Физика энергетических оздоровительных практик и разработка универсальной практической системы целительства

Физиологическое обоснование энергетических практик Востока. Вода как основа биохимических реакций организма. Энергетические возможности человека. Теоретическое обоснование существования энергии. Самоорганизация природы и изучение энергии в живой материи.

Рубрика Медицина
Вид дипломная работа
Язык русский
Дата добавления 28.06.2016
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В середине 1980-х годов Майкл Грин и Джон Шварц пришли к выводу, что суперсимметрия, являющаяся центральным звеном теории струн, может быть включена в неё не одним, а двумя способами: первый - это суперсимметрия мировой поверхности струны, второй - пространственно-временная суперсимметрия. В своей основе данные способы введения суперсимметрии связывают методы конформной теории поля со стандартными методами квантовой теории поля. Технические особенности реализации данных способов введения суперсимметрии обусловили возникновение пяти различных теорий суперструн - типа I, типов IIA и IIB, и двух гетеротических струнных теорий. Возникший в результате этого всплеск интереса к теории струн был назван «первой суперструнной революцией». Все эти модели формулируются в десятимерном пространстве-времени, однако различаются струнными спектрами и калибровочными группами симметрии. Заложенная в 1970-х и развитая в 1980-х годах конструкция одиннадцатимерной супергравитации, а также необычные топологические двойственности фазовых переменных в теории струн в середине 1990-х привели ко «второй суперструнной революции». Выяснилось, что все эти теории, на самом деле, тесно связаны друг с другом благодаря определённым дуальностям. Было высказано предположение, что все пять теорий являются различными предельными случаями единой фундаментальной теории, получившей название М-теории. В настоящее время ведутся поиски адекватного математического языка для формулировки этой теории.

4.1.1 ИСТОРИЯ

1. СТРУНЫ В АДРОННОЙ ФИЗИКЕ

Струны как фундаментальные объекты были первоначально введены в физику элементарных частиц для объяснения особенностей строения адронов, в частности пионов.

В 1960-х годах была обнаружена зависимость между спином адрона и его массой (график Чу - Фраучи). Это наблюдение привело к созданию теории Редже, в которой разные адроны рассматривались не как элементарные частицы, а как различные проявления единого протяжённого объекта - реджеона. В последующие годы усилиями Габриэле Венециано, Ёитиро Намбу, Холгера Бех Нильсена и Леонарда Сасскинда была выведена формула для рассеяния реджеонов и была дана струнная интерпретация протекающих при этом явлений.

В 1968 году Габриэле Венециано и Махико Судзуки при попытке анализа процесса столкновений пи-мезонов (пионов) обнаружили, что амплитуда парного рассеивания высокоэнергетических пионов весьма точно описывается одной из бета-функций, введённых Леонардом Эйлером в 1730 году. Позже было установлено, что амплитуда парного пионного рассеивания может быть разложена в бесконечный ряд, начало которого совпадает с формулой Венециано-Судзуки.

В 1970 году Ёитиро Намбу, Тэцуо Гото, Холгер Бех Нильсен и Леонард Сасскинд выдвинули идею, что взаимодействие между сталкивающимися пионами возникает вследствие того, что эти пионы соединяет «бесконечно тонкая колеблющаяся нить». Полагая, что эта «нить» подчиняется законам квантовой механики, они вывели формулу, совпадающую с формулой Венециано-Судзуки. Таким образом, появились модели, в которых элементарные частицы представляются в виде одномерных струн, которые вибрируют на определённых нотах частотах.

С наступлением эры квантовой хромодинамики научное сообщество утратило интерес к теории струн в адронной физике вплоть до 80-х гг. XX в.

2. БОЗОННАЯ ТЕОРИЯ СТРУН

К 1974 году стало ясно, что струнные теории, основанные на формулах Венециано, реализуются в размерности пространства большей, чем 4: модель Венециано и модель Шапиро-Вирасоро (S-V) в размерности 26, а модель Рамона-Невьё-Шварца (R-NS) в 10, и все они предсказывают тахионы. Скорость тахионов превышает скорость света в вакууме, а потому их существование противоречит принципу причинности, который, в свою очередь нарушается в микромире. Таким образом, не имеется никаких убедительных (в первую очередь, экспериментальных) доказательств существования тахиона, равно как и логически неуязвимых опровержений. На данный момент считается более предпочтительным не использовать идею тахионов при построении физических теорий. Решение проблемы тахионов основано на работах по пространственно-временной глобальной (не зависящей от координат) суперсимметрии Весса и Зумино (1974 год).. В 1977 году Глиоцци, Шерк и Олив (GSO проекция) ввели в модель R-NS специальную проекцию для струнных переменных, которая позволила устранить тахион и по существу давала суперсимметричную струну. В 1981 году Грину и Шварцу удалось описать GSO проекцию в терминах D-мерной суперсимметрии и чуть позже ввести принцип устранения аномалий в теориях струн.

В 1974 году Джон Шварц и Жоэль Шерк, а также независимо от них Тамиаки Ёнэя, изучая свойства некоторых струнных вибраций, обнаружили, что они в точности соответствуют свойствам гипотетической частицы - кванта гравитационного поля, которая называется гравитон. Шварц и Шерк утверждали, что теория струн первоначально потерпела неудачу потому, что физики недооценили её масштаб. На основе данной модели была создана теория бозонных струн, которая по-прежнему остаётся первым вариантом теории струн, который преподают студентам. Эта теория формулируется в терминах действия Полякова, с помощью которого можно предсказывать движение струны в пространстве и времени. Процедура квантования действия Полякова приводит к тому, что струна может вибрировать различными способами и каждый способ её вибрации генерирует отдельную элементарную частицу. Масса частицы и характеристики её взаимодействия определяются способом вибрации струны, или своеобразной «нотой», которая извлекается из струны. Получающаяся таким образом гамма называется спектром масс теории струн.

Первоначальные модели включали как открытые струны, то есть нити, имеющие два свободных конца, так и замкнутые, то есть петли. Эти два типа струн ведут себя по-разному и генерируют два различных спектра. Не все современные теории струн используют оба типа, некоторые обходятся только замкнутыми струнами.

Теория бозонных струн не лишена проблем. Прежде всего, теория обладает фундаментальной нестабильностью, которая предполагает распад самого пространства-времени. Кроме того, как следует из её названия, спектр частиц ограничивается только бозонами. Несмотря на то, что бозоны представляют собой важный ингредиент мироздания, Вселенная состоит не только из них. Также она предсказывает несуществующую частицу с отрицательным квадратом массы - тахион. Исследования того, каким образом можно включить в спектр теории струн фермионы, привело к понятию суперсимметрии - теории взаимосвязи бозонов и фермионов, которая теперь имеет самостоятельное значение. Теории, включающие в себя фермионные вибрации струн, называются суперструнными теориями.

3. ДОПОЛНИТЕЛЬНЫЕ ИЗМЕРЕНИЯ

Интригующим предсказанием теории струн является многомерность Вселенной. Ни теория Максвелла, ни теории Эйнштейна не дают такого предсказания, поскольку предполагают число измерений заданным (в теории относительности их четыре). Первым, кто добавил пятое измерение к эйнштейновским четырём, оказался немецкий математик Теодор Калуца в 1919 году. Обоснование ненаблюдаемости пятого измерения (его компактности) было предложено шведским физиком Оскаром Клейном в 1926 году.

Требование согласованности теории струн с релятивистской инвариантностью (лоренц-инвариантностью) налагает жёсткие требования на размерность пространства-времени, в котором она формулируется. Теория бозонных струн может быть построена только в двадцатишестимерном пространстве-времени, а суперструнные теории - в десятимерном.

Поскольку мы, согласно специальной теории относительности, существуем в четырёхмерном пространстве-времени, необходимо объяснить, почему остальные дополнительные измерения оказываются ненаблюдаемыми. В распоряжении теории струн имеется два таких механизма.

Первый из них заключается в компактификации дополнительных шести или семи измерений, то есть замыкание их на себя на таких малых расстояниях, что они не могут быть обнаружены в экспериментах. Шестимерное разложение моделей достигается с помощью пространств Калаби-Яу.

Классическая аналогия, используемая при рассмотрении многомерного пространства, садовый шланг. Если наблюдать шланг с достаточно далёкого расстояния, будет казаться, что он имеет только одно измерение - длину. Но если приблизиться к нему, обнаруживается его второе измерение - окружность. Истинное движение муравья, ползающего по поверхности шланга, двумерно, однако издалека оно нам будет казаться одномерным. Дополнительное измерение доступно наблюдению только с относительно близкого расстояния, поэтому и дополнительные измерения пространства Калаби-Яу доступны наблюдению только с чрезвычайно близкого расстояния, то есть практически не обнаруживаемы.

Другой вариант - локализация - состоит в том, что дополнительные измерения не столь малы, однако в силу ряда причин все частицы нашего мира локализованы на четырёхмерном листе в многомерной вселенной (мультивселенной) и не могут его покинуть. Этот четырёхмерный лист (брана) и есть наблюдаемая часть мультивселенной. Поскольку мы, как и вся наша техника, состоим из обычных частиц, то мы в принципе неспособны взглянуть вовне.

Единственная возможность обнаружить присутствие дополнительных измерений - гравитация. Гравитация, будучи результатом искривления пространства-времени, не локализована на бране, и потому гравитоны и микроскопические чёрные дыры могут выходить вовне. В наблюдаемом мире такой процесс будет выглядеть как внезапное исчезновение энергии и импульса, уносимых этими объектами.

4.1.2 ПРАКТИЧЕСКИЕ НАРАБОТКИ ПО ТЕОРИИ СТРУН

1. ИЗУЧЕНИЕ СВОЙСТВ ЧЁРНЫХ ДЫР

В 1996 году струнные теоретики Эндрю Строминджер и Кумрун Вафа, опираясь на более ранние результаты Сасскинда и Сена, опубликовали работу «Микроскопическая природа энтропии Бекенштейна и Хокинга». В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определённого класса чёрных дыр, а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений, которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга, сделанными более чем за двадцать лет до этого.

Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили конструктивный подход. Суть в том, что они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать путём кропотливой сборки в один механизм точного набора бран, открытых во время второй суперструнной революции.

Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд, остаются неизменными. Тогда энтропия этого состояния по определению равна логарифму полученного числа - числа возможных микросостояний термодинамической системы. Затем они сравнили результат с площадью горизонта событий чёрной дыры - эта площадь пропорциональна энтропии чёрной дыры, как предсказано Бекенштейном и Хокингом на основе классического понимания, и получили идеальное согласие. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии.

Это открытие оказалось важным и убедительным аргументом в поддержку теории струн. Разработка теории струн до сих пор остаётся слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварков или электрона. Теория струн, тем не менее, даёт первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу, Нобелевский лауреат по физике и убеждённый противник теории струн в 1980-е гг., признался в интервью в 1997 года, что «когда струнные теоретики говорят о чёрных дырах, речь идёт едва ли не о наблюдаемых явлениях, и это впечатляет».

2. СТРУННАЯ КОСМОЛОГИЯ

Струнная космология - относительно новая и интенсивно развивающаяся область теоретической физики, в рамках которой осуществляются попытки использования уравнений теории струн для решения некоторых проблем, возникших в ранней космологической теории. Данный подход впервые использован в работах Габриэле Венециано, который показал, каким образом инфляционная модель Вселенной может быть получена из теории суперструн. Инфляционная космология предполагает существование некоторого скалярного поля, индуцирующего инфляционное расширение. В струнной космологии вместо этого вводится так называемое дилатонное поле, кванты которого, в отличие, например, от электромагнитного поля, не являются безмассовыми, поэтому влияние данного поля существенно лишь на расстояниях порядка размера элементарных частиц или на ранней стадии развития Вселенной.

Существует три основных пункта, в которых теория струн модифицирует стандартную космологическую модель. Во-первых, в духе современных исследований, всё более проясняющих ситуацию, из теории струн следует, что Вселенная должна иметь минимально допустимый размер. Этот вывод меняет представление о структуре Вселенной непосредственно в момент Большого взрыва, для которого в стандартной модели получается нулевой размер Вселенной. Во-вторых, понятие T-дуальности, то есть дуальности малых и больших радиусов (в его тесной связи с существованием минимального размера) в теории струн, имеет значение и в космологии. В-третьих, число пространственно-временных измерений в теории струн больше четырёх, поэтому космология должна описывать эволюцию всех этих измерений. Вообще, особенность теории струн состоит в том, что в ней, по-видимому, геометрия пространства-времени не фундаментальна, а появляется в теории на больших масштабах или при слабой связи.

3. ПРОГНОЗИРОВАНИЯ

Несмотря на то, что арена основных действий в теории струн недоступна прямому экспериментальному изучению, ряд косвенных предсказаний теории струн всё же можно проверить в эксперименте.

Во-первых, обязательным является наличие суперсимметрии. Ожидается, что запущенный 10 сентября 2008 года, но полноценно вступивший в строй в 2010 году Большой адронный коллайдер сможет открыть некоторые суперсимметричные частицы. Это будет серьёзной поддержкой теории струн.

Во-вторых, в моделях с локализацией наблюдаемой вселенной в мультивселенной изменяется закон гравитации тел на малых расстояниях. В настоящее время проводится ряд экспериментов, проверяющих с высокой точностью закон всемирного тяготения на расстояниях в сотые доли миллиметра. Обнаружение отклонения от этого закона было бы ключевым аргументом в пользу суперсимметричных теорий.

В-третьих, в тех же самых моделях гравитация может становиться очень сильной уже на энергетических масштабах порядка нескольких ТэВ, что делает возможной её проверку на Большом адронном коллайдере. В настоящее время идёт активное исследование процессов рождения гравитонов и микроскопических чёрных дыр в таких вариантах теории.

Наконец, некоторые варианты теории струн приводят также и к наблюдательным астрофизическим предсказаниям. Суперструны (космические струны), D-струны или другие струнные объекты, растянутые до межгалактических размеров, обладают сильным гравитационным полем и могут выступать в роли гравитационных линз. Кроме того, движущиеся струны должны создавать гравитационные волны, которые, в принципе, могут быть обнаружены в экспериментах типа LIGO и VIRGO. Они также могут создавать небольшие нерегулярности в реликтовом излучении, которые могут быть обнаружены в будущих экспериментах.

4.2 ТЕОРИЯ СУПЕРСТРУН

энергетический материя организм возможность

СУПЕРСТРУНЫ - релятивистские суперсимметричные протяжённые объекты. Суперструна является обобщением понятия бозонной релятивистской струны с включением фермионных степеней свободы. В зависимости от вида граничных условий для фермионов различают струны Рамона (P. Ramond, 1971) и Неве - Шварца (A. Neveu, J. Schwarz, 1971). При этом суперсимметрия может быть реализована двояким образом: как двумерная суперсимметрия на мировой поверхности, заметаемой струной при своём движении в пространстве-времени, либо как пространственно-временная суперсимметрия. Последний случай отвечает струне Грина - Шварца (М. Green, J. Schwarz, 1982).

При квантовании суперструна представляет собой бесконечную последовательность нормальных мод - последовательность массивных состояний в квантовой теории поля. Расщепление масс Dm2 пропорционально натяжению струны Т. В теории суперструн T~(1019 ГэВ)2 (в системе единиц

=с= 1.

Спектр масс начинается с нуля и, в отличие от теории бозонной струны, не содержит тахиона (т.е. состояния с мнимой массой). Последовательное квантование в плоском пространстве-времени оказывается возможным только в критич. Размерности. Для бозонной струны Dкр = 26, для фермионной - Dкр= 10.

Струны бывают открытыми и замкнутыми. Открытые струны в качестве низших безмассовых состояний содержат частицы спина 1-кванты Янга-Миллса поля, замкнутые - частицы спина 2 - гравитоны, а в случае суперструн содержат и их суперпартнёра спина 3/2 - гравитино. На этом пути в теории суперструн возникает локальная квантовая теория поля, объединяющая гравитацию и поля Янга-Миллса - переносчики всех взаимодействий (Дж. Шерк и Дж. Шварц, 1974).

На расстояниях, много больших платовской длины (~10-33 см), или при энергиях, много меньших планковской массы (~ 1019 ГэВ), массивные состояния отщепляются и возникает эффективная локальная теория поля (супергравитация и суперсимметричная янг-миллсовская теория с фиксированными параметрами и составом частиц). При этом наблюдаемые частицы (кварки, лептоны, калибровочные векторные бозоны и т. д.) должны быть среди безмассовых возбуждений (m<<1019 ГэВ).

Различают следующие теории суперструн.

Тип I, к которому относятся разомкнутые неориентированные струны с N=1 суперсимметрией. При математическом описании с концами струны ассоциируются матрицы фундаментального представления калибровочной группы, причём согласованная квантовая теория неориентированных струн допускает только классические группы SO(n) и Sp(n). Как оказывается, требование сокращения аномалий и расходимостей оставляет только группу SO(32). Взаимодействуя, открытые струны образуют замкнутые конфигурации - синглеты калибровочной группы. В пределе малых энергий суперструны типа Г приводят к (D=10) суперсимметричной теории Янга - Миллса и N= 1 супергравитации.

Тип II, к к-рому относятся замкнутые ориентированные струны с N=2 суперсимметрией. Здесь нет группы внутренних симметрии. В пределе низких энергий получается (D= 10) N=2 теория супергравитации.

Гетерозисная (гетеротическая) струна (биол. Термин «гетерозис» означает явление усиления положит. Свойств гибрида по сравнению с исходными образцами) - замкнутая ориентированная струна, к-рая является гибридом двадцатишестимерной бозонной струны и десятимерной фермионной струны типа II. Это связано с тем, что в замкнутой струне левые и правые моды существуют независимо. В гетерозисной струне они входят несимметричным образом: правые моды соответствуют десятимерной фермионной струне, а левые - двадцатишестимерной бозонной струне, причём лишние шестнадцать измерений компактифицированы на шестнадцатимерный тор. При этом возникает калибровочная группа, решётка корней которой идентифицируется с решёткой дискретных импульсов, сопряжённых с внутренними измерениями. Возникающая группа имеет ранг 16 и размерность 496. Такими группами являются группа SO (32) и E8Е8 (Д. Гросc и др., 1985).

Существуют также версии гетерозисной струны, где компактификация происходит непосредственно из 26 в 4 измерения для левых мод и из 10 в 4 для правых (К. Нарайн, 1986). Калибровочная группа при этом имеет ранг 22. Других ограничений на калибровочную группу в этом случае не возникает. Поэтому таких теорий существует огромное множество. Полной их классификации не существует.

Взаимодействие струн носит локальный характер, несмотря на то, что сами они являются протяжёнными объектами. В первично-квантованной формулировке теории взаимодействие струн описывается квантовыми флуктуациями мировой поверхности струны, причём свободная струна соответствует поверхности без особенностей, а взаимодействующая - топологически нетривиальным поверхностям, содержащим «дырки» (А. М. Поляков, 1981). Во вторично-квантованном формализме для описания струн используются функционалы на мировой поверхности. При этом лагранжиан свободной струны квадратичен по этим функционалам, а взаимодействия струн описываются локальными кубическими по функционалам членами. Для открытых струн возможны также вершины четвёртого порядка. Вершины высших порядков отсутствуют (Э. Виттен и др., 1986).

Взаимодействуя, струны могут рассеиваться, рождать новые струны, а также испускать точечные частицы. В эффективной локальной теории этому соответствуют всевозможные взаимодействия локальных полей.

Теория суперструн свободна от квантовых калибровочных и гравитационных аномалий и конечна в однопетлевом приближении. Это требование в случае суперструн типа I выделяет калибровочную группу SO(32), а также удовлетворяется и в теории гетерозисной струны для групп SO(32) и Е8Е8. Таким образом, в этом подходе калибровочная группа фиксируется условием самосогласованности квантовой теории (Грин и Шварц, 1984).

Переход к наблюдаемой размерности пространства-времени (D = 4) в теории суперструн достигается путём компактификации «лишних» пространственных измерений на расстояниях порядка планковской длины. Установлено, что эффективная локальная теория содержит дополнительные, так называемые Чжэнь-Саймоновские члены (Ш. Чжэнь, Дж. Саймоне ), которые совместно с высшими производными в уравнениях движения приводят к спонтанной компактификации дополнительных измерений. При этом происходит сужение калибровочной группы до группы симметрии низкоэнергетических теории. Феноменологичные следствия теории суперструн во многом зависят от механизма компактификации.

Развитие суперструнной картины показало, что эта теория является плодотворным обобщением локальных теорий поля. На таком пути, возможно, удастся построить самосогласованную квантовую теорию всех фундаментальных взаимодействий. Однако теория суперструн далека от завершения. Так, например, открытие явления дуальности между теориями суперструн привело к пониманию того, что перечисленные типы теорий являются различными предельными формулировками одной теории.

4.3 М-ТЕОРИЯ

M-теория - современная физическая теория, созданная с целью объединения фундаментальных взаимодействий. В качестве базового объекта используется так называемая «брана» (многомерная мембрана) -- протяжённый двухмерный или с большим числом измерений (n-брана) объект.

В середине 1990-х Эдвард Виттен и другие физики-теоретики обнаружили веские доказательства того, что различные суперструнные теории представляют собой различные предельные случаи неразработанной пока одиннадцатимерной М-теории. Это открытие ознаменовало вторую суперструнную революцию. Когда Виттен дал название М-теории, он не уточнял, что обозначает М, предположительно, потому, что не чувствовал за собой права давать название теории, которую он не мог полностью описать. Предположения о том, что может обозначать М, стало игрой среди физиков-теоретиков. Одни говорят, что М означает «Мистическая», «Магическая» или «Материнская». Более серьёзные предположения - «Матричная» и «Мембранная». Скептики заметили, что М может быть перевёрнутой W - первая буква имени Witten (Виттен). Другие предполагают, что М в М-теории должно означать «Недостающая» (англ. Missing) или даже «Мутная» (англ. Murky).

Как правило, классическая (не квантовая) релятивистская динамика n-бран строится на основе принципа наименьшего действия для многообразия размерности n+1 (n пространственных измерений плюс временное), находящегося в пространстве высшей размерности. Координаты внешнего пространства-времени рассматриваются как поля, заданные на многообразии браны. При этом группа Лоренца становится группой внутренней симметрии этих полей.

4.3.1 ДУАЛЬНОСТИ

В середине 1980-х теоретики пришли к выводу, что суперсимметрия, являющаяся центральным звеном теории струн, может быть включена в неё не одним, а пятью различными способами, что приводит к пяти различным теориям: типа I, типов IIA и IIB и двум гетеротическим струнным теориям. Из соображений здравого смысла (не может действовать одновременно 2 варианта одного и того же физического закона) считалось, что только одна из них могла претендовать на роль «теории всего», причём та, которая при низких энергиях и компактифицированных шести дополнительных измерениях согласовывалась бы с реальными наблюдениями. Оставались открытыми вопросы о том, какая именно теория более адекватна и что делать с остальными четырьмя теориями.

В ходе второй суперструнной революции было показано, что такое наивное представление неверно: все пять суперструнных теорий тесно связаны друг с другом, являясь различными предельными случаями единой одиннадцатимерной фундаментальной теории (М-теория).

Все пять суперструнных теорий связаны друг с другом преобразованиями, называемыми дуальностями. Если две теории связаны между собой преобразованием дуальности (дуальным преобразованием), это означает, что первую из них можно преобразовать так, что один из её пределов будет эквивалентен второй теории.

Кроме того, дуальности связывают величины, которые считались различными. Большие и малые масштабы, сильные и слабые константы связи - эти величины всегда считались совершенно чёткими пределами поведения физических систем как в классической теории поля, так и в квантовой. Струны, тем не менее, могут устранять различие между большим и малым, сильным и слабым.

1. Т-ДУАЛЬНОСТЬ

Предположим, мы находимся в десятимерном пространстве-времени, что означает, что у нас девять пространственных и одно временное измерение. Представим одно из пространственных измерений окружностью радиуса , такого чтобы при перемещении в этом направлении на расстояние

вернуться в ту же точку, откуда стартовали.

Частица, путешествующая по окружности, обладает квантованным импульсом, что даёт определённый вклад в полную энергию частицы. Однако для струны всё будет по-другому, поскольку в отличие от частицы струна может «наматываться» на окружность. Число оборотов вокруг окружности называется «топологическим числом», и эта величина также квантована. Ещё одной особенностью струнной теории является то, что импульсные моды и моды витков (винтовые моды) являются взаимозаменяемыми, так как можно заменить радиус окружности величиной , где - длина струны. Если значительно меньше длины струны, то величина будет очень большой. Таким образом, меняя импульсные моды и винтовые моды струны, можно переключаться между крупным и мелким масштабом.

Этот тип дуальности называют Т-дуальностью. Т-дуальность связывает теорию суперструн типа IIA с теорией суперструн типа IIB. Это означает, что если взять теорию типа IIA и теорию типа IIB и компактифицировать их на окружность, а затем поменять винтовые и импульсные моды, а значит, и масштабы, то можно увидеть, что теории поменялись местами. То же самое верно и для двух гетеротических теорий.

2. S-ДУАЛЬНОСТЬ

С другой стороны, у любого физического взаимодействия есть своя константа связи. Для электромагнетизма константа связи пропорциональна квадрату электрического заряда. Когда физики изучали квантовые аспекты электромагнетизма, то у них не получилось построить точную теорию, описывающую поведение на всех энергетических масштабах. Поэтому они разбили весь диапазон энергий на отрезки и для каждого из них построили решение. Каждому из этих отрезков отвечала своя константа связи. При нормальных энергиях константа связи мала, и в ближайших нескольких отрезках её можно использовать как хорошее приближение к реальным её значениям. Однако, когда константа связи велика, методы, используемые при работе с нормальными энергиями, уже не работают, и эти отрезки становятся бесполезными.

Аналогичная картина в струнной теории. В ней тоже есть своя константа связи, однако, в отличие от теорий элементарных частиц, струнная константа связи - это не просто число, а параметр, зависящий от определённой колебательной моды струны, называемой дилатоном. Изменение знака поля дилатона на противоположный изменяет константу связи с очень большой на очень маленькую. Такой тип симметрии называется S-дуальностью. Если две теории связаны между собой S-дуальностью (S-дуальны друг другу), то одна из этих теорий, с сильной связью (сильной константой связи), будет эквивалентной другой теории, со слабой связью. Необходимо заметить, что теории с сильной связью нельзя исследовать путём разложения в ряды (такие теории называют непертурбативными, в отличие от пертурбативных, которые можно раскладывать в ряды), а теории со слабой связью - можно. Таким образом, если две теории S-дуальны друг другу, то достаточно понять слабую теорию, поскольку это эквивалентно пониманию сильной теории.

Суперструнные теории связаны S-дуальностью следующим образом: суперструнная теория типа I S-дуальна гетеротической SO(32) теории, а теория типа IIB S-дуальна сама себе.

3. U-ДУАЛЬНОСТЬ

Существует также симметрия, связывающая преобразования S-дуальности и T-дуальности. Она называется U-дуальностью и наиболее часто встречается в контексте так называемых U-дуальных групп симметрии в М-теории, определённых на конкретных топологических пространствах. U-дуальность представляет собой объединение в этих пространствах S-дуальности и T-дуальности, которые, как можно показать на D-бране, не коммутируют друг с другом.

Развитие одиннадцатимерной М-теории позволило физикам заглянуть за пределы времени, перед которым произошёл Большой взрыв. Вероятней всего данная теория будет видоизменяться, позволит выделить большее количество пространств или признать возможность существования абсолюта вне пространства-времени.

ГЛАВА 5. ЭНЕРГИЯ В ЖИВОЙ МАТЕРИИ

5.1 ЭЛЕКТРОМАГНИТНЫЕ ВЗАИМОДЕЙСТВИЯ КАК ОПРЕДЕЛЯЮЩИЕ ХИМИЧЕСКИЙ И БИОЛОГИЧЕСКИЙ УРОВЕНЬ ОРГАНИЗАЦИИ МАТЕРИИ

Живое вещество, как и вся материя Вселенной, состоит из атомов и молекул, для которых уже известны определенные законы поведения, в том числе на квантово-молекулярном уровне. В этом смысле при научном познании живого представляется вполне возможным применение физических представлений и моделей по исследованию развития природы и закономерностей процессов, проходящих в живом организме. По этому поводу советский физико-химик и биофизик М. В. Волькенштейн писал: «В биологии как в науке о живом возможны только два пути: либо признать невозможным объяснение жизни на основе физики и химии, либо такое объяснение возможно и его надо найти, в том числе на основе общих закономерностей, характеризующих строение и природу материи, вещества и поля».

По мнению многих исследователей, изучение проблем генетического кода, молекулярной природы наследственности и т.д. на заключительном этапе сводится к квантово-механическому объяснению всех этих явлений. В связи с этим следует отметить, что атомно-молекулярное толкование большинства явлений живого на сегодняшний день представляется наиболее верным. Вероятно, что живой и неживой природой управляют одни законы, однако механизм их проявления разный, что подтверждается синергетикой как наукой о неравновесных системах и самоорганизации.

Существование физических полей разной природы в живых организмах представляет значительный интерес. Это связано с одной стороны с раскрытием сущности физики живого, а с другой - с взаимодействием полей живых организмов с полями окружающей природной среды, обусловленными главным образом гелио- и геофизическими факторами. Эти взаимодействия обеспечивают живому организму необходимый ему объем информации в процессе жизнедеятельности. Функционирование всех систем живого организма динамично отражается в мозаике физических полей и излучений, исходящих из него, которые, в свою очередь, зависят от параметрических изменений естественных фоновых полей и излучений, окружающих живой организм.

Идентификация полей и излучений, например, человеческого организма сейчас широко используется в медицине для определения динамики различных физиологических процессов и выявления «неполадок» в функционировании определенных органов. Поэтому физические поля и излучения живого организма как бы есть своеобразное «табло» его физиологических процессов. Например, человеческий организм способен продуцировать инфракрасное излучение (ИК) и излучения сверхвысокой частоты (СВЧ), электромагнитные поля (ЭМП) и излучения (ЭМИ) и т.д. По существу, живой организм окружен биополем, под которым следует понимать присущую ему совокупность физических полей.

Электромагнитное взаимодействие обусловливается электрическими и магнитными зарядами. Электрический заряд всегда связан с элементарными частицами. Магнитные силы порождаются движением электрических зарядов, то есть электрическими токами. Согласно закону Кулона, сила электрического взаимодействия будет силой притяжения или отталкивания в зависимости от знаков взаимодействующих зарядов. Видимый свет, являющийся основой существования зеленых растений, синтезирующих органическое вещество на Земле, да и всего живого, является электромагнитным излучением определенного диапазона частот.

Согласно теории советского биохимика А. И. Опарина электромагнитные излучения Солнца и электрических разрядов явились энергетической основой абиогенного происхождения жизни. Именно с их помощью происходил процесс образования биомолекул: аминокислот, нуклиотидов, полисахаридов, белковых комплексов, а затем клетки как главной структуры живого.

Электромагнитные поля и электромагнитные излучения являются основными видами излучения для живых организмов. Почти все носители информации, воспринимаемые нашими органами чувств, имеют электромагнитную природу. Электромагнитные взаимодействия характеризуют структуру и поведение атомов, отвечают за связи между молекулами различных веществ, таким образом определяя химические и биологические явления.

Электромагнитные поля и излучения в живом организме связаны с возникновением, движением и взаимодействием электрических зарядов в процессе его онтогенеза. На клеточном уровне они возникают при работе митохондрий, на органном и организменном уровнях - при работе сердца и токе крови в сосудах, при нервных и мышечных сокращениях.

Электрические явления в живом организме характеризуются определенными последовательностями электрических импульсов и ритмами определенной характеристики, поскольку в каждом органе вырабатываются свои определенные, специфические электроколебательные процессы. Ритмичность и частота колебаний этих процессов зависят от степени активности организма (сон, бег, сильный стресс и т.д.). В свою очередь, активность физиологического состояния организма (например, человека) и его работоспособность также зависят от биоритмов и периодически меняются сообразно времени суток. Биологические ритмы как следствие эволюционного процесса проявляются на всех уровнях организации живой материи, начиная с клеток и заканчивая биосферой.

Ритмичность на уровне клеток живого организма определяется биохимическими колебательными процессами, связанными с движением ионов, необходимых для жизнедеятельности клетки (К+,Са2+ и др.), как вовнутрь клетки, так и из нее. Доказано, что общим регулятором внутриклеточных процессов являются ионы кальция. Именно они и их концентрация обеспечивают биологические ритмы клеток.

Ритмичность на уровне растительных организмов проявляется в годовом изменении темпов роста, суточном движении листьев; на уровне животных организмов в темпах двигательной активности, в колебаниях температуры, функционировании органов внутренней секреции, синтеза гормонов, белков, половой активности и т.д. Американский математик и кибернетик Н. Винер писал, что «именно ритмы головного мозга объясняют способность чувствовать время». Чем сложнее система, тем она обладает большим количеством биоритмов. Биоритмы определяют биологическое время и свойственны неравновесным самоорганизующимся живым системам.

Интенсивность физико-химических процессов в мембране и, следовательно, в самой клетке определяется величиной мембранного потенциала. Это значит, что энергия электрического поля в мембранах, подобно конденсаторам, играет важную роль в поддержании устойчивого/неустойчивого равновесия и рассматривается как резерв свободной энергии. Эта энергия, наряду с энергией АТФ (аденозинтрифосфат) и перекисного окисления липидов необходима живому организму для функционирования и развития.

Биохимические реакции в живом организме обусловлены биологическим током, возникающим при движении электронов и, в основном, ионов. При этом возрастает роль поляризации клеток и биополимерных молекул, роль структуры воды в процессах метаболизма. Изменения электрических свойств организмов связано с перераспределением в них электрических зарядов при их движении. Это же происходит и в потоке крови. Крови свойственны электропроводность и магнетизм. При ее движении по сосудам возникают электродинамические, электромагнитные и гидродинамические взаимодействия со стенками сосудов.

Следовательно, электромагнитные взаимодействия являются атрибутом существования живой материи на любом уровне ее организации. Живые организмы буквально плавают в море всевозможных физических полей - как внутренних, вырабатываемых самими организмами, так и внешних.

5.2 СИММЕТРИЯ И АСИММЕТРИЯ В ПРИРОДЕ

Симметрия и асимметрия являются объективными свойствами природы, одними из фундаментальных в современном естествознании. Симметрия и асимметрия имеют универсальный, общий характер как свойство материального мира.

Симметрия (от греч. Symmetria - соразмерность, порядок, гармония) является всеобщим свойством природы. Представление о симметрии у человека складывалось тысячелетиями. Термин «симметрия» фигурирует в представлениях человека как элемент чего-то «правильного», прекрасного и совершенного. В своих раздумьях над картиной мироздания человек определял симметрию как магическое качество природы, ее целесообразность, совершенство и старался отразить эти свойства в музыке, поэзии, архитектуре. В определенной мере симметрия выражает степень упорядоченности системы. В связи с этим имеется тесная корреляционная связь энтропии как меры неупорядоченности с симметрией: чем выше степень организованности вещества, тем выше симметрия и ниже энтропия.

Степень симметрии природных систем отражается в симметрии математических уравнений, законов, отображающих их состояние, в неизменности каких-либо их свойств по отношению к преобразованиям симметрии.

Симметрия - это понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, то есть некий элемент гармонии.

Асимметрия - понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия, что связано с изменением и развитием системы.

Из определений симметрии и асимметрии следует, что развивающаяся динамическая система должна быть обязательно несимметричной и неравновесной.

Современное естествознание представлено целой иерархией симметрий, которая отражает свойства иерархии уровней организации материи. Выделяют различные формы симметрий: калибровочные, пространственно-временные, изотопические, перестановочные, зеркальные и т.д. Все эти виды симметрий подразделяются на внешние и внутренние.

Внутреннюю симметрию невозможно наблюдать, она скрыта в математических уравнениях и законах, выражающих состояние исследуемой системы. Пример тому - уравнение Максвелла, описывающее взаимосвязь электрических и магнитных явлений, или теория гравитации Эйнштейна, связывающая свойства пространства, времени и тяготения.

Внешняя симметрия (пространственная или геометрическая) представлена в природе большим многообразием. Это симметрия кристаллов, молекул, живых организмов.

Живые организмы формировали свою симметрию в процессе эволюции. Зародившиеся в водах океана, первые живые организмы имели правильную сферическую форму. Внедрение организмов в другие среды заставляло их адаптироваться к новым специфическим условиям. Один из способов такой адаптации - симметрия на уровне физической формы. Симметричное расположение частей органов тела обеспечивает живым организмам равновесие при движении и функционировании, жизнестойкость и адаптацию. Довольно симметричны внешние формы крупных животных, человека. Растительный мир организмов также наделен симметрией, что связано с борьбой за свет, физической устойчивостью к полеганию (закон всемирного тяготения). Например, конусообразная крона ели имеет строго вертикальную ось симметрии - вертикальный ствол, утолщенный книзу для устойчивости. Отдельные ветви симметрично расположены по отношению к стволу, а форма конуса способствует рациональному использованию кроной светового потока солнечной энергии, увеличивает устойчивость. Таким образом, благодаря притяжению и законам естественного отбора ель выглядит эстетически красиво и «построена» рационально. Внешняя симметрия насекомых и животных помогает им держать равновесие при движении, извлекать максимум энергии из окружающей среды и рационально ее использовать.

В физических и химических системах симметрия приобретает еще более глубокий смысл. Так, наиболее устойчивы молекулы, обладающие высокой симметрией (инертные газы). Симметрия молекул определяет характер молекулярных спектров. Высокая симметрия характерна для кристаллов. Кристаллы - это симметричные тела, их структура определяется периодическим повторением в трех измерениях элементарного атомного мотива.

Асимметрия также широко распространена в мире.

Внутреннее расположение отдельных органов в живых организмах часто асимметрично. Например, сердце расположено слева у человека, печень - справа и т.д. Л. Пастер, французский микробиолог и иммунолог, выделил левые и правые кристаллы винной кислоты. Молекула ДНК асимметрична - ее спираль всегда закручена вправо. Все аминокислоты и белки, входящие в состав живых организмов, способны отклонять поляризованный луч света влево.

В отличие от молекул неживой природы, где левые и правые молекулы встречаются часто, то есть носят в основном симметричный характер, молекулы органических веществ характеризуются ярко выраженной асимметрией. Придавая большое значение асимметрии живого, В. И. Вернадский предполагал, что именно здесь проходит тонкая граница между химией живого и неживого. Л. Пастер также, основываясь на этих признаках, провел границу между живым и неживым. Следует также отметить, что живые организмы (растения) в процессе жизнедеятельности поглощают из окружающей среды (почвы) в значительной степени химические соединения минеральной пищи, молекулы которой симметричны и в своем организме превращают их в асимметричные органические вещества: крахмал, белки глюкозу и т.д. Симметрия молекул пищевых веществ живого организма согласуется с симметрией молекул самого организма. В противном случае пища будет несовместимой (ядовитой).

Структура компонентов клетки также асимметрична, что имеет большое значение для ее обмена веществ, энергетической обеспеченности, а также способствует более высокой скорости протекания биохимических реакций.

Симметрия и асимметрия - это две полярные характеристики объективного мира. Фактически в природе нет чистой (абсолютной) симметрии или асимметрии. Эти категории - противоположности, которые всегда находятся в единстве и борьбе. Там, где ослабевает симметрия, возрастает асимметрия, и наоборот. На разных уровнях развития материи ей свойственна то симметрия, то асимметрия. Однако эти две тенденции едины, а их борьба носит абсолютный характер. Эти категории тесно связаны с понятиями устойчивости и неустойчивости систем, порядка и беспорядка, организации и дезорганизации, отражающими свойства систем и динамику развития, а также взаимосвязь между динамическими и статическими законами.

Полагая, что равновесие есть состояние покоя и симметрии, а асимметрия приводит к движению и неравновесному состоянию, можно считать, что понятие равновесия играет в биологии не менее важную роль, чем в физике. Принцип устойчивости термодинамического равновесия живых систем характеризует специфику биологической формы движения материи. Именно устойчивое динамическое равновесие (асимметрия) является ключевым принципом постановки и решения проблемы происхождения жизни.

5.3 САМООРГАНИЗАЦИЯ ПРИРОДЫ (ПОНЯТИЕ СИНЕРГЕТИКИ)

Случайные отклонения параметров системы от равновесия (флуктуации) играют очень важную роль в функционировании и существовании системы. Один из двух типов случайностей имеет направленный, созидательный и эволюционный характер, а второй создает неопределенность и играет деструктивную роль, отсекая все то лишнее и ненужное, что не укладывается в рамки фундаментальных законов и принципов бытия. Вследствие такого совместного действия возникает неустойчивость в системе, которая может служить толчком к возникновению из беспорядка (хаоса) определенных новых структур. Последние при благоприятных условиях переходят во все более устойчивые и упорядоченные аттракторы (от лат. Attractio - притяжение). В дальнейшем их самопроизвольное (спонтанное) образование идет за счет внутренней перестройки самой системы и согласованного кооперативного взаимодействия всех ее частей и элементов в соответствии с требованиями окружающей среды. Самоупорядочивание системы всегда связано со снижением энтропии в ней. Случайность и дезорганизация на атомно-молекулярном уровне здесь выступают в качестве созидающей силы, которая упорядочивает состояние системы уже на макроуровне и объединяет ее элементы в единое целое. Это явление получило название самоорганизации.

Следовательно, самоорганизация - это процесс спонтанного возникновения порядка и организации из беспорядка (хаоса) в открытых неравновесных системах. За счет роста флуктуаций при поглощении энергии из окружающей среды система достигает некоторого критического состояния и переходит в новое устойчивое состояние с более высоким уровнем сложности и порядка по сравнению с предыдущим.

Таким образом, возникающая из хаоса упорядоченная структура (аттрактор) является результатом конкуренции множества всевозможных состояний, заложенных в системе. В результате конкуренции идет самопроизвольный отбор наиболее адаптивной в сложившихся условиях структуры. На такой концепции построена модель универсального эволюционизма, где дарвинское учение об изменчивости, наследственности и естественном отборе получило фундаментальное методологическое обоснование. Изменчивость окружающего мира обусловливается случайностью и неопределенностью как фундаментальным свойством материи. Наследственность, от которой зависит настоящее и будущее, определяется прошлым. Степень зависимости от прошлого определяется «памятью» системы, которая теоретически может принимать значения в диапазоне от нуля (хаотические образования) до максимально бесконечной величины (жесткие причинно обусловленные системы). Однако реальные системы имеют некоторый небольшой диапазон «памяти», определяемый уровнем их организации. Изменчивость дает возможность появиться многообразию различных вариантов развития систем, но наследственность значительно ограничивает их число. Она отбирает только жизненные, наиболее целесообразные и устойчивые в сложившейся обстановке структуры, устраняя при этом все нежизненные и неустойчивые.

Прошедшие отбор и передающиеся по наследству жизненные структуры постепенно под влиянием важных факторов накапливают определенные количественные изменения, что ослабляет их динамическую устойчивость (гомеостаз). Эти количественные изменения могут перейти в качественные путем скачка. При этом система на некоторое время оказывается в неустойчивом, флуктуационном состоянии, теряет «наследственную память». Характер ее последующего развития будет определяться случайными, непредвиденными факторами, действующими в это время на систему. При этом у системы для выхода из флуктуации есть только два пути: либо деградация и разрушение, либо самоорганизация, усложнение и эволюция. Подобный сценарий развития материи идет на всех ее структурных уровнях как череда сменяющих друг друга постоянных изменений. Таким образом, порядок и беспорядок, организация и дезорганизация выступают как диалектическое единство, их взаимодействие поддерживает саморазвитие системы.

Однако самым трудным положением самоорганизации являются вопросы, как получается, что система самопроизвольно переходит из состояния хаоса как наиболее вероятного с энергетической точки зрения в состояние порядка, менее вероятного и менее выгодного (как требующего более высокой энергии); как и благодаря чему происходит ее самоорганизация (самоупорядочение). Пока еще в современной науке на эти вопросы ответа нет.

Следует отметить, что в научном мире и в научной литературе одни авторы используют термин «самоорганизация», а другие - «синергетика» (от греч. Synergeia - сотрудничество, содружество). Фактические значения слов «самоорганизация» и «синергетика» существенно различаются, но их концептуальный смысл одинаков. Синергетика - область научных исследований коллективного поведения частей сложных систем, связанных с неустойчивостями и касающихся процессов самоорганизации. Синергетика - это теория самоорганизации систем различной природы, предметом которой они являются.

Сама идея самоорганизации (синергетики) имела место еще в классической науке XVIII-XIX вв. Это космогоническая гипотеза Канта- Лапласа, теория эволюции Ч. Дарвина, теория поведения термодинамических систем Максвелла-Больцмана. Однако лишь только в 70-е гг. XX в., когда были накоплены большой теоретический материал и практический опыт, появилась возможность детального исследования открытых, неравновесных систем, анализа и описания механизмов и закономерностей их развития. Основные положения теории синергетики разработаны в трудах Г. Хакена, Г. Николиса, И. Пригожина в 70-х гг. XX в. Сам термин «синергетика» в научный обиход ввел Г. Хакен, немецкий физик, профессор Штутгартского университета. Большую роль в становлении теории самоорганизации сыграли работы наших соотечественников: В. Вернадского, Б. Белоусова, В. Жаботинского, А. Руденко, Ю. Климантовича, А. Колмогорова. Современное естествознание идет по пути теоретического моделирования сложнейших природных систем, способных к саморазвитию и самоорганизации.

...

Подобные документы

  • Состав энергетических напитков: кофеин, таурин, угольная кислота, глюкуронолактон, разные витамины. Эффекты, вызываемые употреблением энергетических напитков. Противопоказания к применению. Измерения артериального давления до и после употребления.

    реферат [18,8 K], добавлен 10.05.2014

  • История возникновения энергетических напитков, классификация безалкогольных напитков. Риски, связанные с потреблением энергетических напитков. Влияние кофеина на организм, стимулирующие эффекты. Проведение беседы о вреде энергетических напитков.

    дипломная работа [3,5 M], добавлен 22.02.2022

  • Обмен веществ как основополагающий механизм работы организма; особенности обмена энергии у детей. Изучение проблемы нарушения метаболизма в период наиболее интенсивного роста организма ребенка. Питательная, транспортная и защитная функции белков.

    презентация [1,7 M], добавлен 13.05.2015

  • Сказки и правда о "живой" и "мертвой" воде. Ознакомление с историей использования "живой" и "мертвой" воды в медицинских целях. Рассмотрение действия приборов электроактивации. Магическое влияние крещенской и купальской воды на организм человека.

    реферат [26,2 K], добавлен 11.09.2015

  • Мышечная система человека, ее значение в жизнедеятельности организма. Белок как основной строительный материал человеческого организма. Функций мышц человека, их виды. Пища как источник энергии для организмов. Содержание белков в продуктах питания.

    реферат [1,2 M], добавлен 14.03.2011

  • Биография Монтиньяка, особенности и направления исследования им механизмов обмена веществ, этапы разработки собственной авторской системы похудения. Суть метода Монтиньяка и его физиологическое обоснование, оценка практической эффективности и применение.

    реферат [14,8 K], добавлен 20.12.2011

  • Технологии повышения энергетических возможностей организма и ликвидации различных дефицитов обеспечения тела человека в основе концепции идеального старения. Меры, необходимые для продления жизни и укрепления здоровья. Повышение энергетики организма.

    презентация [1000,3 K], добавлен 11.05.2014

  • Определение иммунитета, его типы и виды. Общая схема иммунного ответа. Маркеры и рецепторы клеток иммунной системы. Распределение T-клеток в организме. Особенности структуры имунноглобулина, его классы и типы. Общая характеристика энергетических реакций.

    реферат [203,4 K], добавлен 19.10.2011

  • Задачи проведения массажа при заболеваниях сердца, его влияние на кожу, сердечно-сосудистую систему, изменения в тканях. Положение больного и область массажа при пороках сердца, миокардиодистрофии, гипертонии. Классификация типов реакций на болезнь.

    контрольная работа [119,0 K], добавлен 05.06.2010

  • Двигательная активность женщины во втором триместре беременности, клинико-физиологическое обоснование. Противопоказания к занятиям ЛФК. Подготовка женщины к родам с помощью средств физической реабилитации для обеспечения хорошего кровоснабжения плода.

    контрольная работа [793,9 K], добавлен 21.06.2010

  • Понятие и назначение закаливания организма, его место и значение в формировании и поддержании здоровья. Механизмы щадящего закаливания для растущего организма, его классификация и типы. Общая реакция организма на воздействие лучистой энергии, ее факторы.

    реферат [17,5 K], добавлен 15.05.2011

  • Определение энергетической ценности рациона. Понятие калорийности пищевых продуктов как количества энергии, полученной человеком в результате его поглощения. Общий расход энергии у человека. Составление здорового и сбалансированного рациона питания.

    презентация [3,1 M], добавлен 28.09.2014

  • Общее представление об обмене веществ и энергии. Методы исследования обмена энергии. Принцип работы метаболиметра. Камера Шатерникова для человека. Уровни интенсивности энергообмена клетки. Первый закон термодинамики Гельмгольца, Томсона и Клазиуса.

    презентация [7,6 M], добавлен 13.12.2013

  • Правильное питание, с учетом условий жизни и труда. Обмен белков, углеводов, жиров, воды и минеральных веществ. Ассимиляция и диссимиляция. Обмен энергии и витамины. Расход энергии при различных формах деятельности. Содержание белка в пищевых продуктах.

    реферат [31,1 K], добавлен 05.03.2013

  • Нарушения гемостаза, его причины и предпосылки, характеризующие факторы. Модели свертывания крови, ее главные стадии и значение. Сущность геморрагического синдрома и его физиологическое обоснование, негативное влияние на жизнедеятельность организма.

    презентация [2,2 M], добавлен 18.03.2015

  • Понятие пищи как единственного источника энергии в организме, влияние ее состава на здоровье и самочувствие человека. Сущность процессов ассимиляции и диссимиляции в организме, их и значение. Характеристика обмена белков, жиров и углеводов у детей.

    контрольная работа [30,0 K], добавлен 20.02.2009

  • Отличительные особенности и черты ребенка от взрослого человека в сфере биохимических процессов и функций организма в целом и отдельных органов. Главные этапы жизни ребенка, закономерности его роста. Возрастные периоды и их общая характеристика.

    контрольная работа [198,9 K], добавлен 19.06.2014

  • Роль режима труда и отдыха, правильного питания в повышении работоспособности и долголетия человека. Биологические ритмы живой материи. Оптимальный двигательный режим, закаливание. Личная гигиена и здоровье человека. Влияние алкоголя, табака, наркотиков.

    реферат [50,1 K], добавлен 09.10.2015

  • Понятие и основные этапы инфекционного процесса, его специфика и физиологическое обоснование. Компоненты, необходимые для развития данного процесса: возбудитель, фактор передачи инфекции от зараженного организма к здоровому, восприимчивый макроорганизм.

    презентация [548,3 K], добавлен 16.09.2014

  • Функциональные особенности и возможности станции скорой помощи, деятельность выездных бригад. Принципы постановки диагноза и его теоретическое обоснование. Основные мероприятия, предпринимаемые в догоспитальный период, требования, предъявляемые к ним.

    отчет по практике [50,8 K], добавлен 18.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.