Основы генетики

Мейоз: сущность и биологическое значение. Химический состав хромосом. Генетический пол в популяциях людей. Основные положения хромосомной теории наследственности. Обзор хромосомных болезней, обусловленных гетероплоидией аутосом и половых хромосом.

Рубрика Медицина
Вид шпаргалка
Язык русский
Дата добавления 01.12.2016
Размер файла 4,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

? Аутбридинг - браки неродственных людей в больших популяциях или браки далеко неродственных людей из разных больших и малых рас. Они увеличивают степень гетерозиготности.

Генетические эффекты у потомства: снижение частот рецессивных за-болеваний, гетерозис - гибридная сила.

? Ассортативные браки (фр. "assorti" - подобранный) - «избира-тельные браки». Самая часто встречающаяся форма брака в популяции людей.

Ассортативность - предпочтительность в выборе фенотипически сход-ного брачного партнера (положительная ассортативность) или брак между фенотипически различными лицами (отрицательная ассортативность), приводящая к отклонению от панмиксии, то есть случайного относительно фенотипических признаков и равновероятного вступления в брак.

Примером отрицательных ассортативных браков является заключе-ние союза между двумя абсолютно рыжими людьми. В данном случае веро-ятность образования пары между фенотипически похожими особями ниже ожидаемой. Если вероятность образования пар между похожими особями выше, чем ожидается, речь идет о положительных ассортативных браках.

Ассортативные браки между людьми со сходным фенотипом по гене-тическому эффекту приравниваются к кровнородственным бракам. Практи-чески это служит причиной того, что частота ряда психических заболеваний и состояний (шизофрения, неврозы, алкоголизм, олигофрения) выше среди брачных партнеров - больных с соответствующими нозологическими фор-мами, чем можно было бы ожидать, исходя из их популяционной частоты. Формируются, таким образом, субпопуляции с высокой генотипической кор-реляцией внутри них и повышенным риском заболеваемости у потомства. Так, пациенты с дебильностью вступают в брак обычно с равными между собой по интеллекту и нередко имеют значительно больше детей, в основ-ном, по-видимому, также дебилов, чем ответственные за своих детей и обла-дающие нормальным интеллектом индивиды. Приводятся также сведения о том, что пациенты с шизофренией объединяются в браки в 4 раза чаще, нежели это происходило бы случайно.

Ненаследственная (фенотипическая, модификационная) изменчи-вость - это фенотипические различия у генетически одинаковых особей, спо-собность организмов изменять свой фенотип под влиянием различных фак-торов. Фенотипическая изменчивость не связана с изменением генетического материала. Она является ответной реакцией организма на конкретные изме-нения окружающей среды. Большую роль в формировании признаков орга-низмов играет среда его обитания. Каждый организм развивается и обитает в определенной среде, испытывая на себе действие ее факторов, способных изменять морфологические и физиологические свойства организмов, т.е. их фенотип.

Границы фенотипической изменчивости, контролируемые генотипом организма, называют нормой реакции (рис. 4).

Широкая норма реакции приводит к повышению выживаемости. Ши-рокая норма реакции свойственна количественным признакам, таким как удои молока, размеры листьев, окраска у некоторых бабочек; узкая норма реакции для качественных признаков - жирности молока, яйценоскости у кур, интенсивности окраски венчиков у цветков и др.

Фенокопии - это ненаследственные изменения, сходные с известными мутациями (вариант эмбриопатии). Фенокопии являются результатом дей-ствия физических и химических агентов на генетически нормальный орга-низм. Например, при использовании талидомида часто рождались дети с фокомелией (рис. 5) - укороченными ластовидными руками, которую могут вызвать и мутантные аллели.

Ген - это информационная структура, состоящая из нуклеотидов ДНК (а у вирусов и РНК), неделимая в функциональном отношении, способная к неограниченной репликации и направляющая развитие и функционирование организма, обеспечивая в том числе и транскрипцию других генов.

В геноме каждый ген может быть представлен несколькими формами - аллелями: в гаплоидном геноме - одним аллелем (любым), в диплоидном - двумя (доминантным и рецессивным), в генофонде популяции - несколькими (более, чем двумя). Если у гетерозигот оба аллеля одинаково активны и каждый участвует в синтезе 50% продукта, считается, что оба имеют равные дозы. Однако, дозы гена могут быть и разные. В крови у гетерозигот по гену серповидноклеточной анемии содержится 65% нормального гемоглобина и 35% аномального (НЬS).Молекулярный механизм разных доз аллельных генов до сих пор неясен.

В зависимости от выполняемой функции различают гены: структурные - транскрибируются во все виды РНК; регуляторные - регулируют процесс транскрипции; модуляторы - изменяют активность структурных генов.

Современное состояние теории гена включает следую¬щие положения:

1.Ген - материальная единица хранения и передачи наследственной информации, является частью молекулы ДНК или у вирусов РНК.

2.Ген в хромосоме занимает определенный локус. Существуют гены с непостоянной локализацией - транспозоны.

З.Гены делятся на структурные, регуляторные, гены модуляторы.

4.Структурно-функциональной единицей гена является триплет.

5.Триплеты в гене расположены колинеарно аминокислотам в белке.

6.Гены эукариот имеют интронно-экзонную природу.

7.Единицей транскрипции в геноме является оперон.

8.Гены способны к рекомбинации (как межгенной так и внутригенной) и мутации.

9.Не всякое повреждение гена ведет к мутации, т.к. гены способны к

репарации.

10. Дискретные единицы - гены формируют целостную систему

взаимодействующих генов - генотип.

Регуляция активности генов у прокариот

В процессе синтеза катаболических ферментов (расщепляющих суб-страты) у прокариот происходит индуцируемый синтез ферментов. Это дает клетке возможность приспосабливаться к условиям окружающей среды и экономить энергию, прекращая синтез соответствующего фермента, если потребность в нем исчезает.

Для индукции синтеза катаболических ферментов обязательны следующие условия:

1. Фермент синтезируется только тогда, когда расщепление соответствующего субстрата необходимо для клетки.

2. Концентрация субстрата в среде должна превысить определенный уровень, прежде чем соответствующий фермент сможет образоваться.

Наиболее хорошо изучен механизм регуляции экспрессии генов у кишечной палочки на примере lac-оперона, контролирующего синтез трех катаболических ферментов, расщепляющих лактозу. Если в клетке много глюкозы и мало лактозы, промотор остается неактивным, а на операторе находится белок репрессор - блокируется транскрипция lac-оперона.

Когда количество глюкозы в среде, а следовательно и в клетке, уменьшается, а лактозы увеличивается, происходят следующие события: количество циклического аденозинмонофосфата увеличивается, он связывается с САР -белком - этот комплекс активирует промотор, с которым соединяется РНК-полимераза ; в это же время избыток лактозы соединяется с белком-репрессором и освобождает от него оператор - путь для РНК-полимеразы открыт, начинается транскрипция структурных генов lac -оперона. Лактоза выступает в качестве индуктора синтеза тех ферментов, которые её расщепляют.

Лактозный оперон будет находиться в состоянии экспрессии до тех пор, пока в клетке уровень индуктора - лактозы не будет доведен до определенного уровня, характерного для данной клетки (принцип обратной связи). Тогда белок репрессор освободится от лактозы, займет свое место на операторе и транскрипция оперона прекратится.

Такая регуляция синтеза катаболических ферментов получила название негативной индукции, т.к. сам белок репрессор осуществляет негативный контроль за работой оперона (его присутствие на операторе выключает транскрипцию), а снимается блок транскрипции благодаря индуктору, который инактивирует белок репрессор.

В настоящее время изучена работа многих оперонов, в том числе и оперонов анаболического ряда. Примером такого оперона у кишечной палочки может быть триптофановый оперон, контролирующий синтез пяти фер¬ментов, необходимых для образования аминокислоты триптофана. Для триптофанового оперона синтезируется неактивный репрессор, который активи¬руется лишь под действием корепрессора (триптофана). Здесь наблюдается особая форма ингибирования конечным продуктом: оперон становится активным в случае недостатка триптофана в среде, а высокое содержание в среде данной аминокислоты подавляет выработку фермента, необходимого для синтеза триптофана, т.к. избыток триптофана активирует белок репрессор, который соединяется с оператором и транскрипция прекращается- оперон репрессируется. Такая система регуляции называется негативной репрессией. Она позволяет не синтезировать вещество в избытке.

Особенности регуляции экспрессии генов у эукариот

Регуляция экспрессии генов у эукариот протекает намного сложнее. Различные типы клеток многоклеточного эукариотического организма синтезируют ряд одинаковых белков и в то же время они отличаются друг от друга набором белков, специфичных для клеток данного типа. Уровень продукции зависит от типа клеток, а также от стадии развития организма. Регуляция экспрессии генов осуществляется на уровне клетки и на уровне организма.

Гены эукариотических клеток делятся на два основных вида: первый определяет универсальность клеточных функций, второй - детерминирует (определяет) специализированные клеточные функции. Функции генов первой группы прояв¬ляются во всех клетках. Для осуществления дифференцированных функций специализированные клетки должны экспрессировать определенный набор генов.

Хромосомы, гены и опероны эукариотических клеток имеют ряд структурно-функциональных особенностей, что объясняет сложность экспрессии генов.

1. Опероны эукариотических клеток имеют несколько генов - регуляторов, которые могут располагаться в разных хромосомах.

2. Структурные гены, контролирующие синтез ферментов одного биохимического процесса, могут быть сосредоточены в нескольких оперонах, расположенных не только в одной молекуле ДНК, но и в нескольких.

3. Сложная последовательность молекулы ДНК. Имеются информативные и неинформативные участки, уникальные и многократно повторяющиеся информативные последовательности нуклеотидов.

4. Эукариотические гены состоят из экзонов и интронов, причем созревание и-РНК сопровождается вырезанием интронов из соответствующих первичных РНК-транскриптов (про-и-РНК), т.е. сплайсингом.

5. Процесс транскрипции генов зависит от состояния хроматина. Локальная компактизация ДНК полностью блокирует синтез РНК.

6. Транскрипция в эукариотических клетках не всегда сопряжена с трансляцией. Синтезированная и-РНК может длительное время сохраняться в виде информосом. Транскрипция и трансляция проис¬ходят в разных компартментах.

7. Некоторые гены эукариот имеют непостоянную локализа¬цию (лабильные гены или транспозоны).

8. Методы молекулярной биологии выявили тормозящее действие белков-гистонов на синтез и-РНК.

9. В процессе развития и дифференцировки органов активность генов зависит от гормонов, циркулирующих в организме и вызывающих специфические реакции в определенных клетках. У млекопитаю¬щих важное значение имеет действие половых гормонов.

10. У эукариот на каждом этапе онтогенеза экспрессировано 5-10% генов, остальные должны быть заблокированы.

Световая репарация

Под действием различных физических и химических агентов, и даже при нормальном биосинтезе в ДНК могут возникнуть повреждения. Оказалось, что клетки обладают способностью самостоятельно исправлять повреждения в молекуле ДНК. Этот феномен получил название репарации. Первоначально способность к репарации была обнаружена у бактерий, подвергавшихся воздействию ультрафиолетового излучения. В результате облучения целостность молекул ДНК нарушалась, так как в ней возникали димеры, т. е. сцепленные между собой соединения в области оснований. Димеры образуются между:

двумя тиминами;

тимином и цитозином;

двумя цитозинами;

тимином и урацилом;

двумя урацилами.

Облученные клетки на свету выживали гораздо лучше, чем в темноте. После тщательного анализа причин было установлено, что в облученных клетках на свету происходит репарация. Она осуществляется специальным ферментом, активирующимся квантами видимого света. Фермент соединяется с поврежденной ДНК, разъединяет возникшие в димерах связи и восстанавливает целостность нити ДНК.

Фоторепарация заключается в расщеплении ферментом (дезоксирибо-пиримидинфотолиазой), активируемым видимым светом, циклобутановых димеров, возникающих в ДНК под действием ультрафиолетового излучения.

Механизмам репарации свойственны нарушения и «сбои», которые приводят к повышению чистоты мутаций. Известны специфические мутации, блокирующие механизмы репарации и вызывающие наследственные заболевания (пигментная ксеродерма и др.).

Биологическое значение репарации ДНК заключается в резком снижении частоты мутаций, большинство которых оказываются летальными и полулетальными или же снижающими жизнеспособность организмов, вызывающими аномалии и обусловливающими тератогенез. Благодаря репарации ДНК повышается устойчивость генотипа организма к повреждающим агентам (мутагенам).

Темновая репарация

Позднее была обнаружена и темновая репарация, т. е. свойство клеток ликвидировать повреждения ДНК без участия видимого света. Темновая репарация осуществляется комплексом из пяти ферментов:

узнающего химические изменения на участке цепи ДНК;

осуществляющего вырезание поврежденного участка;

удаляющего этот участок;

синтезирующего новый участок по принципу комплементарности взамен удаленного фрагмента;

соединяющего концы старой цепи и восстановленного участка.

При световой репарации исправляются повреждения, возникшие только под воздействием ультрафиолетовых лучей, при темновой - повреждения, появившиеся под влиянием жесткой радиации, химических веществ и других факторов. Темновая репарация обнаружена как у прокариот, так и в клетках эукариот. У последних она изучается в культурах тканей. Вопрос о том, почему одни повреждения репарируются, а другие нет, остается открытым. Если репарация не наступает, то клетка либо гибнет, либо наступает мутация.

Пострепликативная репарация осуществляется путем рекомбинации (обмена фрагментами) между двумя вновь образованными двойными спиралями ДНК. Примером такой пострепликативной репарации может служить восстановление нормальной структуры ДНК при возникновении тиминовых димеров (Т-Т), когда они не устраняются самопроизвольно под действием видимого света (световая репарация) или в ходе дорепликативной эксцизионной репарации. www.manytransport.ru

Ковалентные связи, возникающие между рядом стоящими остатками тимина, делают их не способными к связыванию с комплементарными нуклеотидами. В результате во вновь синтезируемой цепи ДНК появляются разрывы (бреши), узнаваемые ферментами репарации. Восстановление целостности новой полинуклеотидной цепи одной из дочерних ДНК осуществляется благодаря рекомбинации с соответствующей ей нормальной материнской цепью другой дочерней ДНК. Образовавшийся в материнской цепи пробел заполняется затем путем синтеза на комплементарной ей полинуклеотидной цепи (рис.16). Проявлением такой пострепликативной репарации, осуществляемой путем рекомбинации между цепями двух дочерних молекул ДНК, можно считать нередко наблюдаемый обмен материалом между сестринскими хроматидами (рис.17).

I - возникновение тиминового димера в одной из цепей ДНК;

II - образование "бреши" во вновь синтезируемой цепи против измененного участка материнской молекулы после репликации (стрелкой показано последующее заполнение "бреши" участком из соответствующей цепи второй дочерней молекулы ДНК);

III - восстановление целостности дочерней цепи верхней молекулы за счет рекомбинации и в нижней молекуле за счет синтеза на комплементарной цепи

Таким образом, обширный набор различных ферментов репарации осуществляет непрерывный "осмотр" ДНК, удаляя из нее поврежденные участки и способствуя поддержанию стабильности наследственного материала. Совместное действие ферментов репликации (ДНК-полимераза и редактирующая эндонуклеаза) и ферментов репарации обеспечивает достаточно низкую частоту ошибок в молекулах ДНК, которая поддерживается на уровне 1 · 10-9 пар измененных нуклеотидов на геном. При размере генома человека 3 · 109 нуклеотидных пар это означает появление около 3 ошибок на реплицирующийся геном. Вместе с тем даже этот уровень достаточен для образования за время существования жизни на Земле значительного генетического разнообразия в виде генных мутаций.

Цитоплазматическая наследственность прокариотических и эукариотических клеток.

Цитоплазматическая наследственность определяется наличием ДНК, располагающейся вне хромосом. В эукариотических клетках такие изолированные молекулы ДНК содержатся в митохондриях и пластидах, определяя их способность к авторепродукции и автономному синтезу некоторых белков. Именно с ними связана передача цитоплазматической наследственности.

У бактерий внехромосомная ДНК располагается в форме плазмид.

Плазмиды - кольцевые, внехромосомные, автономно редуплидирующиеся молекулы ДНК, которые могут существовать в бактериальной клетке наряду с бактериальной хромосомной ДНК. Название «плазмида» ввел в 1952 году Ледерберг. Плазмиды различаются размерами и регуляцией их репликации. Мелкие плазмиды содержат генетическую информацию в среднем для двух больших белков, тогда как крупные могут кодировать 200 и более подобных белков. В клетке, как правило, присутствует не менее 10 копий мелких плазмид, а крупные чаще всего представлены одной-двумя копиями на клетку.

Наиболее изучены три вида плазмид:

1. Плазмиды, содержащие половой фактор F+,

2. Плазмиды, содержащие фактор R,

3. Плазмиды-колициногены.

Плазмиды, содержащие половой фактор F+, присутствуют не у всех бактерий. Те из них, которые имеют такие плазмиды, называются мужскими и обозначаются F+, те же, у которых нет плазмид с фактором F+, называются женскими и обозначаются как F-.

Плазмиды с фактором F+ могут существовать либо самостоятельно, либо встраиваясь в бактериальную хромосому. Клетки типа F+ могут передавать половой фактор клеткам типа F-, протягивая к последним цитоплазматический мостик. Передаче фактора F+ предшествует репликация молекулы ДНК. При этом передается только одна из цепей ДНК, которая в дальнейшем достраивает вторую полинуклеотидную цепь.

В ряде случаев по цитоплазматическому мостику вместе с плазмидой, содержащей фактор F+, может передаваться фрагмент одной из цепей хромосомной ДНК, что лежит в основе рекомбинативной изменчивости у бактерий. С фактором F+ нередко передаются гены, сообщающие бактериям инфекционность.

С плазмидами с фактором R связана устойчивость бактерий к ряду антибиотиков. Такие бактерии синтезируют ферменты, которые либо расщепляют антибиотики, либо снижают их активность. Плазмиды, содержащие фактор R, имеют ген образования коньюгационного мостика, по которому плазмида с фактором R перемещается из одной бактерии в другую, сообщая ей свойство устойчивости к тем или иным антибиотикам.

Плазмиды-колициногены имеют гены, кодирующие синтез белков, обладающих антибиотическими свойствами. Эти антибиотики действуют на бактерии того же или близкого вида, не содержащие аналогичные плазмиды, т.е. делают их более конкурентоспособными.

Существуют также плазмиды, которые влияют на патогенность бактерш плазмиды, кодирующие энтеротоксины, гемолизины и антигены, расположе на поверхности клеток.

Под цитоплазматической наследственностью эукариот понимается передача наследственной информации через органоиды, содержащие собственную ДНК. К таким органоидам относятся митохондрии и хлоропласты. Гены, находящиеся в данных молекулах ДНК, называют внеядерными. Они транскрибируются и транслируются внутри того органоида, где они находятся и наследуются независимо от ядерных генов. Гены митохондрий и хлоропластов могут кодировать некоторые или же все собственные молекулы РНК, и только некоторые белки, необходимые для нужд тех органоидов, в которых они располагаются. Остальные белки кодируются ядерной ДНК.

Цитоплазматическая наследственность эукариот не подчиняется установленным закономерностям и наследуется только по материнской линии, так как у большинства организмов мужские гаметы практически лишены цитоплазмы, и основная ее масса вносится в зиготу яйцеклеткой, а вместе с ней - и такие органоиды как митохондрии и хлоропласты. Случаи не менделевского наследования отмечал К.Э. Корренс по признаку пестролистности у растений. Было замечено, что окраска листьев, зависящая от типа пластид, у ряда культур наследуется только по материнской линии.

Учитывая что, геномы хлоропластов имеют сравнительно большие размеры (около 140 тыс. пар нуклеотидов), и в клетке может быть несколько десятков таких геномов, доля внеядерной ДНК весьма значительна.

Размеры полных митохондриальных геномов могут различаться более чем на порядок.

Гены как наследственно - информационные структуры обеспечивают хранение и реализацию наследственного обусловленных признак свойств организмов. Будучи функционально неделимыми и весьма устойчивыми структурами, они обладают в то же время изменчивостью. Эти два диалектических противоречивых свойства генов лежат в основе, с одной стороны - сохранения признаков и свойств организма, а с другой - прогрессивной эволюции живой природы.

Генемтика человемка -- раздел генетики, изучающий закономерности наследования и изменчивости признаков у человека, тесно связанный с антропологией и медициной. Эту отрасль условно подразделяют на антропогенетику, изучающую наследственность и изменчивость нормальных признаков человеческого организма, и медицинскую генетику. Генетика человека связана также с эволюционной теорией, так как исследует конкретные механизмы эволюции человека и его место в природе, вместе с психологией, философией и социологией.

Изучение наследственности и изменчивости человека затруднено вследствие невозможности применить многие стандартные подходы генетического анализа. В частности, невозможно осуществить направленное скрещивание или экспериментально получить мутации. Человек является трудным объектом для генетических исследований также из-за позднего полового созревания и малочисленности потомства. Особенности человека как генетического объекта отражаются на наборе доступных методов исследования.

Особенности человека как объекта генетических исследований :

· У человека не может быть произведено искусственно направленного скрещивания в интересах исследователя.

· Низкая плодовитость делает невозможным применение статистического подхода при оценке немногочисленного потомства одной пары родителей.

· Редкая смена поколений (через 25 лет), при значительной продолжительности жизни дает возможность одному исследователю наблюдать не более 3-4 последовательных поколений.

· Наличие в геноме большого числа групп сцепления генов (23 у женщин, 24 у мужчин).

· Высокая степень фенотипического полиморфизма, связанного с влиянием среды.

· Хорошая изученность фенотипа.

Менделирующими признаками называются те, наследование которых про исходит по закономерностям, установленным Г. Менделем. Менделирующие признаки определяются одним геном моногенно (от греч.monos-один) то есть когда проявление признака определяется взаимодействием аллельных генов, один из которых доминирует (подавляет) другой. Менделевские законы справедливы для аутосомных генов с полной пенетрантностью (от лат.penetrans-проникающий, достигающий) и постоянной экспрессивностью (степенью выраженности признака).

Если гены локализованы в половых хромосомах (за исключением гомологичного участка в Х- и У-хромосомах), или в одной хромосоме сцеплено, или в ДНК органоидов, то результаты скрещивания не будут следовать законам Менделя.

Общие законы наследственности одинаковы для всех эукариот. У человека также имеются менделирующие признаки, и для него характерны все типы их наследования: аутосомно-доминантный, аутосомно-рецессивный, сцепленный с половыми хромосомами (с гомологичным участком Х- и У-хромосом).

Типы наследования менделирующих признаков:

I. Аутосомно-доминантный тип наследования. По аутосомно-доминантному типу наследуются некоторые нормальные и патологические признаки:

1) белый локон над лбом;

2) волосы жесткие, прямые (ежик);

3) шерстистые волосы - короткие, легко секущиеся, курчавые, пышные;

4) кожа толстая;

5) способность свертывать язык в трубочку;

6) габсбургская губа - нижняя челюсть узкая, выступающая вперед, нижняя губа отвислая и полуоткрытый рот;

7) полидактилия (от греч.polus - многочисленный, daktylos- палец) - многопалость, когда имеется от шести и более пальцев;

8) синдактилия (от греч. syn - вместе)-сращение мягких или костных тканей фаланг двух или более пальцев;

9) брахидактилия (короткопалость) - недоразвитие дистальных фаланг пальцев;

10) арахнодактилия (от греч. агаhna - паук ) - сильно удлиненные «паучьи» пальцы

II. Аутосомно-рецессивный тип наследования.

Если рецессивные гены локализованы в аутосомах, то проявиться они могут при браке двух гетерозигот или гомозигот по рецессивному аллелю.

По аутосомно-рецессивному типу наследуются следующие признаки:

1)волосы мягкие, прямые;

2)кожа тонкая;

3)группа крови Rh-;

4)неощущение горечи вкуса фенилкарбамида;

5)неумение складывать язык в трубочку;

6)фенилкетонурия - блокируется превращение фенилаланина в тирозин, который превращается в фенилпировиноградную кислоту, являющуюся нейротропным ядом (признаки - судорожные синдромы, отставание в психическом развитии, импульсивность, возбудимость, агрессия);

7)галактоземия - накопление в крови галактозы, которая тормозит всасывание глюкозы и оказывает токсическое действие на функцию печени, мозга, хрусталика глаза;

8)альбинизм.

Частота рецессивных наследственных болезней особенно повышается в изолятах и среди населения с высоким процентом кровнородственных браков.

Медико-генетическое консультирование

Главная цель генетического консультирования - это предупреждение появления в семье больных с наследственной патологией, физически и психически неполноценных.

ЭТАПЫ МЕДИКО-ГЕНЕТИЧЕСКОГО КОНСУЛЬТИРОВАНИЯ

Консультирование состоит из нескольких этапов, в процессе которых врач-генетик должен определить риск рождения больного потомства, дать обоснованную рекомендацию супругам и подготовить их к правильному восприятию советов. При этом перед врачом возникают не только генетические, но и морально-этические вопросы. В настоящее время медико-генетическое консультирование осуществляется в три этапа.

1-й этап. Диагностика-уточнение или постановка диагноза.

Точность клинико-генетического диагноза - это первоочередная проблема современной генетической консультации, поскольку диагноз позволяет установить степень генетического риска для потомства и осуществить выбор эффективных методов пренатальной (внутриутробной) диагностики, а также решить вопрос о путях коррекции некоторых видов наследственных заболеваний.

Установление правильного клинического диагноза требует использования разнообразных методов клинической диагностики (лабораторных, функциональных), характеризующих фенотип.

Исходным пунктом генетического анализа является генеалогический метод. Совершенно необходимо, чтобы были получены данные обо всех членах семьи, здоровых и пораженных, включая также и рано умерших. При сборе информации важно обращать внимание на возраст родителей при рождении детей, спонтанные аборты, сроки манифестации (проявления) заболевания.

При подозрении на хромосомные болезни используются цитогенетические методы исследования, в ряде случаев метод дерматоглифики. При подозрении на молекулярные болезни, помимо генеалогического метода, проводятся биохимические исследования.

Кроме того, в медико-генетической практике в настоящее время используются молекулярно-генетические методы (методы ДНК-диагностики), предназначенные для выявления вариаций в структуре исследуемого участка ДНК, где располагается интересующий генетика ген.

В основе этих методов лежат манипуляции с ДНК и РНК. В большинстве случаев для успешной диагностики болезни или гетерозиготного состояния достаточно исследовать небольшой фрагмент ДНК

ДНК-диагностика бывает подтверждающей, пресимптоматической, пренатальной, а также ДНК-диагностикой носительства.

Различают прямую и косвенную ДНК-диагностику моногенных наследственных болезней. Прямые методы возможны тогда, когда ген заболевания известен, известна его экзон - интронная организация и получены его копии(т.е. ген клонирован).В таком случае мутантный ген можно выявить в геноме больного с помощью этих методов.

Косвенное выявление мутаций применяется тогда, когда нуклеотидная последовательность гена ещё неизвестна, но известно относительное положение гена на генетической карте, поэтому косвенная ДНК-диагностика основная на анализе полиморфных генетических маркеров, расположенных в том же хромосомном регионе, что и ген болезни, т.е. сцеплены с ним. Маркеры называются полиморфными, потому что они существуют в популяции в нескольких аллельных вариантах. Маркеры анализируются у больных и здоровых членов семьи из разных поколений. Далее следует математический анализ сцепления генов и признаков.

Освоение этих методов требует специальной подготовки в соответствующих лабораториях.

В ряде случаев в процессе медико-генетического консультирования возникает необходимость специализированных консультаций - неврологиче¬ских, рентгенологических, стоматологических и т.д.

2-Й ЭТАП. ОПРЕДЕЛЕНИЕ РИСКА РОЖДЕНИЯ БОЛЬНОГО РЕБЕНКА.

Сущность генетического прогноза состоит в оценке вероятности появления наследственной патологии у будущих или уже родившихся детей. Главным условием при расчете генетического риска является точный диагноз. Существуют два главных метода оценки генетического риска:

1) эмпирический - основан на опыте прогноза сходных генетических ситуаций;

2) теоретический расчет, основанный на генетических закономерностях. В некоторых случаях оба метода комбинируются.

В работе врача-генетика генетические ситуации могут иметь разное содержание.

1.Наследственное заболевание носит моногенный характер, при котором

а) известны генотипы обоих родителей,

б) имеется аутосомно-рецессивное наследование, но известен только генотип одного родителя,

в) наследование аутосомно-доминантное с неполной пенетрантностью,

г) брак кровно-родственный.

В случае варианта "а" теоретические расчеты основываются на менде¬левских генетических закономерностях. В случае "б" риск рождения больно¬го рассчитывается с учетом частоты гетерозигот в популяции. В случае "в" риск рассчитывается с учетом пенетрантности. И, наконец, в случае "г"- с учетом коэффициента родства с пораженными членами семьи.

2.Полигенно наследуемая патология. При этом болезнь хотя и повторяется среди родственников, но установить тип наследования и предсказать расщепление признаков у потомства невозможно, поскольку неприме¬нимы методы теоретического расчета. Риск рождения больного ребенка в данном случае устанавливается на основании эмпирических (опытных) вероят¬ностей. Используются специальные таблицы эмпирического риска, которые составляют на основании аналогичных ситуаций, описанных в литературе.

3.Хромосомные болезни, которые могут в отдельных случаях повторяться у потомства одной и той же супружеской пары. Так, если у родителей нормальные кариотипы, риск для детей пробанда оценивается по эмпириче¬ским таблицам для каждого типа хромосомной болезни с учетом возраста матери, если у одного из детей имеет место гетероплоидия. До 30-ти летнего возраста частота нерасхождений не возрастает, но в дальнейшем увеличивается. Более 1% детей, рожденных от матери в возрасте свыше 40 лет, имеют трисомию по 21-й паре хромосом, 3,7% имеют хромосомную аномалию лю¬бого другого типа. Возраст отца не влияет на возникновение трисомии.

При семейных формах хромосомных аберраций риск рождения больного ребенка оценивается по эмпирическим таблицам. При этом, как правило, риск выше при наличии перестройки у матери, чем у отца. Так, для распространенных транслокаций эмпирический риск равен приблизительно 11%, когда носителем является мать, и 2% -когда отец.

4. Спорадические (единичные) случаи патологии, чаще всего это случаи рождения больного ребенка у здоровых родителей, когда в родословной не удается найти данных о патологии среди родственников. В таких случаях врач-генетик должен быть предельно осторожен в определении риска рождения следующего больного ребенка, поскольку данная ситуация может быть обусловлена разными причинами:

- мутацией, возникшей только в одной из гамет родителей;

- -фенокопией;

- мутацией в соматических клетках зародыша;

- выщеплением редкого рецессивного гена у гетерозиготных родителей, где риск рождения больного ребёнка будет равен 25%;

-сокрытием одним из родителей наследственной патологии.

При всех случаях прогноз заболевания потомства будет различным. Так, если говорить о фенокопиях, то, поскольку они не наследуются, риск повторного рождения больного ребенка бывает предельно мал. Благоприятным для потомства прогноз будет и при спорадических случаях болезни. Одной из причин в таком случае является возникшая в гамете одного из родителей мутация. Теоретически новые мутантные гены возникают с частотой по¬рядка единичных мутантных гамет на сотни тысяч нормальных.

3-й этап. ВЫДАЧА ПИСЬМЕННОГО ЗАКЛЮЧЕНИЯ И ДАЧА РЕКОМЕНДАЦИЙ.

На этом этапе врач должен дать письменное заключение о риске рождения больного ребенка и соответствующие рекомендации. Составляя заклю¬чение, врач должен учитывать степень тяжести наследственной патологии, величину риска рождения больного ребенка и морально-этическую сторону вопроса.

С генетической точки зрения риском рождения больного ребенка можно пренебречь, если риск не превышает 10%. Такой риск не является противопоказанием к деторождению. Риск от 11% к 20% является средним, свыше 20% - высоким.

Величина риска не должна быть самодовлеющей, необходимо учиты¬вать степень тяжести наследственной патологии и возможность ее коррекции. Так, при высоком риске рождения больного ребенка противопоказанием к деторождению можно отнести случаи:

1) сублетальных и летальных заболеваний;

2)тяжелых, плохо поддающихся лечению аутосомных и сцепленных с полом доминантных и рецессивных болезней;

3)хромосомных болезней;

4) психических заболеваний;

5) кровнородственных браков.

В то же время, если наследственная патология не нарушает здоровья (близорукость, дальтонизм и др.), может достаточно эффективно лечиться (например, некоторые молекулярные болезни, которые можно лечить диетой, или небольшие пороки развития, такие, как, например, заячья губа), или про¬является в позднем возрасте (сахарный диабет, атеросклероз), это не является противопоказанием к деторождению, даже если риск рождения больного ре¬бенка высокий.

Таким образом, врач-генетик на заключительном этапе медико-генетического консультирования опирается не столько на риск рождения больного ребенка, сколько на конкретную ситуацию: генетический риск с учетом тяжести течения болезни, продолжительности жизни, возможности лечения, внутриутробной диагностики.

Врач-генетик должен давать объективное заключение и помнить, что неблагоприятный для родителей результат всегда является психотравмой, поэтому последний этап консультации рекомендуется проводить через 3-6 месяцев после установления диагноза с тем, чтобы консультируемые лица могли морально подготовиться к врачебному заключению. При благоприят¬ном прогнозе этот срок можно значительно сократить.

В работе врача, дающего медико-генетическую консультацию супругам, встречаются большие трудности психологического характера. Задачей врача-генетика является разъяснение пациентам сути поставленного диагноза и определяемой им оценки вероятности рождения в этой семье подобного ребёнка.

Все же дальнейшие действия предпринимаются самими пациентами на основании тех решений, которые они приняли после консультации.

14. Методы генетических исследований: генеалогический, близнецовый, дерматоглифика, цитогенетический.

Генеалогический метод заключается в анализе родословных и позволяет определить тип наследования (доминантный, рецессивный, аутосомный или сцепленный с полом) признака, а также его моногенность или полигенность. На основе полученных сведений прогнозируют вероятность проявления изучаемого признака в потомстве, что имеет большое значение для предупреждения наследственных заболеваний.

При аутосомном наследовании признак характеризуется равной вероятностью проявления у лиц обоих полов. Различают аутосомно-доминантное и аутосомно-рецессивное наследование.

При аутосомно-доминантном наследовании доминантный аллель реализуется в признак как в гомозиготном, так и в гетерозиготном состоянии. При наличии хотя бы у одного родителя доминантного признака последний с разной вероятностью проявляется во всех последующих поколениях. Однако для доминантных мутаций характерна низкая пенетрантность. В ряде случаев это создает определенные трудности для определения типа наследования.

При аутосомно-рецессивном наследовании рецессивный аллель реализуется в признак в гомозиготном состоянии. Рецессивные заболевания у детей встречаются чаще при браках между фенотипически нормальными гетерозиготными родителями. У гетерозиготных родителей (Аа х Аа) вероятность рождения больных детей (аа) составит 25%, такой же процент (25%) буду здоровы (АА), остальные 50% (Аа) будут также здоровы, но окажутся гетерозиготными носителями рецессивного аллеля. В родословной при аутосомно-рецессивном наследовании заболевание может проявляться через одно или несколько поколений.

Интересно отметить, что частота появления рецессивного потомства значительно повышается при близкородственных браках, так как концентрация гетерозиготного носительства у родственников значительно превышает таковую в общей массе населения.

Сцепленное с полом , наследование характеризуется, как правило, неравной частотой встречаемости признака у индивидуумов разного пола и зависит от локализации соответствующего гена в Х- или Y-хромосоме. В X- и Y-хромосомах человека имеются гомологичные участки, содержащие парные гены. Гены, локализованные в гомологичных участках, наследуются так же, как и любые другие гены, расположенные в аутосомах. По-видимому, негомологичные гены имеются и в Y-хромосоме. Они передаются от отца к сыну и проявляются только у мужчин (голандрический тип наследования) .

У человека в Y-хромосоме находится ген, обусловливающий дифференцировку пола. В Х-хромосоме имеется два негомологичных участка, содержащих около 150 генов, которым нет аллельных в Y-хромосоме. Поэтому вероятность проявления рецессивного аллеля у мальчиков более высока, чем у девочек. По генам, локализованным в половых хромосомах, женщина может быть гомозиготной или гетерозиготной. Мужчина, имеющий только одну Х-хромосому, будет гемизиготным по генам, которым нет аллелей в Y-хромосоме.

Наследование, сцепленное с Х-хромосомой, может быть доминантным и рецессивным ( чаще рецессивным). Рассмотрим Х - сцепленное рецесивное наследование на примере такого заболевания селовека, как гемофилия ( нарушениесвертывания крови). Известный всему мипу пример: носитель гемофилии королева Виктория была гетерозиготной и передала мутантный ген сыну Леопольду и двум дочерям. Эта болезнь проникла в ряд королевских домов Европы и попала в Россию.

Близнецовый метод -- один из наиболее информативных методов психогенетики, основанный на сопоставлении внутрипарного сходства генетически идентичных монозиготных и неидентичных дизиготных близнецов. Монозиготные близнецы развиваются из одной зиготы, т.е. из одной оплодотворенной яйцеклетки, которая иногда на ранних стадиях своего деления дает начало двум эмбриональным структурам. Монозиготные близнецы -- единственные люди, имеющие идентичный набор генов. Дизиготные близнецы развиваются из двух одновременно оплодотворенных яйцеклеток; у них, как и у обычных сиблингов (родных братьев и сестер), в среднем 50% общих генов. Диагностика зиготности основана на системе определенных антропометрических признаков, характеризующих внешнее сходство близнецов, и на использовании более сложных маркерных систем, включающих биохимические факторы, группу крови и т.д. При работе с большими выборками близнецов возможна диагностика по специально разработанным вопросникам, дающим хорошее совпадение диагноза с результатами более строгих методик. Если по тому или иному показателю психического развития монозиготные близнецы обнаруживают большее внутрипарное сходство, чем дизиготные, то это рассматривается как признак существенной зависимости данного показателя от генетических факторов. В последние годы стал использоваться метод семей монозиготных близнецов, позволяющий оценить так называемый «материнский эффект» -- влияние цитоплазматической наследственности, практически полностью определяемой материнской яйцеклеткой. При наличии «материнского эффекта» имеющие матерей -- монозиготных близнецов, будут более похожи по изучаемому признаку, чем дети, имеющие отцов -- монозиготных близнецов. Существуют и другие варианты Б. м. (метод контрольного близнеца, близнецовой пары и т.д.), не решающие собственно психогенетических задач, но помогающие экономно и надежно исследовать многие психологические проблемы. И. В. Тихомирова

Дерматоглифика (от дермато... и греч. glэpho -- выдалбливаю, гравирую), раздел морфологии человека, изучающий кожный рельеф ладонных и подошвенных поверхностей, где кожа покрыта многочисленными гребешками (папиллярными линиями), образующими определённые узоры. Гребешки и узоры имеются также у обезьян, полуобезьян и некоторых др. млекопитающих. Гребешки представляют собой линейные утолщения в глубине и на поверхности эпидермиса. Они закладываются у человека на 3-м месяце зародышевого развития, но на поверхности кожи появляются лишь на 18-й неделе внутриутробного развития. Папиллярные линии и узоры не изменяются с возрастом, не подвергаются влиянию окружающих условий и отличаются большой индивидуальной вариабильностыо; многие их особенности передаются по наследству. Поэтому данные Д. широко используются криминалистами (см. в ст. Дактилоскопия), судебными медиками (в случае спорного отцовства), в клинической медицине (при раннем диагнозе некоторых хромосомных заболеваний). При массовом исследовании кожных узоров обнаруживаются право-левые, половые и территориальные отличия, что позволяет использовать эти данные в антропологии для выявления родственных отношений между различными человеческими группами, при изучении билатеральной симметрии тела и т.д. Кожные узоры привлекаются также в сравнительно-анатомических исследованиях человека и приматов и в антропогенетике (посемейные и близнецовые исследования).

Цитогенетический метод основан на микроскопическом изучении хромосом в клетках человека. Его стали широко применять в исследованиях генетики человека с 1956 г., когда шведские ученые Дж. Тийо и А. Леван, предложив новую методику изучения хромосом, установили, что в кариотипе человека 46, а не 48 хромосом, как считали ранее. Современный этап в применении цитогенетического метода связан с разработанным в 1969 г. Т. Касперсоном методом дифференциального окрашивания хромосом, который расширил -возможности цитогенетического анализа, позволив точно идентифицировать хромосомы по характеру распределения в них окрашиваемых сегментов.Применение цитогенетического метода позволяет не только изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, но, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или с нарушением их структуры. Кроме того, этот метод позволяет изучать процессы мутагенеза на уровне хромосом и кариотипа. Применение его в медико-генетическом консультировании для целей пренатальной диагностики хромосомных болезней дает возможность путем своевременного прерывания беременности предупредить появление потомства с грубыми нарушениями развития. Материалом для цитогенетических исследований служат клетки человека, получаемые из разных тканей,--лимфоциты периферической крови, клетки костного мозга, фибробласты, клетки опухолей и эмбриональных тканей и др. Непременным требованием для изучения хромосом является наличие делящихся клеток. Непосредственное получение таких клеток из организма затруднено, поэтому чаще используют легкодоступный материал, каковым являются лимфоциты периферической крови. В норме эти клетки не делятся, однако специальная обработка их культуры фитогемагглютинином возвращает их в митотический цикл. Накопление делящихся клеток в стадии метафазы, когда хромосомы максимально спирализованы и хорошо видны в микроскоп, достигается обработкой культуры колхицином или колцемидом, разрушающим веретено деления и препятствующим расхождению хроматид. Микроскопирование мазков, приготовленных из культуры таких клеток, позволяет визуально наблюдать хромосомы. Фотографирование метафазных пластинок и последующая обработка фотографий с составлением кариограмм, в которых хромосомы выстроены парами и распределены по группам, позволяют установить общее число хромосом и обнаружить изменения их количества и структуры в отдельных парах (рис. 6.33). Кариотипы человека при некоторых хромосомных болезнях представлены на рис. 4.3--4.12.

Популяционно-статистический метод

С помощью популяционно-статистического метода изучают наследственные признаки в больших группах населения, в одном или нескольких поколениях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Этим методом можно рассчитать частоту встречаемости в популяции различных аллелей гена и разных генотипов по этим аллелям, выяснить распространение в ней различных наследственных признаков, в том числе заболеваний. Он позволяет изучать мутационный процесс, роль наследственности и среды в формировании фенотипического полиморфизма человека по нормальным признакам, а также в возникновении болезней, особенно с наследственной предрасположенностью. Этот метод используют и для выяснения значения генетических факторов в антропогенезе, в частности в расообразовании.

При статистической обработке материала, получаемого при обследовании группы населения по интересующему исследователя признаку, основой для выяснения генетической структуры популяции является закон генетического равновесия Харди -- Вайнберга. Он отражает закономерность, в соответствии с которой при определенных условиях соотношение аллелей генов и генотипов в генофонде популяции сохраняется неизменным в ряду поколений этой популяции (см. разд. 10.2.3, т.2). На основании этого закона, имея данные о частоте встречаемости в популяции рецессивного фенотипа, обладающего гомозиготным генотипом (аа), можно рассчитать частоту встречаемости указанного аллеля (а) в генофонде данного поколения. Распространив эти сведения на ближайшие поколения, можно предсказать частоту появления в них людей с рецессивным признаком, а также гетерозиготных носителей рецессивного аллеля.

Математическим выражением закона Харди -- Вайнберга служит формула (рА. + qa)2, где р и q -- частоты встречаемости аллелей А и а соответствующего гена. Раскрытие этой формулы дает возможность рассчитать частоту встречаемости людей с разным генотипом и в первую очередь гетерозигот -- носителей скрытого рецессивного аллеля: p2AA + 2pqAa + q2аа. Например, альбинизм обусловлен отсутствием фермента, участвующего в образовании пигмента меланина и является наследственным рецессивным признаком. Частота встречаемости в популяции альбиносов (аа) равна 1:20 000. Следовательно, q2 = 1/20 000, тогда q = 1/141, up = 140/141. В соответствии с формулой закона Харди -- Вайнберга частота встречаемости гетерозигот = 2pq, т.е. соответствует 2 х (1/141) х (140/141) = 280/20000 = 1/70. Это означает, что в данной популяции гетерозиготные носители аллеля альбинизма встречаются с частотой один на 70 человек.

Биохимический метод

В отличие от цитогенетического метода, который позволяет изучать структуру хромосом и кариотипа в норме и диагностировать наследственные болезни, связанные с изменением их числа и нарушением организации, наследственные заболевания, обусловленные генными мутациями, а также полиморфизм по нормальным первичным продуктам генов изучают с помощью биохимических методов.

Впервые эти методы стали применять для диагностики генных болезней еще в начале XX в. В последние 30 лет их широко используют в поиске новых форм мутантных аллелей. С их помощью описано более 1000 врожденных болезней обмена веществ. Для многих из них выявлен дефект первичного генного продукта. Наиболее распространенными среди таких заболеваний являются болезни, связанные с дефектностью ферментов, структурных, транспортных или иных белков.

Дефекты структурных и циркулирующих белков выявляются при изучении их строения. Так, в 60-х гг. XX в. был завершен анализ (3-глобино-вой цепи гемоглобина, состоящей из 146 аминокислотных остатков. Установлено большое разнообразие гемоглобинов у человека, связанное с изменением структуры его пептидных цепей, что нередко является причиной развития заболеваний (см. § 4.1).

Дефекты ферментов устанавливают путем определения содержания в крови и моче продуктов метаболизма, являющихся результатом функционирования данного белка. Дефицит конечного продукта, сопровождающийся накоплением промежуточных и побочных продуктов нарушенного метаболизма, свидетельствует о дефекте фермента или его дефиците в организме (см. § 4.1).

Биохимическую диагностику наследственных нарушений обмена проводят в два этапа. На первом этапе отбирают предположительные случаи заболеваний, на втором --более точными и сложными методами уточняют диагноз заболевания. Применение биохимических исследований для диагностики заболеваний в пренатальном периоде или непосредственно после рождения позволяет своевременно выявить патологию и начать специфические медицинские мероприятия, как, например, в случае фенилкетонурии.

Для определения содержания в крови, моче или амниотической жидкости промежуточных, побочных и конечных продуктов обмена кроме качественных реакций со специфическими реактивами на определенные вещества используют хроматографические методы исследования аминокислот и других соединений.

УЗИ - широко распространенный метод диагностики. Он не подвергает пациента лучевой нагрузке и считается безвредным. Тем не менее, у ультразвукового исследования есть ряд ограничений. Метод не является стандартизованным, и качество исследования зависит от оборудования, на котором проводится исследование, и квалификации врача. Дополнительное ограничение для УЗИ - это излишний вес и/или метеоризм, что мешает проведению ультразвуковых волн.

Ультразвуковое исследование является стандартным методом диагностики, который применяется для скрининга. В таких ситуациях, когда заболевания и жалоб у пациента еще нет, для ранней доклинической диагностики следует применять именно УЗИ. При наличии уже известной патологии лучше выбрать КТ или МРТ как методы уточняющей диагностики.

...

Подобные документы

  • Предмет и методы изучения медицинской генетики, ее проблематика на современном этапе. Понятие и строение хромосом. Правила хромосом. Стадии жизненного цикла клетки. Митоз и мейоз, их сущность, этапы, значение в жизни организма, возможные патологии.

    реферат [16,9 K], добавлен 22.02.2009

  • Понятие наследственных заболеваний: изменение числа или структуры хромосом. Классификация хромосомных нарушений, обусловленных изменениями половых и неполовых хромосом. Основные типы наследственности. Болезни обмена вещества и нарушения иммунитета.

    презентация [1,8 M], добавлен 21.11.2010

  • История развития медицинской генетики. Типы хромосомной ДНК. Морфология и строение хромосом человека. Заболевания, связанные с числовыми аномалиями половых хромосом. Патогенез и классификация наследственных болезней. Спонтанные и индуцированные мутации.

    шпаргалка [58,2 K], добавлен 25.05.2015

  • Синдромы, развитие которых обусловлено изменениями числа или структуры хромосом. Частота хромосомных болезней среди новорожденных детей. Синдром Дауна, синдром Патау, синдром Эдвардса. Аномалии сочетания половых хромосом. Синдромы частичных моносомий.

    презентация [2,7 M], добавлен 06.01.2013

  • Морфологические типы хромосом. Получение популяции активно делящихся клеток. Методы дифференциального окрашивания. Исследование анафазы-телофазы. Классификация хромосомных аномалий. Диагностика синдромов, обусловленных микроперестройками хромосом.

    презентация [4,4 M], добавлен 05.09.2013

  • Предмет и задачи генетики человека. Методы изучения наследственности и изменчивости человека. Наследственные болезни человека, их лечение и профилактика, основные пути предотвращения. Генные мутации и нарушения обмена веществ. Виды хромосомных болезней.

    реферат [11,6 K], добавлен 28.11.2010

  • Сущность, возникновение и методы изучения хромосомных болезней. Основные признаки синдрома Дауна. Синдром Эдвардса, трисомия по 18 хромосоме. Признаки синдрома Патау - трисомия по 13 хромосоме. Болезни, связанные с нарушением числа половых хромосом.

    презентация [1,1 M], добавлен 03.01.2013

  • Молекулярные и диагностика основы наследственных болезней. Симптоматическое, патогенетическое и этиологическое лечение хромосомных болезней. Коррекция генетического дефекта при моногенных заболеваниях. Подавление избыточной функции генов и их продуктов.

    презентация [914,0 K], добавлен 10.10.2013

  • Понятие наследственных заболеваний и мутаций. Генные наследственные болезни: клинический полиморфизм. Изучение и возможное предотвращение последствий генетических дефектов человека как предмет медицинской генетики. Определение хромосомных болезней.

    контрольная работа [34,5 K], добавлен 29.09.2011

  • Сущность понятия "наследственные заболевания". Многогенные, хромосомные, полигенные наследственные болезни. Группы хромосомных болезней: аномалии числа хромосом, нарушения структуры. Синдром Дауна, Пату. Генетические болезни соматических клеток.

    презентация [556,1 K], добавлен 06.04.2011

  • Демографическая генетика - отрасль генетики человека, изучающая генетические процессы в популяциях. Источники демографо-генетической информации. Воспроизводство народонаселения. Миграция и расселение людей. Генетический хронометр истории народов.

    реферат [26,6 K], добавлен 25.04.2010

  • Хромосомные болезни: синдром Дауна, Патау, Клайнфельтера, Шерешевского-Тернева, "Кошачьего крика". Характерный внешний вид людей с перечисленными заболеваниями. Некоторые нарушения развития половых желез, вызванных аномалией половых хромосом у детей.

    презентация [909,0 K], добавлен 13.05.2012

  • Этиология и диагностика наследственных заболеваний. Генные мутации и изменение последовательности нуклеотидов в ДНК, нарушение структуры хромосом. Профилактика и медико-генетическое консультирование. Симптоматическое лечение наследственных болезней.

    реферат [19,9 K], добавлен 19.12.2010

  • Факторы возникновения нарушения развития половых желез в раннем периоде развития зародыша, вызванного аномалией половых хромосом. Клинические симптомы Шереевского-Тернера. Методы лечения больных с данным заболеванием, способы диагностики и обследования.

    презентация [267,3 K], добавлен 21.10.2013

  • Генетика как важнейшая область современной биологии, образ науки. Взгляды с разных сторон на генетику: со стороны морали, религии, науки. Перспективы современной генетики, открытия: молекулярная основа наследственности, расшифровка генетического кода.

    контрольная работа [18,6 K], добавлен 25.04.2009

  • Определение синдрома Шерешевского-Тернера (дисгенезии гонад). Рассмотрение клинической картины нарушения развития половых желез, вызванного аномалией половых хромосом. Лечение женскими половыми гормонами. Причины и развитие синдрома Кляйнфельтера.

    презентация [1,6 M], добавлен 01.06.2015

  • Понятие белков, их сущность и особенности, строение и функции в организме. Нуклеиновые кислоты – ДНК и РНК, их строение и значение. Сущность и роль в организме процессов транскрипции и трансляции. Практическое применение в медицине молекулярной генетики.

    реферат [16,9 K], добавлен 22.02.2009

  • Диагностика генетических заболеваний. Диагностика хромосомных болезней. Лечение наследственных болезней. Проведение евгенических мероприятий. Перспективы лечения наследственных болезней в будущем. Медико-генетическое консультирование и профилактика.

    курсовая работа [27,0 K], добавлен 07.12.2015

  • Груз наследственной патологии в современных популяциях человека. Генетическое консультирование - одна из основных форм профилактики наследственных болезней, наряду с дородовой диагностикой и биохимическим скринингом новорожденных.

    реферат [6,3 K], добавлен 07.04.2003

  • Врожденная патология, вызванная аномальным количеством хромосом у ребенка. Распространенность синдрома Шерешевского-Тёрнера. Причины генетической патологии. Генетические варианты заболевания. Наиболее частые признаки синдрома Шерешевского-Тёрнера.

    презентация [813,5 K], добавлен 26.02.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.