемый материал, а затем и образующийся гранулят непрерывно находятся в движении. Основные процессы -- смешивание компонентов, увлажнение смеси раствором склеивающего вещества, грануляция, сушка гранулята и внесение опудривающих веществ -- протекают в одном аппарате. Грануляция в псевдоожиженном слое осуществляется двумя способами:

1) распылением раствора, содержащего вспомогательные и лекарственные вещества в псевдоожиженной системе;

2) гранулированием порошкообразных веществ с использованием псевдоожижения.

Применяя первый способ, гранулы образуются при нанесении гранулирующего раствора или суспензии на поверхность первоначально введенных в колонну ядер (ядром может быть лекарственное или индифферентное вещество, например сахар). Этот способ представляет собой распыление гранулирующего раствора в исевдо- ожиженную систему из первоначально введенных в колонну ядер, являющихся искусственными «зародышами» будущих гранул.

Другой способ получения гранул -- непосредственная грануляция порошков в кипящем слое. Для осуществления данного способа разработан аппарат, в верхней части которого происходит процесс гранулирования, а в нижней -- сушки и обработки гранул (например, аппарат СМК). В настоящее время на производстве используют аппараты СГ-30, СГ-60.

Гранулы, полученные в псевдоожиженном слое, отличаются большой прочностью и лучшей сыпучестью, чему способствует более правильная геометрическая форма гранул, приближающаяся к шарообразной. При этом образуются более мягкие и пористые агломераты, чем при получении гранул влажной грануляцией, где образуются крупные агломераты, подлежащие последующему измельчению!

Образование и рост гранул в псевдоожиженном слое происходит за счет двух физических процессов: комкования при смачивании и слипания с последующей агломерацией. Качество гранул и их фракционный состав зависят от многих факторов, определяющих ход процесса, основными из которых являются скорость ожижающего газа, состав и скорость подачи гранулирующей жидкости, температура в слое.

При гранулировании таблеточных смесей в псевдоожиженном слое смешивание является первой технологической операцией, влияющей на качество гранулята. Равномерность смешивания зависит от аэродинамического режима работы аппарата, отношения компонентов в смеси, формы и плотности частиц. Для повышения гомогенности массы создаются условия для встряхивания или поддувки рукавных фильтров без прекращения псевдоожижения.

При смешивании частиц, близких друг к другу по форме и имеющих соотношение по массе не более 1:10, перемешивание практически происходит без сепарации, при больших соотношениях характер перемешивания во многом зависит от формы и плотности частиц, а также от аэродинамических параметров процесса и требует конкретного изучения с целью выбора оптимального режима.

При добавлении гранулирующей жидкости происходит комкование частичек гранулируемой массы за счет склеивающих сил как самой жидкости, так и раствора, образующегося при смачивании этой жидкостью поверхностного слоя обрабатываемого материала. В процессе сушки комки превращаются в твердые агломераты, частично разрушающиеся в результате трения между собой и со стенками аппарата.

Процесс гранулирования в псевдоожиженном слое происходит одновременно с сушкой получаемых гранул горячим воздухом. Сушка готового гранулята является фактически дополнительной до требуемого значения остаточной влажности. Если после прекращения гранулирования таблеточная смесь имеет необходимую для прессования остаточную влажность, то дополнительная сушка не требуется.

Опудривание высушенного гранулята производится в этом же аппарате добавлением антифрикционных веществ в гранулят и вторичного перемешивания в псевдоожиженном слое.

Гранулят, полученный в псевдоожиженном слое, имеет ряд преимуществ перед гранулятом, полученным механическим гранулированием с увлажнением: более округлая форма гранул, лучшая сыпучесть, более сбалансированный фракционный состав.

3.4 Тритурационные таблетки

Таблетки, получаемые формованием увлажненных масс, называются тритурационными таблетками (Tabulettae friabiles). В отличие от прессованных, тритурационные таблетки не подвергаются действию давления; сцепление частиц этих таблеток осуществляется в результате аутогезии при высушивании, поэтому таблетки обладают малой прочностью.

Тритурационные таблетки изготавливают в случаях, если использование давления по каким-либо причинам нежелательно (например, таблетки нитроглицерина, когда при использовании давления может произойти взрыв), либо дозировка лекарственного веществ мала, а добавление большого количества вспомогательных веществ нецелесообразно. Изготовить такие таблетки из-за малого размера (1--4 мм) и массы лекарственного вещества (20--40 мг) на серийных таблеточных прессах технически сложно, а в большинстве случаев невозможно. Тритурационные таблетки целесообразно изготавливать в тех случаях, когда необходимы таблетки быстро и легко растворяющиеся в воде (таблетки для приготовления глазных капель и инъекционных растворов), так как для них не нужны антифрикционные вещества, являющиеся, как правило, нерастворимыми в воде соединениями.

Тритурационные таблетки получают из измельченных лекарственных и вспомогательных веществ. В их качестве используют лактозу, сахарозу, глюкозу, крахмал и их смеси. Порошкообразную смесь увлажняют чаще всего этанолом (40-- 95%), он берется в точно определенном количестве до получения пластичной, но не вязкой массы.

Для формования тритурациойных таблеток созданы специальные довольно сложные машины с производительностью до 200 тыс. таблеток в смену. Загрузочная воронка машин заполняется кашицеобразной массой, которая с помощью крылатой мешалки втирается в перфорированные пластины -- сквозные, цилиндрической формы отверстия, изготовленные из химически стойкого материала (пластмасса, эбонит, нержавеющая сталь). Далее втертая масса выталкивается из пластинок системой небольших пуансонов, и образовавшиеся таблетки высушиваются непосредственно в матрице, на воздухе или по транспортной ленте передаются на сушку в сушильные шкафы (температура сушки 30--40 °С).

Тритурационные таблетки стандартизуют по содержанию действующих веществ и физико-химическим показателям в соответствии с фармакопейной статьей «Таблетки». Тритурационные таблетки не испытывают на механическую прочность, а определение распадаемости и растворимости имеют некоторые отличия.

Следует различать понятия тритурационные таблетки и тритурационный способ введения действующих веществ в состав таблеток, довольно часто встречающийся на производстве. Этот метод применяют в случаях, когда дозировка препарата составляет 0,01 г и меньше. Действующие вещества вводят в виде тритураций как в процессе подготовки массы к таблетированию, так и при опудривании готового гранулята.

Сущность другого способа введения больших количеств препарата в состав таблеток заключается в растворении лекарственного вещества в подходящем растворителе или растворе гранулирующего агента. Полученным раствором увлажняют смесь компонентов рецептуры в соответствующем смесителе с последующей сушкой. Одновременно с растворением препарата можно растворять вспомогательные вещества, обеспечивающие получение твердо дисперсных систем. Введение препарата данным методом обеспечивает однородность дозирования в процессе производства таблеток.

Таким образом, формованные таблетки перспективны для быстрого изготовления из них растворов для инъекций, глазных капель, растворов для наружного применения.

Глава 4. Покрытие таблеток оболочками

4.1 Значение таблеточных оболочек

Покрытие таблеток оболочками имеет многостороннее значение и следующие цели:

· защита таблеток от экстремальных факторов внешней среды (ударов, истирания и др.);

· защита от воздействий окружающей среды (свет, влага, кислород и углекислота воздуха);

· маскировка неприятного вкуса и запаха, содержащихся в таблетках лекарственных веществ;

· защита от окрашивающей способности лекарственных веществ, содержащихся в таблетках (например, таблетки активированного угля);

· защита содержащихся в таблетках лекарственных веществ от кислой реакции желудочного сока;

· защита слизистой рта, пищевода и желудка от раздражающего действия лекарственных веществ;

· локализация терапевтического действия лекарственных веществ в определенном отделе желудочно-кишечного тракта;

· предотвращение нарушений процессов пищеварения в желудке, возможных при нейтрализации желудочного сока лекарственными веществами основного характера;

· пролонгирование терапевтического действия лекарственных веществ в таблетках;

· преодоление несовместимости различных веществ, находящихся в одной таблетке, путем введения их в состав оболочки и ядра;

· улучшение товарного вида таблеток и удобства их применения.

При покрытии таблеток оболочками применяют различные вспомогательные вещества, условно подразделяющиеся на следующие группы: адгезивы, обеспечивающие прилипание материалов покрытия к ядру и друг к другу (сахарный сироп, ПВП, КМЦ, МЦ, АФЦ, ОПМЦ, ЭЦ, ПЭГ и др.); структурные вещества, создающие каркасы (сахар, магния оксид, кальция оксид, тальк, магния карбонат основной); пластификаторы, которые придают покрытиям свойства пластичности (растительные масла, МЦ, ПВП, КМЦ, твины и др.); гидрофобизаторы, придающие покрытиям свойства влагостойкости (аэросил, шеллак, полиакриловые смолы, зеин); красители, служащие для улучшения внешнего вида или для обозначения терапевтической группы веществ: (тропеолин 00, тартразин, кислотный красный 2С, индигокармин и др.); корригенты, придающие покрытию приятный вкус (сахар, лимонная кислота, какао, ванилин и др.).

Применяется более 50 наименований пленкообразователей.

Таблеточные покрытия в зависимости от их состава и способа нанесения разделяют на следующие группы:

1) Прессованные (или сухие) покрытия.

2) Пленочные покрытия.

3) Дражированные покрытия (нанесение сахарной оболочки).

4.2 Прессованные покрытия

Нанесение оболочек прессованием («сухие» покрытия) осуществляют с помощью таблеточных машин типа «Драйкота» английской фирмы «Манести» или отечественной РТМ-24 Д. Машина представляет собой сдвоенный агрегат, состоящий из двух роторов.

На первом роторе обычным способом прессуются таблетки-ядра двояковыпуклой формы, передающиеся с помощью специально транспортирующего устройства на второй ротор, где наносится покрытие. Схема нанесения покрытия прессованием такова. Сначала происходит заполнение гнезда матрицы порцией гранулята, необходимого для образования нижней части (половины) покрытия, затем на гранулят по специальным направлениям с первого ротора подается таблетка-ядро, на которую наносится покрытие. После фиксации таблетки точно по центру гнезда матрицы нижний пуансон несколько опускается, после чего отпускается верхний пуансон, слегка впрессовывающий таблетку-ядро в находящуюся под ней порцию гранулята, или создает над таблеткой пространство для заполнения второй порции гранулята. После подачи этой порции происходит окончательное формирование покрытия путем прессования (одновременно верхним и нижним пуансоном). На заключительной стадии осуществляется выталкивание таблетки, покрытой оболочкой.

Производительность машины 10 500 таблеток в час. К недостаткам этого метода следует отнести: значительный Расход материала для покрытия, увеличение массы и размера таблеток, неравномерность оболочки по толщине, трудность переработки брака, нарушение центровки ядра, значительная пористость покрытий, приводящая к увеличению объема в результате набухания таблеток-ядер при поглощении ими влаги из воздуха, проникающего сквозь поры оболочки. При этом происходит образование трещин в прессованной оболочке или даже ее отслаивание.

Главным преимуществом данного метода покрытия является исключение использования в технологии растворителей. Поэтому прессованные покрытия рациональны для таблеток гигроскопичных и чувствительных к воздействию влаги веществ (антибиотики).

С целью пролонгации эффекта действующего вещества его вводят в состав как ядра, так и покрытия. Покрытие быстро распадается в желудке (начальная доза), а ядро (таблетка) распадается постепенно, поддерживая определенную постоянную концентрацию вещества в организме. Этот метод позволяет преодолеть несовместимость находящихся в одной таблетке различных веществ, вводя их в состав оболочки и ядра.

4.3 Пленочные покрытия

Пленочным покрытием называется тонкая (порядка 0,05-- 0,2 мм) оболочка, образующая на таблетке после высыхания нанесенного на ее поверхность раствора пленкообразующего вещества. Они имеют следующие преимущества:

1) Возможность избирательной растворимости таблеток в желудке или кишечнике.

2) Регулирование скорости адсорбции лекарственных веществ.

3) Возможность совмещения в одной лекарственной форме несовместимых лекарственных веществ.

4) Сохранение физических, химических и механических свойств ядер таблеток при нанесении пленочных покрытий.

5) Сохранение первоначальных геометрических параметров таблеток, их формы, маркировки, фирменных обозначений.

6) Уменьшение массы объема пленочного покрытия по сравнению с дражировочным.

7) Возможность автоматизации процесса покрытия, интенсификации производства и сокращение производственных площадей.

В зависимости от растворимости пленочные покрытия разделяют на следующие группы:

1) водорастворимые;

2) растворимые в желудочном соке;

3) кишечно-растворимые;

4) нерастворимые.

Водорастворимые покрытия и покрытия, растворимые в желудке. Водорастворимые покрытия улучшают внешний вид таблеток, корригируют их вкус и запах, защищают от механических повреждений. Покрытия, растворимые в желудке, предохраняют таблетки от воздействия влаги воздуха; они разрушаются в организме в течение 10--30 мин.

Для получения водорастворимых покрытий полиэтиленоксид И поливинилпирролидон наносят на таблетки в виде 20--30% растворов в 50--90% этиловом или изопропиловом спиртах, метилцеллюлозу и натриевую соль карбоксиметилцеллюлозы -- в виде 4--7% водных растворов.

Покрытия, растворимые в желудочном соке, представляют бензиламино- и диэтиламинобензилцеллюлозой, п-аминобензоатом, сахарозой, глюкозой, фруктозой, маннитом, винилпиридином, зеином и желатином.

Кишечно-растворимые покрытия. Кишечно-растворимые покрытия защищают лекарственное вещество, содержащееся в таблетке, от действия кислой реакции желудочного сока, предохраняет слизистую желудка от раздражающего действия некоторых лекарств, локализируют лекарственное вещество в кишечнике, пролонгируя в определенной степени его действие. Кишечно-растворимые покрытия обладают также более выраженным, чем у перечисленных выше групп покрытий влагозащитным эффектом.

Процесс растворения энтеросолюбильных оболочек в организме обусловлен воздействием на них комплекса ферментов и различных солюбилизирующих веществ, содержащихся в кишечном соке.

Для получения кишечно-растворимых покрытий в качестве пленкообразователей используются высокомолекулярные соединения со свойствами полиэлектролитов с большим числом карбоксильных групп. Они диссоциируют в нейтральной или щелочной среде с образованием нерастворимых солей. Применяются природные вещества: шеллак, карнаубский воск, казеин, кератин, парафин, церезин, спермацет, цетиловый спирт, а также синтетические продукты, стеариновая кислота в сочетании с жирами и желчными кислотами, бутилстеарат, фтапаты декстрина, моносукцинаты ацетил-, метилфталилцеллюлозы.

Чаще всего для получения кишечно-растворимых покрытий используют ацетилфталилцеллюлозу, как вещество, наиболее устойчивое к воздействию желудочного сока. Перечисленные пленкообразователи наносят на таблетки в виде растворов в этиловом, изопропиловом спирте, ацетоне или в смесях указанных растворителей. Для получения окрашенных оболочек в растворы добавляют пигменты и красители.

Кишечно-растворимые покрытия выдерживают (2--4 ч и более) воздействия желудочного сока, что позволяет таким таблеткам в неизмененном виде пройти через желудок; в кишечном соке они распадаются в течение 1 ч, обеспечивая высвобождение лекарственного вещества в кишечнике.

Нерастворимые покрытия. Основное назначение покрытий данного типа -- защита таблетки от механического повреждения и от воздействия атмосферной влаги, устранение неприятного запаха и вкуса лекарственного вещества, пролонгирование его действия. К покрытиям относят этилцеллюлозу, монолаурат полиэтиленсорбита, поверхностно-активные вещества и др. Механизм высвобождения лекарственного вещества из таблеток с нерастворимыми оболочками заключается в следующем. После поступления таблетки в желудочно-кишечный тракт пищеварительные соки проникают в нее сквозь микропоры оболочки и вызывают или растворение содержимого таблетки, или ее набухание. В первом случае растворенные вещества диффундируют через пленку в обратном направлении -- в сторону желудочно- кишечного тракта под влиянием разности концентраций, во втором -- происходит разрыв оболочки за счет увеличения объема таблетки, после чего лекарственное вещество высвобождается обычным образом.

Требования к пленкообразующим веществам:

· Полная безвредность для организма.

· Хорошая растворимость в широко доступных органических растворителях.

· Хорошие пленкообразующие свойства.

· Химическая индифферентность.

· Устойчивость при длительном хранении (сохранение прочности, эластичности и растворимости).

· Доступность.

4.4 Способы нанесения пленочных покрытий

Существуют 3 способа нанесения пленочных покрытий на таблетки:

1) Погружение в раствор пленкообразующего вещества.

2) Наслаивание в дражировочном котле.

3) Получение покрытия во взвешенном слое.

Первый способ основан на погружении таблеток поочередно, то одной, то другой стороной в покрывающий раствор. Таблетки фиксируются с помощью вакуума на металлическом перфорированном листе специальной машины, производительность которой составляет 5--8 тыс. покрытых оболочками таблеток в час. Машины подобного типа выпускаются фирмой «Артур Колтон». Этот способ достаточно сложен и пригоден лишь для нанесения на таблетки вязких, но не слишком клейких растворов. В настоящее время в связи с недостаточно высокой производительностью он применяется редко.

Наиболее широко применяется способ нанесения пленочных покрытий в дражировочном котле. Этот способ недорог, применим для растворов практически любой вязкости, отличается высокой производительностью. Для нанесения покрытия двояковыпуклые таблетки помещают в дражировочный котел, в период работы он вращается со скоростью 20--25 об/мин. Перед началом процесса покрытия с поверхности таблеток сильной воздушной струей удаляется пыль. Покрывающий раствор вводят в котел путем периодического разбрызгивания с помощью установленных у отверстия котла форсунок. Для сушки оболочек таблетки обдувают в котле воздушной струей.

Для нанесения покрытия в псевдоожиженном слое используется установка, конструкция которой почти не отличается от установки типа СГ, применяемой для получения гранулята. Форсунки для разбрызгивания покрывающего раствора устанавливаются в нижней или верхней части рабочей камеры аппарата. Определенное количество таблеток помещают в рабочую камеру, включают вентилятор (компрессор), и под действием образующегося воздушного потока масса таблеток переводится в псевдоожиженное состояние, после чего с определенной скоростью в камеру подается покрывающий раствор. Скорость поступления раствора определяется его вязкостью, скорость движения воздуха в аппарате -- размером камеры и количеством находящихся в ней таблеток. Продолжительность процесса нанесения покрытия зависит от необходимой толщины оболочки и колеблется от 15 до 45 мин. После прекращения пульверизации раствора скорость движения воздуха слегка увеличивают, при этом образование пленочной оболочки происходит наиболее эффективно, процесс сушки покрытия значительно сокращается по сравнению с остальными способами.

Пленочное покрытие незначительно увеличивает массу таблеток. Благодаря применению летучих органических растворителей, исключается длительная стадия сушки оболочек. Продолжительность процесса нанесения пленочного покрытия составляет 2--4 ч.

Пленочные покрытия можно наносить не только на таблетки, но и на гранулы или на частицы порошкообразного материала.

Основным недостатком нанесения пленочных покрытий в промышленных масштабах является значительное увеличение концентрации паров, зачастую ядовитых и огнеопасных органических растворителей в помещениях цехов, что требует принятия соответствующих мер противопожарной безопасности, установке мощной приточно-вытяжной вентиляции и безопасности работников.

В производстве для нанесения пленочных покрытий на основе органических растворителей применяют установки УПТ-25 и УЗЦ-25.

Установка замкнутого цикла УЗЦ-25 способна улавливать пары растворителей, регенерировать их и снова пускать в производство. На этой установке производят таблетки ПАСК -- Na (натриевая соль парааминосалициловой кислоты) с пленочным кищечно-растворимым покрытием.

Дражированные покрытия. Дражированное (от франц. dragee -- нанесение сахарной оболочки) покрытие -- это наиболее старый тип таблеточных оболочек, применяемый с начала XX в. Основное назначение оболочек -- защита таблеток от внешних воздействий, маскировка неприятного вкуса и запаха лекарственного вещества, улучшение внешнего вида таблеток. Иногда в состав оболочек добавляют вещества, защищающие таблетку от воздействия желудочного сока.

Создание дражированных оболочек осуществляется в дражировочных котлах или обдукторах трех форм: шарообразной, эллипсоидной и грушевидной. Наиболее распространенная -- эллипсоидная форма. Ее преимущества -- в возможности большей загрузки таблетками и создании большего давления на них. Кроме того, в котлах такого типа создаются оптимальные вращательные движения дражированных таблеток, ускоряющие и улучшающие условия нанесения оболочки.

Форма котла, степень его загрузки, скорость вращения, наклон котла к горизонтали, а также площадь поверхности дражированных таблеток значительно влияют на качество покрытия. Оптимальная скорость котла -- 18--20 об/мин, угол наклона котла к горизонтали -- 30--45°, оптимальная загрузка -- 25--30% от объема котла.

Дражированная таблетка состоит из таблетки-ядра, содержащей лекарственное вещество, и покрытия, содержащего комплекс вспомогательных веществ.

Таблетка-ядро должна быть механически прочная. Это обусловлено действием на таблетку при дражировании четырех факторов:

1) суммарная масса таблеток, зависящая от величины загрузки котла (с увеличением загрузки и скорости вращения котла возрастает возможность разрушения таблеток);

2) свободное падение таблеток с верхней точки вращающегося котла на нижнюю (эта сила прямо пропорциональна массе таблеток и высоте, с которой они падают);

3) кинетическая энергия вращающихся таблеток в котле (таблетка не просто произвольно падает, а создается вращательный момент, сила которого зависит от массы таблетки и скорости вращения котла);

4) расклинивающий эффект жидкостей, применяемых при дражировании.

Таблетки, подлежащие дражированию, не должны иметь плоскую форму, чтобы избегнуть их слипания. Для дражирования рекомендуются два типа таблеток:

1) со средним овалом поверхности, глубина кривизны составляет около 15% диаметра, высота по центру -- 25--30% диаметра (г = 0,75d);

2) со стандартной кривизной поверхности (малый овал), глубина кривизны составляет 10% диаметра, высота по центру -- не менее 25% диаметра таблетки (г = 1,1d).

До 1975 г. на отечественных химико-фармацевтических заводах существовала технология покрытия таблеток методом сахарно-мучного дражирования.

Стадии технологического процесса дражирования таблеток:

1) Обволакивание, или грунтовка.

2) Наслаивание, или накатка.

3) Сглаживание, или полировка.

4) Глянцовка.

Обволакивание, или грунтовка, состоит в том, что движущиеся таблетки в дражировочном котле увлажняют сахарным сиропом 64--70% концентрации и обсыпаются пшеничной мукой или же смесью ее с магния карбонатом основным. После обсыпки таблетки вращаются 25--30 мин, после чего их сушат теплым воздухом (40--50 °С) в течение 30--40 мин. Операции увлажнения таблеток, обсыпки, свободного вращения и сушки повторяют 2--3 раза. Стадия обволакивания, в случае необходимости, применяется для изоляции таблетки-ядра от проникновения влаги, особенно в первые моменты увлажнения таблеток.

За стадией обволакивания следует стадия наслаивания, или накатки. Во всем технологическом цикле дражирования -- это самая важная стадия, так как именно здесь происходит, в основном, образование всей оболочки.

На этой стадии одни заводы применяют сахарно-мучное тесто для наслаивания, другие -- таблетки увлажняли сахарным сиропом и обсыпали магния карбонатом основным или же смесью его с пшеничной мукой в равных количествах. После одноразовой подачи сахарно-мучного теста таблеткам дают свободное вращение, перемешивая их в котле в течение 30--40 мин. Затем таблетки сушат теплым воздухом 20--30 мин. Операции подачи теста, свободного вращения, сушки таблеток повторяют многократно, до получения определенной массы таблеток.

За стадией наслаивания следует стадия сглаживания, или полировки, которую осуществляют с помощью сахарного сиропа с добавлением небольших количеств желатина (до 1%) и красителей. На этой стадии происходит удаление неровностей, шероховатостей.

Последней стадией процесса дражирования является стадия глянцевания, т. е. придания таблеткам блеска, товарного вида. Ее осуществляют двумя способами.

Применяя первый способ, готовят глянцовочную мастику следующего состава, %:

воска пчелиного

45

масла вазелинового

45

талька

10

Глянцовочную мастику в количестве 0,05--0,06% руками наносят на вращающиеся теплые таблетки и дают свободное вращение таблеткам 30--40 мин. Затем таблетки обсыпают небольшим количеством талька для ускорения получения глянца.

Применяя второй способ, отполированные таблетки выгружают из котла и помещают в специальный котел, стенки которого покрыты воском. Включают вращение котла на 1,5--2 ч и таким образом получают глянец.

Сахарно-мучное дражирование имеет ряд существенных недостатков.

Исследования показали, что в процессе хранения в результате окислительных процессов и энзиматического расщепления белковых веществ в муке образуются свободные органические кислоты с выделением газообразных веществ, что ведет к прогорканию. Мука, входящая в состав покрытия, ухудшает его физико-механические свойства и часто ведет к растрескиванию покрытия.

Сахарно-мучное тесто, применяемое при дражировании, по своей консистенции негомогенно, и покрытие, получаемое на его основе, не имеет ровной однородной поверхности. Мучное тесто затрудняет возможность механизировать и автоматизировать процесс. Кроме того, сахарно-мучное дражирование характеризуется трудоемкостью и длительностью.

В связи с изложенным выше проф. П. Д. Пашневым (Харьков) разработан новый способ покрытия таблеток -- суспензионный метод дражирования.

Состав суспензии, %:

Сахар

58,00

Вода

24,85

Поливинилпирролидон

0,75

Аэросил

1,00

Магния карбонат основной

13,40

Титана двуокись

2,00

Сочетание сахара и воды представляет собой 70% сахарный сироп, являющийся носителем суспензии.

Поливинилпирролидон (ПВП) является высокомолекулярным соединением винилпирролидона. В растворе молекулы ПВП, присоединяясь друг к другу, образуют пространственную сетку. Молекулы сахара, растворенные в воде, оказываются заключенными в ячейки сетки.

В процессе сушки обрабатываемых таблеток вода, находящаяся в отдельных ячейках сетки, удаляется. Оставшийся в ячейках сетки сахар, кристаллизуясь, не имеет возможности соединяться в агломераты. Образуются мелкодисперсные кристаллы, обладающие меньшей хрупкостью и большей пластичностью.

Аэросил (аморфная двуокись кремния), применяемый в суспензии, является ее стабилизатором. Механизм стабилизации заключается в том, что на поверхности частичек аэросила имеются силаноловые группы, образующие с водой гель при помощи водородных мостиков. Образовавшийся гель препятствует седиментации взвешенных частиц. Магния карбонат основной -- наполнитель. Титана диоксид -- краситель (пигмент).

Стадии суспензионного метода дражирования таблеток:

1) Нанесение на таблетки покрытия из неокрашенной суспензии.

2) Нанесение на таблетки покрытия из окрашенной суспензии или окрашенного сиропа.

3) Глянцевание таблеток.

Суспензионное дражирование таблеток осуществляют как на обычных дражировочных котлах, так и на автоматических линиях фирм «Штенберг» (Германия) и «Пеллегрини» (Италия).

Технологический режим дражирования заключается в следующем.

В дражировочный котел загружают таблетки-ядра в количестве 25--30% от объема котла, предварительно обкатанных и обеспыленных. Включают привод котла и на вращающиеся таблетки подают 2--2,5% суспензии методом полива или же разбрызгивания с помощью форсунки. Таблеткам дают «раскататься» 4--5 мин. Угол наклона котла к горизонтали составляет 45°, скорость вращения -- 20--25 об/мин. После чего таблетки сушат теплым воздухом 40--45 °С в течение 3--4 мин.

Операции подачи суспензии, обкатки и сушки повторяют многократно, до получения определенной массы таблеток.

О режиме нанесения окрашенного покрытия на основе окрашенной суспензии или окрашенного сиропа и глянцевании таблеток говорилось выше.

Суспензионный метод покрытия таблеток оболочками позволил автоматизировать процесс, уменьшить трудозатраты, повысить производительность труда в 3--5 раз.

Новая технология улучшила качество покрытых оболочками таблеток:

1) снизилась их средняя масса;

2) улучшен товарный вид;

3) повысилась стабильность покрытых оболочками таблеток -- срок годности препаратов увеличился с 1 года до 4 лет;

4) исключен пищевой продукт -- мука, приводившая к растрескиванию покрытия.

Глава 5. Качество таблеток

5.1 Факторы, влияющие на основные параметры таблеток

Механическая прочность таблеток зависит от многих факторов. В случае применения способа прямого прессования прочность таблеток будет зависеть от физико-химических свойств прессуемых веществ.

Прочность таблеток, получаемых методом влажной грануляции, зависит от количества, природы связывающих (склеивающих) веществ, от величины давления прессования и от влажности таблетируемого материала.

Количество склеивающих веществ и оптимальная влажность, как правило, указываются в промышленных регламентах. Давление прессования подбирается для каждого препарата и контролируется путем измерения прочности таблеток и времени их распадаемости. Излишнее давление прессования часто приводит к расслаиванию таблеток. Кроме того, происходит резкое уменьшение пор, что снижает проникновение жидкости в таблетку, увеличивает время ее распадаемости.

Влагосодержание выше оптимального приводит к прилипанию таблеточной массы к пресс-инструменту. Недостаточное содержание влаги, т. е. пересушивание материала, приводит к расслаиванию в момент прессования или же к недостаточной механической прочности.

Распадаемость и растворимость таблеток также зависит от многих факторов: количества и природы связывающих веществ; количества и природы разрыхляющих веществ, способствующих распадаемости таблеток; давления прессования; физико-химических свойств веществ, входящих в таблетку -- прежде всего от способности их к смачиваемости, набуханию и растворимости.

Средняя масса таблеток также зависит от ряда составляющих: сыпучести материала; фракционного состава; формы загрузочной воронки и угла ската; скорости вращения матричного стола, т. е. от скорости прессования.

5.2 Влияние вспомогательных веществ и вида грануляции на биодоступность лекарственных веществ из таблеток

Ни один фармацевтический фактор не оказывает столь значительного и сложного влияния на действие препарата, как вспомогательные вещества.

В добиофармацевтический период лекарств введение вспомогательных веществ рассматривалось только как введение индифферентных наполнителей и формообразователей, без которых невозможно обойтись при получении соответствующих лекарственных форм.

Обычно выбор вспомогательных веществ диктовался чисто технологическими, а нередко и просто экономическими соображениями. Для их применения нужно было доказать, что они фармакологически индифферентны, сообщают лекарственной форме соответствующие технологические свойства и доступны по стоимости.

Современная научная фармация отказалась от прежнего понимания вспомогательных веществ как только индифферентных формообразователей. Они сами обладают определенными физико-химическими свойствами, которые в зависимости от природы лекарственного вещества, условия получения и хранения лекарственной формы, способности вступать в более или менее сложные взаимодействия как с биологически действующими веществами, так и с факторами внешней среды (например, межтканевой жидкостью, содержимым желудочно-кишечного тракта и т. д.). Таким образом, любые вспомогательные вещества не являются индифферентными и практически во всех случаях их применение так или иначе воздействует на систему лекарственное вещество -- макроорганизм.

Биофармация требует при использовании любых вспомогательных веществ учитывать не только и не столько возможное влияние их на физико-химические свойства лекарственных форм, сколько воздействие на фармакокинетику, а через нее на терапевтическую эффективность лекарственных веществ. Каждый случай применения вспомогательных веществ требует специального исследования, так как они должны обеспечивать достаточную стабильность препарата, максимальную биологическую доступность и присущий ему спектр фармакологического действия.

Необоснованное применение вспомогательных веществ может привести к снижению, искажению или полной потере лечебного действия лекарственного препарата. Это происходит главным образом вследствие взаимодействия лекарственных веществ при изготовлении препаратов, в самой лекарственной форме или чаще -- после ее назначения больному. В основе подобных взаимодействий лежат преимущественно явления комплексообразования и адсорбции, способные резко изменить скорость и полноту всасывания действующих веществ.

Доказано, что способ получения лекарственных форм во многом определяет стабильность препарата, скорость его высвобождения из лекарственной формы, интенсивность всасывания, и в конечном итоге -- терапевтическую эффективность. Например, от выбора способа грануляции при получении таблеток зависит степень сохранности ряда лекарственных веществ в готовых лекарственных формах. Особенно нежелательно применение влажной грануляции при получении таблеток, содержащих резерпин, антибиотики и другие вещества, так как возможно разложение препаратов.

1. Условия грануляции оказывают большое влияние на распадаемость таблеток. Наиболее часто применяемые в промышленности увлажнители -- крахмальный клейстер и растворы желатина -- для многих препаратов не являются оптимальными, так как увеличивают время их распадаемости. Повышение прочности таблеток с помощью высоковязких гранулирующих ясидкостей при прочих равных условиях также приводит к увеличению времени распадаемости; лучшую распадаемость среди высоковязких жидкостей обычно обеспечивают растворы полимеров: МЦ, ОПМЦ, ПВП, NaKMH,.

Вредное влияние гидрофобных скользящих веществ (тальк, магния и кальция стеарат), ухудшающих распадаемость таблеток из-за затрудненного проникновения пищеварительных жидкостей в пористую структуру таблетки, существенно снижается или полностью устраняется, если таблетируемые массы содержат сильно набухающие вещества (КМЦ, МЦ).

2. Прессование оказывает влияние на скорость высвобождения препарата, которая, в свою очередь, может нарушить процесс его абсорбции в местах всасывания.

3. Одним из методов совершенствования биофармацевтических свойств таблеток является создание их на основе комплексов включения циклодекстринов с лекарственными веществами. Так, использование комплекса а-циклодекстрина существенно улучшает растворение дигоксина, кавинтона; наблюдается увеличение скорости растворения салициловой кислоты в комплексе с (3-циклодекстрином.

С целью поддержания концентрации лекарственного вещества в организме на определенном постоянном уровне при изготовлении некоторых таблеток используются вспомогательные вещества, замедляющие скорость высвобождения лекарственных веществ. Например, разработаны таблетки сальбутамола пролонгированного действия, содержащие вспомогательное вещество -- акриловую смолу.

5.3 Контроль качества таблеток

Одно из основных условий промышленного производства таблеток -- соответствие готовой продукции требованиям действующей нормативно-технической документации. Качество выпускаемых таблеток определяется различными показателями, подразделяющимися на группы:

· Органолептические.

· Физические.

· Химические.

· Бактериологические.

· Биологические.

Определяют качество таблеток по их внешнему виду (органо- лептическим свойствам), учитывая следующие факторы:

· условия прессования;

· адгезионные и когезионные свойства таблетируемой массы, ее влажность;

...

Подобные документы

  • Особенности технологического производства таблеток. Критерии качества готового продукта. Сравнительная характеристика вспомогательных веществ, используемых в России и за рубежом, их влияние на готовый препарат. Корригенты в лекарственных препаратах.

    курсовая работа [316,5 K], добавлен 16.12.2015

  • Лекарственные препараты для глаз. Технологические методы пролонгирования лекарственных форм. Классификация вспомогательных веществ. Природные вспомогательные вещества и неорганические полимеры. Синтетические и полусинтетические вспомогательные вещества.

    курсовая работа [29,5 K], добавлен 07.01.2009

  • Технология изготовления таблеток: прямое прессование и гранулирование. Оценка их внешнего вида. История открытия препарата парацетамол. Механизм его действия, фармакологические свойства, способ применения и дозы. Химическая схема его производства.

    курсовая работа [867,3 K], добавлен 17.03.2015

  • Общая характеристика таблеток, их содержание. Сущность пленочного и оболочного покрытия таблеток, необходимость проведения контроля качества. Знакомство с основными методами совершенствования биофармацевтических свойств таблеток, анализ проблем.

    курсовая работа [225,4 K], добавлен 11.06.2014

  • Биофармацевтические аспекты выбора вспомогательных веществ при создании лекарственных средств. Их влияние на эффективность и качество лекарств. Классификация вспомогательных веществ, их ассортимент и характеристика. Стабилизаторы. Активаторы всасывания.

    курсовая работа [167,0 K], добавлен 11.04.2016

  • Свойства таблеток и пилюль. Связующие, пластификаторы, защитные оболочки, пролонгаторы и регуляторы скорости высвобождения препарата. Роль синтетических полимеров в фармации. Акриловые полимеры для многофункционального покрытия твердых лекарственных форм.

    презентация [7,2 M], добавлен 23.03.2015

  • Характеристика и классификация вспомогательных веществ, необходимых для приготовления лекарственного препарата. Требования, предъявляемые к ним. Определение таблеток и капсул как лекарственной формы. Вспомогательные вещества в технологии их производства.

    курсовая работа [65,0 K], добавлен 21.08.2011

  • Применение вспомогательных веществ. Вспомогательные вещества в технологии эмульсий. Эмульгаторы. Вспомогательные вещества в технологии эмульсионных мазей. Эмульсионные мазевые основы. Вспомогательные вещества в технологии пилюль. Жидкие и твердые вспомога

    курсовая работа [44,4 K], добавлен 02.07.2005

  • Понятие вспомогательных веществ как фармацевтического фактора; их классификация в зависимости от происхождения и назначения. Свойства стабилизаторов, пролонгаторов и корригентов запаха. Номенклатура вспомогательных веществ в жидких лекарственных формах.

    реферат [18,0 K], добавлен 31.05.2014

  • Положительные и отрицательные стороны таблеток. Основные требования к изготовлению таблеток. Технология изготовления таблеток пролонгированного действия. Основная схема изготовления таблеток. Точность дозирования, механическая прочность таблеток.

    курсовая работа [327,5 K], добавлен 29.03.2010

  • Общие требования к лекарственной форме. Вещество клофелина гидрохлорид. Характеристика и свойства порошкообразных фармацевтических субстанций. Механизм действия, фармакотерапевтическая группа и применение таблеток клофелина. Роль вспомогательных веществ.

    курсовая работа [1,5 M], добавлен 18.01.2014

  • Изучение биоэквивалентности как одного из видов клинического исследования. Развитие представлений о полиморфизме лекарственных и биологически активных веществ. Стабильность полиморфных модификаций и ее влияние на биодоступность лекарственного вещества.

    курсовая работа [43,4 K], добавлен 17.08.2010

  • Краткий исторический очерк развития фармакологии. Правила прописывания твердых лекарственных форм: таблеток, капсул. Распределение лекарственных веществ в организме. Средства, влияющие на нервную систему. Классификация адренорецепторов и их локализация.

    учебное пособие [3,9 M], добавлен 12.03.2015

  • Изучение химического состава кермека Гмелина. Качественная и количественная оценка основных групп биологически активных веществ, содержащихся в полученной субстанции, их характеристика. Технология производства таблеток на основе надземной части растения.

    дипломная работа [4,1 M], добавлен 15.02.2014

  • Классификация пролонгированных лекарственных форм. Методы продления действия лекарственных веществ. Иммобилизация живых клеток. Глазные пленки, их преимущества. Суспендирование растворимых лекарственных веществ. Заключение веществ в пленочную оболочку.

    курсовая работа [496,1 K], добавлен 28.03.2012

  • Организация и нормирование промышленного производства лекарственных препаратов. Способы получения таблеток, драже и гранул. Состав желатиновой массы для производства капсул. Способы наполнения аэрозольных баллонов. Инъекционные лекарственные формы.

    тест [206,2 K], добавлен 17.07.2009

  • Фармацевтические субстанции, вспомогательные вещества, лекарственная форма и лекарственные препараты. Установление и применение стандартов. Химические превращения бактериохлорофилла а в кислой и щелочной средах. Химические модификации бактериопурпурина.

    лекция [2,4 M], добавлен 17.02.2013

  • Основные требования к упаковке и потребительской таре для лекарств и медицинских изделий. Материалы для их производства. Технология фасовки таблеток в блистеры и формирования картонных пачек. Инновационные достижения в области фармацевтической упаковки.

    реферат [129,6 K], добавлен 27.05.2014

  • Таблетки - твердая дозированная лекарственная форма, их классификация. Соответствие готовой продукции требованиям действующей нормативно-технической документации как условие промышленного производства таблеток. Основные показатели качества таблеток.

    презентация [285,8 K], добавлен 29.01.2017

  • Однородность массы для единицы дозированного лекарственного средства. Устойчивость суппозиториев к разрушению. Прочность таблеток без оболочки на истирание. Определение времени деформации липофильных суппозиториев. Распадаемость таблеток и капсул.

    курсовая работа [1,4 M], добавлен 03.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.