Патологическая физиология

Предмет, задачи и методы патологической физиологии. Общая нозология и этиология. Патофизиология реактивности и резистентности организма, иммунитета, аллергии, водно-солевого обмена и кислотно-щелочного равновесия. Опухолевый рост, наследственные болезни.

Рубрика Медицина
Вид курс лекций
Язык русский
Дата добавления 13.10.2017
Размер файла 617,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Симптоматику истерии И.П. Павлов объяснял характерным превалированием подкорковой деятельности над корковой и первой сигнальной системы над второй.

Навязчивые состояния - мысли, сомнения, действия, страхи, движения, возникающие независимо и вопреки желанию больного, притом непреодолимо. Больные относятся к ним критически, понимают их бессмысленность и болезненный характер, но освободиться не могут.

Навязчивые страхи (фобии) встречаются очень часто и в самой разнообразной форме. Наиболее распространенные из них следующие:

Агорафобия - страх открытого пространства.

Акрофобия - страх высоты.

Дисморфофобия - страх уродства.

Клаустрофобия - страх замкнутых пространств, закрытых помещений.

Нозофобия - страх заболеть какой-нибудь тяжелой болезнью. Сюда относится акарофобия (страх чесотки), бактериофобия, канцерофобия.

Танатофобия - страх смерти, тафефобия - страх быть заживо погребенным. В группе навязчивых страхов могут быть выделены особо навязчивые опасения - невозможности совершения какого-либо обычного жизненного или профессионального акта. Певица боится, что не споет хорошо известную арию и отказывается от выступления. При навязчивых воспоминаниях в сознании больного мучительно вновь и вновь возникает образное воспоминание о каком-то неприятном, порочащем его событии. В н-х - синдромы:

1. астенический - слабость нервной деятельности;

2. истерический - эмоциональная несдержаность;

3. депрессивный - угнетение, боязнь;

4. фобический - страх, опасения;

5. ипохондрический - жалобы на деятельность внутренних органов.

Экспериментальные модели неврозов (с 1921 г. И.П. Павлов):

1) У животных вырабатывают возбудительные и тормозные пищевые рефлексы (+) в круге - пища, эллипс с (-) - дифференцировочный образ без пищи, формируется активное внутренне торможение и при соотношении осей эллипса 7: 8 животное не различает его от круга - возникает бурная реакция - лай, беспокойство и на несколько месяцев нарушаются условные рефлексы в связи со срывом ВНД - невроз.

2) Перенапряжение силы нервных процессов (возбуждения) при действии сверхсильных раздражителей, большого числа раздражителей.

3) Перенапряжение активного тормозного процесса при удлинении действия тормозного раздражителя с 30 сек до 10 мин.

4) Перенапряжение подвижности нервных процессов - "сшибка" - столкновение разнородных рефлексов (+) и (-). Звонок №1 (-) без еды и через 5 минут звонок №2 (+) - еда. Если между звонками пауза 5 мин - все нормально, но если звонки следуют друг за другом - сталкиваются процессы возбуждения и торможения - основной прием получения неврозов.

Позднее Павлов разработал 3 модели неврозов, адекватных человеческим:

5) Столкновение биологически противоположной деятельности "сшибка" вырабатывают условный пищевой рефлекс на раздражение кожи слабым электрическим током и затем увеличивают силу тока - боль и пища.

6) Переделка динамического стереотипа условнорефлекторной деятельности - группа раздражителей различного знака друг за другом следуют в одинаковом порядке и с одинаковыми интервалами в 5 мин (М-метроном):

М 120 (+),

М 60 (-),

свет (+),

звук №1 (+),

звук №2 (-),

будильник (+),

но при смене порядка подачи раздражителя или изменении времени подачи его легко возникает невроз. Деятельность человека всегда стереотипна, это проще и у большинства людей переделка жизненного стереотипа вызывает невроз.

7) Информационные неврозы - от обилия жизненно важной информации при недостатке времени на ее полноценную переработку: вырабатывают 4 сложных стереотипа условнорефлекторной деятельности у животных в камере 1 2 и по окончании соответствующего последнего сигнала животное 4 3 получает пищу в определенной кормушке из 4-х. Если промежутки времени между стереотипами большие - несколько часов - животное бежит точно к нужной кормушке, но при сближении времени стереотипов происходит срыв, ошибки, взрыв эмоций. Человек получает очень много жизненной информации и не успевает переработать ее > невроз в связи со срывом ВНД.

8) Даже фиксация животных в течение полугода в станке вызывала нарушения условнорефлекторной деятельности - ведь изымалось движение.

Оказалось, что возникновение неврозов зависит от типа ВНД. Для слабого типа нервной деятельности любое перенапряжение вызывает невроз. У безудержного нужно перенапрягать тормозные процессы (круг/эллипс), у инертного - нужно перенапрягать подвижность (сшибка), у уравновешенного получить невроз гораздо сложнее. И.П. Павлов считал неврозы следствием перенапряжения и срыва ВНД.

Так молодая семья живет вместе со свекровью и длительное время молодая жена не реагирует на замечания свекрови и все нормально. Но через несколько лет по пустяку взрыв эмоций - истерический невроз из-за многолетнего активного центрального торможения (опыт физиологического понимания).

И это особенно важно для стариков - переезд на новую квартиру, выход на пенсию - ломка стереотипа.

Патогенез экспериментальных неврозов. Клиническая картина почти всех форм неврозов включает в себя, как правило, нарушение сна, вегетативно-висцеральные, преимущественно сердечно-сосудистые, расстройства. Это, естественно, направляет внимание исследователей, пытающихся найти локальный адрес невротических нарушений, к структурам лимбического или так называемого висцерального мозга, и прежде всего к эмоциогенным отделам гиппокампа, corpus amygdaloideum, гипоталамуса. В последнее время все чаще встречаются указания на важную роль в патогенезе неврозов структур лимбико-ретикулярного комплекса, с которым связана основная симптоматика болезни. Кроме того, общепризнано, что для развития невроза, помимо стресса, должна быть еще и генетически или прижизненно обусловленная предрасположенность. В связи с этим научно-техническую революцию с ее "информационными перегрузками" и пр. следует рассматривать не как причину, а как условия, астенизирующие нервную систему и тем самым предрасполагающие к развитию неврозов.

Нарушения условнорефлекторной деятельности после невротизирующих воздействий были во всех случаях у всех животных, но выражадись они поразному: в виде увеличения латентных периодов и нарушения силовых отношений рефлексов с развитием фазовых состояний (уравнительная, парадоксальная, ультрапарадоксальная), снижения или выпадения условных рефлексов и т.п. Четко выявлялась завивисимость характера нарушений условнорефлекторной деятельности от типологических особенностей нервной системы. Нарушения эти были длительными и носили, особенно в начале болезни, волнообразный характер: периодическое улучшение без всякой видимой причины вновь сменялось ухудшением. Эти волнообразные изменения состояния ВНД ученые предлагают рассматривать не как проявление начинающейся болезни, а скорее как мобилизацию защитных сил организма. Изменения со стороны вегетативных функций наблюдались у всех животных и проявлялись по-разному у представителей разных типов ВНД.

Со стороны эндокринной системы было показано, что введение гидрокортизона в среднетерапевтических дозах у собак сильного типа НС повышает условные рефлексы, улучшает дифференцировку, тогда как у собак слабого типа эти дозы ухудшают условнорефлекторную деятельность, снижая условные и безусловные рефлексы. Хроническое применение кортизона (как и АКТГ) приводит к длительным нарушениям ВНД у животных и после прекращения введения препаратов. Эти гормоны рассматриваются как непременные компоненты стрессовых реакций, они "запускаются" под влиянием адреналина, выделяемого при любых стрессовых ситуациях. Как правило, введение малых доз гормонов: тиреотропного, АКТГ, кортизона, половых гормонов, адреналина - оказывает стимулирующее действие на ВНД, а высокие дозы гормонов угнетают ее, нарушая условнорефлекторную деятельность.

На ЭКГ у собак при экспериментальном неврозе наряду с увеличением ЧСС регистрировалась экстрасистолия, сглаженность или даже выпадение зубца P, увеличение или двухфазность зубца T, увеличение зубца R.

На ЭЭГ усиление тета - и альфа-частот во всех структурах.

Вообще факторами, способствующими повышению мозгового кровотока при эмоциональном стрессе и усилению вегетативных реакций, могут быть катехоламины, выделяемые катехоламинергическими системами и надпочечниками. Известно, что с повышением артериального давления гематоэнцефалический барьер становится проницаемым для катехоламинов, которые увеличивают скорость метаболических процессов и мозговой ткани и повышают локальный мозговой кровоток (ЛМК). При невротических нарушениях, вызванных длительными стрессовыми воздействиями, происходит истощение катехоламиновых систем, что может привести к снижению интенсивности метаболических процессов и снижению ЛМК. Отмечены нарушения всех фаз сна - укорочение продолжительности глубоких фаз сна, увеличено число пробуждений - его дефектность и функциональная неполноценность. Были выявлены нейромедиаторные нарушения, были сосудистые и глионейрональные нарушения, указывающие на развитие в ЦНС гипоксии. Было выявлено снижение скорости локального кровотока в 2-3 раза.

Психопатологичесое направление (основоположник Зигмунд Фрейд) - в основе неврозов лежит нарушение бессознательной психической деятельности человека - инстинкты: любовь и агрессия. Фрейд выделил 3 уровня: бессознательный, подсознательный и уровень сознания. Фрейд считал источником неврозов подавление бессознательной деятельности, т.к. у человека она постоянно сдерживается уровнем сознания. Воспитание людей - это постоянное ограничение инстинкта и это (по Фрейду) ведет к неврозам. Инстинкт не может исчезнуть, и когда его подавляют - то он проявится искаженным - в виде невроза (по Павлову - "сшибка"). Фрейд предложил способ писхоанализа:

1) анализ поведения;

2) анализ ошибочных действий человека;

3) свободное изложение мыслей, которые приходят в голову, когда человека о чем-либо спрашивают - метод свободных ассоциаций. Больного нужно очистить от переживаний, навязчивых мыслей.

Итак, причина невроза - хронический психоэмоциональный стресс, связанный с перенапряжением ВНД - смыкание физиологического и психоэмоционального направления.

Схема патогенеза неврозов: психоэмоциональный стресс > стимуляция мозговой деятельности; стрессорные реакции > нарушение интегративной деятельности (дезинтеграция нервной деятельности, нарушения поведения и сна) > нарушения вегетативной нервной деятельности, нейромедиаторной активности, эндокринной системы (симпатоадреналовые сдвиги, увеличение выработки дофамина, ваготонии, инсуллярные сдвиги) > нарушения метаболизма микроструктур и микроциркуляции > нарушения деятельности внутренних органов и соматической сферы. Формируется порочный круг - гипоксия мозга стимулирует психоэмоциональный стресс и стимулирует деятельность мозга.

У детей неврозы характеризуются малой очерченностью, стертостью, большой изменчивостью клинических признаков. Отсутствуют классические формы, кроме истерических и фобических; преобладает двигательная расторможенность. Отсутствуют отчетливые жалобы со стороны ребенка и обилие их от окружающих. Есть основной симптом или синдром, определяющий особенности болезни (так называемый моносимптоматический невроз); изменение поведения и снижение успеваемости.

Неврозы у детей характеризуются наличием отчетливых предрасполагающих факторов, способствующих возникновению невроза, благоприятным течением и и прогнозом. Они имеют следующие особенности: чем меньше возраст ребенка, тем меньшая дифференциация невроза, тем чаще его картина представлена преходящими невротическими реакциями. С возрастом картина невроза становится все более типичной, клинически более очерченной. Эмоциональные переживания ребенка фиксируются на деятельности внутренних оганов и систем. Детям свойственна также большая фиксация на конфликтной ситуации, что легко приводит к возникновению страха, например: страха темноты, одиночества, расстройства аппетита.

В преклонном возрасте имеет место та же картина невроза, что и в детстве, однако с противоположной динамикой.

Профилактика неврозов:

1) прекращение хронического действия стрессора - все перемелется;

2) наличие высоких целей в жизни и реальных возможностей для их достижения;

3) создание философии жизни - все умрем - радуйся, пока живешь;

4) сделай так, чтобы ближний полюбил тебя как себя самого.

Патофизиология обмена веществ (Лекция № 33)

Нарушения обмена веществ лежат в основе всех функциональных и органических повреждений органов и тканей, ведущих к возникновению болезни. Вместе с тем, патология обмена веществ может усугублять течение основной болезни, выступая как осложняющий фактор.

Одной из наиболее частых причин общих нарушений белкового обмена является количественная или качественная белковая недостаточность первичного (экзогенного) происхождения. Она может быть обусловлена:

1. нарушением расщепления и всасывания белков в ЖКТ;

2. замедлением поступления аминокислот в органы и ткани;

3. нарушением биосинтеза белка;

4. нарушением межуточного обмена аминокислот;

5. изменением скорости распада белка;

6. патологией образования конечных продуктов белкового обмена.

Нарушения расщепления и всасывания белков. В пищеварительном тракте белки расщепляются под влиянием протеолитических ферментов. При этом, с одной стороны, белковые вещества и другие азотистые соединения, теряют свои специфические особенности.

Основные причины недостаточного расщепления белков - количественное уменьшение секреции соляной кислоты и ферментов, снижение активности протеолитических ферментов (пепсина, трипсина, химотрипсина) и связанное с этим недостаточное образование аминокислот, уменьшение времени их воздействия (ускорение перистальтики).

Помимо общих проявлений нарушения аминокислотного обмена могут быть специфические нарушения, связанные с отсутствием конкретной аминокислоты. Так, недостаток лизина (особенно в развивающемся организме) задерживает рост и общее развитие, понижает содержание в крови гемоглобина и эритроцитов. При недостатке в организме триптофана возникает гипохромная анемия. Дефицит аргинина приводит к нарушению сперматогенеза, а гистидина - к развитию экземы, отставанию в росте, угнетению синтеза гемоглобина.

Кроме того, недостаточное переваривание белка в верхних отделах желудочно-кишечного тракта сопровождается увеличением перехода продуктов его неполного расщепления в толстый кишечник и усилением процесса бактериального расщепления аминокислот. Это ведет к увеличению образования ядовитых ароматических соединений (индол, скатол, фенол, крезол) и развитию общей интоксикации организма этими продуктами гниения.

Замедление поступления аминокислот в органы и ткани. Поскольку ряд аминокислот является исходным материалом при образовании биогенных аминов, задержка их в крови создает условия для накопления в тканях и крови соответствующих протеиногенных аминов и проявления их патогенного действия на различные органы и системы. Увеличенное содержание в крови тирозина способствует накоплению тирамина, который участвует в патогенезе злокачественной гипертонии. Длительное повышение количества гистидина ведет к увеличению концентрации гистамина, что способствует нарушению кровообращения и проницаемости капилляров. Кроме того, увеличение содержания аминокислот в крови проявляется увеличением их выведения с мочой и формированием особой формы нарушений обмена - аминоацидурией. Аминоацидурия может быть общей, связанной с повышением концентрации в крови нескольких аминокислот, или избирательной - при увеличении содержания в крови какой-нибудь одной аминокислоты.

Нарушение синтеза белков. Синтез белковых структур в организме является центральным звеном метаболизма белка. Даже небольшие нарушения специфичности биосинтеза белка могут вести к глубоким патологическим изменениям в организме.

Отсутствие в клетках хотя бы одной (из 20) незаменимой аминокислоты прекращает синтез белка в целом.

Нарушение скорости синтеза белка может быть обусловлено расстройством функции соответствующих генетических структур, на которых совершается этот синтез (транскрипция ДНК, трансляция).

Повреждение генетического аппарата может быть как наследственным, так и приобретенным, возникшим под влиянием различных мутагенных факторов (ионизирующее излучение, ультрафиолетовые лучи и пр.). Нарушение синтеза белка могут вызывать некоторые антибиотики. Так, "ошибки" в считывании генетического кода могут возникнуть под влиянием стрептомицина, неомицина и ряда других антибиотиков. Тетрациклины тормозят присоединение новых аминокислот к растущей полипептидной цепи. Митомицин угнетает синтез белка за счет алкилирования ДНК (образование прочных ковалентных связей между ее цепями), препятствуя расщеплению нитей ДНК.

Выделяют качественные и количественные нарушения биосинтеза белков. О том, какое значение могут иметь качественные изменения биосинтеза белков в патогенезе различных заболеваний, можно судить на примере некоторых видов анемий при появлении патологических гемоглобинов. Замена только одного аминокислотного остатка (глутамина) в молекуле гемоглобина на валин приводит к тяжелому заболеванию - серповидноклеточной анемии.

Особый интерес представляют количественные изменения в биосинтезе белков органов и крови, приводящие к сдвигу соотношений отдельных фракций белков в сыворотке крови - диспротеинемии. Выделяют две формы диспротеинемий: гиперпротеинемия (увеличение содержания всех или отдельных видов белков) и гипопротеинемия (уменьшение содержания всех или отдельных белков). Так, ряд заболеваний печени (цирроз, гепатит), почек (нефрит, нефроз) сопровождаются выраженным уменьшением содержания альбуминов. Ряд инфекционных заболеваний, сопровождающихся обширными воспалительными процессами, ведет к увеличению содержания гамма-глобулинов. Развитие диспротеинемии сопровождается, как правило, серьезными сдвигами в гомеостазе организма (нарушением онкотического давления, водного обмена). Значительное уменьшение синтеза белков, особенно альбуминов и гамма-глобулинов, ведет к резкому снижению сопротивляемости организма к инфекции, снижению иммунологической устойчивости. Значение гипопротеинемии в форме гипоальбуминемии определяется еще и тем, что альбумин образует более или менее прочные комплексы с различными веществами, обеспечивая их транспорт между различными органами и перенос через клеточные мембраны при участии специфических рецепторов. Известно, что соли железа и меди (чрезвычайно токсичные для организма) при pH сыворотки крови трудно растворимы и транспорт их возможен только в виде комплексов со специфическими белками сыворотки (трансферрином и церулоплазмином), что предотвращает интоксикацию этими солями. Около половины кальция удерживается в крови в форме, связанной с альбуминами сыворотки. При этом в крови устанавливается определенное динамическое равновесие между связанной формой кальция и ионизированными его соединениями. При всех заболеваниях, сопровождающихся снижением содержания альбуминов (заболевания почек) ослабляется и способность регулировать концентрацию ионизированного кальция в крови. Кроме того, альбумины являются носителями некоторых компонентов углеводного обмена (глюкопротеиды) и основными переносчиками свободных (неэстерифицированных) жирных кислот, ряда гормонов.

При поражении печени и почек, ряде острых и хронических воспалительных процессов (ревматизме, инфекционном миокарде, пневмонии) в организме начинают синтезироваться особые белки с измененными свойствами или несвойственной норме. Классическим примером болезней, вызванных наличием патологических белков, являются болезни, связанные с присутствием патологического гемоглобина (гемоглобинозы). Нарушения свертывания крови возникают при появлении патологических фибриногенов. К необычным белкам крови относятся криоглобулины, способные выпадать в осадок при температуре ниже 37°C, что ведет к тромбообразованию. Появление их сопровождает нефроз, цирроз печени и другие заболевания.

Патология межуточного белкового обмена (нарушение обмена аминокислот).

Центральное место в межуточном обмене белков занимает реакция переаминирования, как основной источник образования новых аминокислот. Нарушение переаминирования может возникнуть в результате недостаточности в организме витамина B6. Это объясняется тем, что фосфорилированная форма витамина B6 - фосфопиродоксаль является активной группой трансаминаз - специфических ферментов переаминирования между амино - и кетокислотами. Беременность, длительный прием сульфаниламидов тормозят синтез витамина B6 и могут послужить основой нарушения обмена аминокислот. Наконец, причиной снижения активности переаминирования может послужить угнетение активности трансаминаз вследствие нарушения синтеза этих ферментов (при белковом голодании), либо нарушения регуляции их активности со стороны ряда гормонов.

Процессы переаминирования аминокислот тесно связаны с процессами окислительного дезаминирования, в ходе которого осуществляется ферментативное отщепление аммиака от аминокислот. Дезаминирование определяет как образование конечных продуктов белкового обмена, так и вступление аминокислот в энергетический обмен. Ослабление дезаминирования может возникнуть вследствие нарушения окислительных процессов в тканях (гипоксия, гиповитаминозы C, PP, B2). Однако, наиболее резкое нарушение дезаминирования наступает при понижении активности аминооксидаз, либо вследствие ослабления их синтеза (диффузное поражение печени, белковая недостаточность), либо в результате относительной недостаточности их активности (увеличение содержания в крови свободных аминокислот). Следствием нарушения окислительного дезаминирования аминокислот будет ослабление мочевинообразования, увеличение концентрации аминокислот и увеличение выведения их с мочой - аминоацидурия.

Межуточный обмен ряда аминокислот совершается не только в форме переаминирования и окислительного дезаминирования, но и путем их декарбоксилирования (потеря CO2 из карбоксильной группы) с образованием соответствующих аминов, получивших название "биогенные амины". Так, при декарбоксилировании гистидина образуется гистамин, тирозина - тирамин, 5-гидрокситриптофана - серотин и т.д. Все эти амины биологически активны и оказывают выраженное фармакологическое действие на сосуды.

Изменение скорости распада белка. Значительное увеличение скорости распада белков тканей и крови наблюдается при повышении температуры организма, обширных воспалительных процессах, тяжелых травмах, гипоксии, злокачественных опухолях и т.д., что связано либо с действием бактериальных токсинов (в случае инфицирования), либо со значительным увеличением активности протеолитических ферментов крови (при гипоксии), либо токсическим действием продуктов распада тканей (при травмах). В большинстве случаев ускорение распада белков сопровождается развитием в организме отрицательного азотистого баланса в связи с преобладанием процессов распада белков над их биосинтезом.

Патология конечного этапа белкового обмена. Основными конечными продуктами белкового обмена являются аммиак и мочевина. Патология конечного этапа белкового обмена может проявляться нарушением образования конечных продуктов, либо нарушением их выведения.

Основным механизмом связывания аммиака является процесс образования мочевины в цитруллин-аргининорнитиновом цикле. Нарушения образования мочевины могут наступить в результате снижения активности ферментных систем, участвующих в этом процессе (гепатиты, цирроз печени), общей белковой недостаточности. При нарушении мочевинообразования в крови и тканях накапливается аммиак и увеличивается концентрация свободных аминокислот, что сопровождается развитием гиперазотемии. При тяжелых формах гепатитов и цирроза печени, когда резко нарушена ее мочевинообразовательная функция, развивается выраженная аммиачная интоксикация (нарушение функций центральной нервной системы).

В других органах и тканях (мышцы, нервная ткань) аммиак связывается в реакции амидирования с присоединением к карбоксильной группе свободных дикарбоновых аминокислот. Главным субстратом служит глутаминовая кислота.

Другим конечным продуктом белкового обмена, образующимся при окислении креатина (азотистое вещество мышц) является креатинин. При голодании, авитаминозе E, лихорадочных инфекционных заболеваниях, тиреотоксикозе и ряде других заболеваний, креатинурия свидетельствует о нарушении креатинового обмена.

При нарушении выделительной функции почек (нефриты) происходит задержка мочевины и других азотистых продуктов в крови. Остаточный азот увеличивается - развивается гиперазотемия. Крайней степенью нарушения экскреции азотистых метаболитов является уремия.

При одновременном поражении печени и почек возникает нарушение образования и выделения конечных продуктов белкового обмена.

В педиатрической практике особое значение принадлежит наследственным аминоацидопатиям, список которых на сегодня насчитывает около 60 различных нозологических форм. По типу наследования почти все они относятся к аутосомно-рецессивным. Патогенез обусловлен недостаточностью того или иного фермента, осуществляющего катаболизм и анаболизм аминокислот. Общим биохимическим признаком аминоацидопатий служит ацидоз тканей и аминоацидурия. Наиболее частыми наследственными дефектами обмена являются четыре энзимопатии, которые связаны друг с другом общим путем метаболизма аминокислот: фенилкетонурия, тирозинемия, альбинизм, алькаптонурия.

Углеводы составляют обязательную и большую часть пищи человека (около 500 г/сут). Углеводы - наиболее легко мобилизируемый и утилизируемый материал. Они депонируются в виде гликогена, жира. В ходе углеводного обмена образуется НАДФ·H2. Особую роль углеводы играют в энергетике центральной нервной системы, так как глюкоза является единственным источником энергии для мозга.

Расстройство обмена углеводов может быть обусловлено нарушением их переваривания и всасывания в пищеварительном тракте. Экзогенные углеводы поступают в организм в виде поли-, ди - и моносахаридов. Их расщепление в основном происходит в двенадцатиперстной кишке и тонком кишечнике, соки которых содержат активные амилолитические ферменты (амилазу, мальтазу, сахаразу, лактазу, инвертазу и др.). Углеводы расщепляются до моносахаридов и всасываются. Если продукция амилолитических ферментов недостаточна, то поступающие с пищей ди - и полисахариды не расщепляются до моносахаридов и не всасываются. Всасывание глюкозы страдает при нарушении ее фосфорилирования в кишечной стенке. В основе данного нарушения лежит недостаточность фермента гексокиназы, развивающаяся при тяжелых воспалительных процессах в кишечнике, при отравлении монойодацетатом, флоридзином. Нефосфорилированная глюкоза не проходит через кишечную стенку и не усваивается. Может развиться углеводное голодание.

Нарушение синтеза и расщепления гликогена. Патологическое усиление распада гликогена происходит при сильном возбуждении ЦНС, при повышении активности гормонов, стимулирующих гликогенолиз (СТГ, адреналин, глюкагон, тироксин). Повышение распада гликогена при одновременном увеличении потребления мышцами глюкозы происходит при тяжелой мышечной нагрузке. Синтез гликогена может изменяться в сторону снижения или патологического усиления.

Снижение синтеза гликогена происходит при тяжелом поражении печеночных клеток (гепатиты, отравление печеночными ядами), когда нарушается их гликогенообразовательная функция. Синтез гликогена снижается при гипоксии, так как в условиях гипоксии уменьшается образование АТФ, необходимой для синтеза гликогена.

Гипергликемия - повышение уровня сахара в крови выше нормального. Может развиваться в физиологических условиях; при этом имеет приспособительное значение, так как обеспечивает доставку тканям энергетического материала. В зависимости от этиологического фактора различают следующие типы гипергликемии.

Алиментарная гипергликемия, развивающаяся после приема большого количества легко усвояемых углеводов (сахар, конфеты, мучные изделия и др.).

Нейрогенная (эмоциональная) гипергликемия - при эмоциональном возбуждении, стрессе, боли, эфирном наркозе.

Гормональные гипергликемии сопровождают нарушения функций эндокринных желез, гормоны которых участвуют в регуляции углеводного обмена.

Гипергликемия при недостаточности гормона инсулина является наиболее выраженной и стойкой. Она может быть панкреатической (абсолютной) и внепанкреатической (относительной).

Панкреатическая недостаточность инсулина развивается при разрушении или повреждении инсулярного аппарата поджелудочной железы. Частой причиной является местная гипоксия островков Лангерганса при атеросклерозе, спазме сосудов. При этом нарушается образование в инсулине дисульфидных связей и инсулин теряет активность - не оказывает гипогликемического эффекта.

К инсулиновой недостаточности может привести разрушение поджелудочной железы опухолями, повреждение ее инфекционным процессом (туберкулез, сифилис). Образование инсулина может нарушиться при панкреатитах - острых воспалительно-дегенеративных процессах в поджелудочной железе.

Инсулярный аппарат перенапрягается и может истощиться при излишнем и частом употреблении в пищу легкоусвояемых углеводов (сахар, конфеты), при переедании, что ведет к алиментарной гипергликемии.

Ряд лекарственных препаратов (группы тиазидов, кортикостероиды и др.) могут вызывать нарушения толерантности к глюкозе, а у предрасположенных к диабету лиц явиться пусковым фактором в развитии данного заболевания.

Внепанкреатическая недостаточность инсулина. Ее причиной может послужить избыточная связь инсулина с переносящими белками крови. Инсулин, связанный с белком, активен лишь в отношении жировой ткани. Он обеспечивает переход глюкозы в жир, тормозит липолиз. При этом развивается так называемый диабет тучных.

При сахарном диабете нарушаются все виды обмена веществ.

Нарушения углеводного обмена определяют характерный симптом диабета - стойкую выраженную гипергликемию. Ее обусловливают следующие особенности углеводного обмена при сахарном диабете: понижение прохождения глюкозы через клеточные мембраны и ассимиляции ее тканями; замедление синтеза гликогена и ускорение его распада; усиление глюконеогенеза - образование глюкозы из лактата, пирувата, аминокислот и других продуктов неуглеводного обмена; торможение перехода глюкозы в жир.

Значение гипергликемии в патогенезе сахарного диабета двояко. Она играет определенную адаптивную роль, так как при ней тормозится распад гликогена и отчасти увеличивается его синтез. Глюкоза легче проникает в ткани, и они не испытывают резкого недостатка углеводов. Гипергликемия имеет и отрицательное значение. При ней резко повышается поступление глюкозы в клетки инсулиннезависимых тканей (хрусталик, клетки печени, бета-клетки островков Лангерганса, нервная ткань, эритроциты, стенка аорты). Избыточная глюкоза не подвергается фосфорилированию, а превращается в сорбитол и фруктозу. Это осмотически активные вещества, нарушающие обмен в данных тканях и вызывающие их повреждение. При гипергликемии повышается концентрация глюко - и мукопротеидов, которые легко выпадают в соединительной ткани, способствую образованию гиалина.

При гипергликемии, превышающей 8 моль/л, глюкоза начинает переходить в окончательную мочу - развивается глюкозурия. Это проявление декомпенсации углеводного обмена.

При сахарном диабете процессы фосфорилирования и дефосфорилирования глюкозы в канальцах не справляются с избытком глюкозы в первичной моче. Кроме того, при диабете снижена активность гексокиназы, поэтому почечный порог для глюкозы снижается по сравнению с нормальным. Развивается глюкозурия. При тяжелых формах сахарного диабета содержание сахара в моче может достигать 8-10%. Осмотическое давление мочи при этом повышается, в связи с чем в окончательную мочу переходит много воды. За сутки выделяется 5-10 л и более мочи (полиурия) с высокой относительной плотностью за счет сахара. В результате полиурии развивается обезвоживание организма, и как следствие его - усиленная жажда (полидипсия).

При очень высоком уровне сахара в крови (30-50 моль/л и выше) резко возрастает осмотическое давление крови. В результате происходит обезвоживание организма. Может развиться гиперосмолярная кома. Состояние больных при ней крайне тяжелое. Сознание отсутствует. Резко выражены признаки обезвоживания тканей (мягкие при пальпации глазные яблоки). При очень высокой гипергликемии уровень кетоновых тел близок к норме. В результате обезвоживания происходит повреждение почек, нарушается их функция вплоть до развития почечной недостаточности.

Патологические изменения в обмене жиров могут возникать на различных его этапах: при нарушении процессов переваривания и всасывания жиров; при нарушении транспорта жира и перехода его в ткани; при нарушении окисления жиров в тканях; при нарушении промежуточного жирового обмена; при нарушении обмена жира в жировой ткани (избыточное или недостаточное его образование и отложение).

Нарушение процесса переваривания и всасывания жиров наблюдается:

1. при недостатке панкреатической липазы,

2. при дефиците желчных кислот (воспаление желчного пузыря, закупорка желчного протока, заболевания печени). Нарушается эмульгирование жира, активация панкреатической липазы и образование наружной оболочки смешанных мицелл, в составе которых высшие жирные кислоты и моноглицериды переносятся с места гидролиза жиров к всасывающей поверхности кишечного эпителия;

3. при усиленной перистальтике тонкого кишечника и поражениях эпителия тонких кишок инфекционными и токсическими агентами

4. при избытке в пище ионов кальция и магния, когда образуются нерастворимые в воде соли желчных кислот - мыла;

5. при авитаминозах A и B, недостатке холина, а также при нарушении процесса фосфорилирования (тормозится всасывание жира).

Как следствие нарушения всасывания жира развивается стеаторея (кал содержит много высших жирных кислот и нерасщепленного жира). Вместе с жиром теряется и кальций.

Жировая инфильтрация и жировая дистрофия.

Если поступающий в клетки жир не расщепляется, не окисляется, не выводится из нее, это свидетельствует о жировой инфильтрации. Если она сочетается с нарушением протоплазматической структуры и ее белкового компонента, то говорят о жировой дистрофии. Общей причиной жировой инфильтрации и жировой дистрофии считают подавление активности окислительных и гидролитических ферментов жирового обмена (при отравлении мышьяком, хлороформом, при авитаминозах и т.д.).

Жировая инфильтрация развивается при:

1) алиментарной и транспортной гиперлипемии;

2) нарушении образования фосфолипидов;

3) избытке холестерина.

Нарушение промежуточного жирового обмена приводит к кетозу, который проявляется в повышении уровня кетоновых тел в крови (кетонемия) и выделении их в повышенном количестве с мочой (кетонурия).

Причины кетоза:

1) дефицит углеводов в организме;

2) стресс, при котором вследствие активации симпатической системы происходит истощение углеводных резервов организма;

3) при поражениях печени токсикоинфекционными факторами нарушается ее способность синтезировать и откладывать гликоген, происходит усиление поступления в печень НЭЖК и развитие кетоза;

4) дефицит витамина E, замедляющего окисление высших жирных кислот;

5) подавление окисления кетоновых тел в цикле Кребса;

6) нарушение ресинтеза кетоновых тел в высшие жирные кислоты при недостатке источников водорода.

Резко выраженный кетоз приводит к интоксикации организма (ЦНС), нарушается электролитный баланс из-за потери натрия с мочой (натрий образует соли с ацетоуксусной и в-оксимасляной кислотами), развивается ацидоз; уменьшение содержания натрия в крови может вызвать вторичный альдостеронизм. Все это характеризует диабетическую кому.

Нарушение обмена жиров в жировой ткани. Ожирение - это наклонность организма к чрезмерному увеличению массы тела под влиянием определенных условий. При этом масса тела увеличивается вследствие ненормальной аккумуляции жира в депо.

По этиологии ожирение бывает трех видов: алиментарное, гормональное, церебральное. Существенна роль наследственности в патогенезе ожирения. Ожирение развивается в результате следующих трех основных патогенетических факторов:

1) повышенного поступления пищи (углеводы, жиры) при несоответствующему этому поступлению энергетическом расходовании жира;

2) недостаточного использования (мобилизации) жира депо как источника энергии;

3) избыточного образования жира из углеводов.

Последствия ожирения:

1) нарушение толерантности к глюкозе,

2) гиперлипемия за счет ТГ и холестерина, чаще пре-в-липопротеидемия,

3) гиперинсулинемия,

4) увеличение экскреции глюкокортикоидов с мочой, в отличие от больных с синдромом Кушинга соотношение экскреции глюкокортикоидов и креатинина остается у ожиревших нормальным,

5) после физической нагрузки, во время сна, после введения аргинина наблюдаются меньшие колебания концентрации СТГ в плазме,

6) понижение чувствительности к инсулину увеличенных адипоцитов и мускулатуры,

7) увеличение содержания НЭЖК в крови - повышенное потребление их мускулатурой,

8) гипертрофированные липоциты сильнее реагируют на норадреналин и другие липолитические вещества.

У больных с ожирением часто развиваются сердечно-сосудистые заболевания, гипертензия, желчно-каменная болезнь (желчь при ожирении оказывается литогенной, т.е. содержит мало детергентов, растворяющих эфиры холестерина). Тучные люди плохо переносят наркоз и оперативные вмешательства. Как послеоперационное осложнение часто возникает тромбоэмболия. Одним из грозных осложнений ожирения является сахарный диабет. При ожирении увеличена вероятность цирроза печени, женщины, страдающие ожирением, чаще заболевают раком эндометрия, т.к. их жировая ткань обладает большей способностью метаболизировать андростендион в эстрон. При ожирении наблюдается одышка, т.к. массивные подкожно-жировые отложения ограничивают движения грудной клетки, скопление жира в брюшной полости препятствует опусканию диафрагмы. Увеличена потребность в кислороде, но затруднен газообмен, относительная легочная недостаточность усиливается, развивается частое поверхностное дыхание.

Избыточное кормление ребенка в течение первого года жизни способствует развитию гиперпластического (многоклеточного) ожирения (ненормальное увеличение числа жировых клеток). Это ожирение имеет плохой прогноз в отношении редукции массы тела. Оно постоянно сочетается с гипертрофией и наблюдается при ожирении высокой степени. Ожирение, развивающееся в старшем детском возрасте - гипертрофическое (увеличение объема жировых клеток). Оно, как правило, является результатом переедания.

При нормальной (соответственно энергетическим тратам) функции пищевого центра причиной ожирения может быть недостаточное использование жира из жировых депо в качестве источника энергии. Это может иметь место при снижении тонуса симпатической и повышении тонуса парасимпатической нервной системы, при тормозящем влиянии коры головного мозга на центры симпатического отдела диэнцефальной области. В нервных веточках жировой ткани обнаруживаются явления интерстициального неврита.

Поскольку процессы мобилизации жира из депо находятся под контролем гормональных и гуморальных факторов, то нарушение продукции этих факторов приводит к ограничению использования жира. Это наблюдается при недостаточности щитовидной железы и гипофиза.

Повышенная секреция глюкокортикоидов вызывает гипергликемию за счет усиления глюконеогенеза. Увеличение концентрации глюкозы в крови уменьшает выход жира из депо и увеличивает поглощение НЭЖК и ХМ жировой тканью.

Основное действие инсулина:

на углеводный обмен - активирует гликогенсинтетазу (способствует синтезу гликогена), активирует гексокиназу, тормозит глюконеогенез, способствует транспорту глюкозы через мембрану клеток;

на жировой обмен - угнетает липолиз в жировых депо, активирует переход углеводов в жир, тормозит образование кетоновых тел, стимулирует расщепление кетоновых тел в печени;

на белковый обмен - усиливает транспорт аминокислот в клетку, обеспечивает энергией синтез белка, тормозит окисление аминокислот, тормозит распад белка;

на водно-солевой обмен - усиливает поглощение печенью и мышцами калия, обеспечивает реабсорбцию натрия в канальцах почек, способствует задержке воды в организме.

Недостаточность инсулина лежит в основе заболевания сахарным диабетом.

Нарушения жирового обмена. При инсулиновой недостаточности уменьшено поступление глюкозы в жировую ткань и образование жира из углеводов. Снижен ресинтез триглицеридов из жирных кислот.

Накопление кетоновых тел при сахарном диабете происходит в связи с повышенным переходом жирных кислот из депо в печень и ускоренным окислением их до кетоновых тел; задержкой ресинтеза жирных кислот из-за недостатка НАДФ; нарушением окисления жирных кислот в цикле Кребса.

При сахарном диабете концентрация кетоновых тел возрастает во много раз, они оказывают токсическое действие. Гиперкетонемия - это декомпенсация обменных нарушений при сахарном диабете. Кетоновые тела в высокой концентрации инактивируют инсулин, усугубляя явления инсулиновой недостаточности. Создается порочный круг. Наиболее высока концентрация ацетона. Он повреждает клетки, растворяя их структурные липиды. Кетоновые тела вызывают отравление клеток, подавление ферментов. Резко угнетается деятельность ЦНС.

При сахарном диабете нарушен холестериновый обмен. Избыток ацетоуксусной кислоты идет на образование холестерина - развивается гиперхолестеринемия.

Нарушения белкового обмена. Синтез белка при сахарном диабете снижен, так как выпадает или резко ослабляется стимулирующее влияние инсулина на ферментные системы этого синтеза; снижается уровень энергетического обмена, обеспечивающего синтез белка в печени; нарушается проведение аминокислот через клеточные мембраны. При дефиците инсулина снимается тормоз с ключевых ферментов глюконеогенеза и происходит интенсивное образование глюкозы из аминокислот и жира - аминокислоты расходуются на глюконеогенез.

Таким образом, при сахарном диабете распад белка преобладает над его синтезом. В результате этого подавляются пластические процессы, ухудшается заживление ран, снижается продукция антител, понижается устойчивость организма к инфекциям. У детей происходит замедление роста и развития. Происходят и качественные изменения синтеза белка. В крови появляются измененные, необычные белки - парапротеины. С ними связывают повреждение стенки сосудов (ангиопатии), в том числе и сосудов сетчатки глаза (ретинопатии).

Размещено на Allbest.ru

...

Подобные документы

  • Сущность, основные задачи, предмет изучения и методы патологической физиологии, ее значение и связь со смежными отраслями медицинской науки. Основные этапы развития патологической физиологии. Патологическая физиология в России и выдающиеся физиологи.

    реферат [20,5 K], добавлен 25.05.2010

  • Предмет, задачи и методы патологической физиологии. Реактивность организма: роль возраста в развитии патологии. Этиология и патогенез воспаления, лихорадки. Кровопотеря, гемотрансфузионный шок. Нервная и гуморальная регуляция в патологии дыхания.

    контрольная работа [60,3 K], добавлен 12.09.2011

  • Физиология водно-солевого обмена. Электролитный состав организма. Факторы, влияющие на перемещение внеклеточной воды в нем. Нарушение электролитного баланса. Клиническая картина внеклеточной дегидратации. Соотношение растворов для инфузионной терапии.

    презентация [2,1 M], добавлен 05.02.2017

  • Основные формы нарушений водно-солевого обмена. Симптомы дефицита воды. Осмотические и ионные константы. Регуляция выведения воды и электролитов. Патология продукции альдостерона. Клинические проявления гиперосмолярного обезвоживания, принципы терапии.

    презентация [5,5 M], добавлен 20.12.2015

  • Понятие о болезни и периоды ее протекания. Причины и условия, механизм возникновения и развития патологического процесса. Реактивность и резистентность организма. Классификация иммунитета. Виды и проявления аллергии. Роль наследственности в патологии.

    курсовая работа [38,0 K], добавлен 10.05.2012

  • Изменением в распределении жидкости между внеклеточными и внутриклеточными секторами. Суточный диурез. Суточная потребность в воде. Регуляция почками водно-солевого обмена. Регуляция осмотического давления крови.

    лекция [4,7 K], добавлен 25.02.2002

  • Общая характеристика аллергии - патологической формы иммуногенной реактивности. Причины аллергических реакций. Стадия клинических проявлений. Перечень лекарственных растений, применяемых при аллергии: череды, шлемника, солодки, багульника, зверобоя.

    дипломная работа [1,7 M], добавлен 02.10.2014

  • Схема основных видов реактивности. Примеры биологической реактивности. Особенности индивидуальной реактивности. Возрастные изменения реактивности. Сущность патологической, болезненно измененной реактивности. Характеристика механизмов реактивности.

    реферат [16,6 K], добавлен 30.05.2010

  • Патологическая наследственность. Передача наследственных признаков. Хромосомные болезни. Наследственные болезни обмена веществ, нарушения иммунитета, с преимущественным поражением эндокринной системы, функций почек, нервной системы, крови. Профилактика.

    реферат [18,2 K], добавлен 03.09.2008

  • Сущность, основные задачи, предмет изучения и методы патологической анатомии. Возможности современной патологогистологической техники. Основные этапы развития патологической анатомии. Патологическая анатомия в России и СССР, выдающиеся патологоанатомы.

    реферат [21,2 K], добавлен 25.05.2010

  • Формы связи и взаимодействия организма с внешней средой в условиях нормы и патологии. Формы и показатели реактивности, ее показатели. Наследственные и приобретенные свойства организма. Основные формы и виды групповой реактивности. Учение И.М. Павлова.

    реферат [31,2 K], добавлен 30.08.2011

  • Особенности реактивности детского возраста. Резистентность организма, определение, виды. Формы ответной реакции организма на раздражитель. Виды реактивности, характеристика. Роль пола, конституции в реактивности. Болезни пожилого и старческого возраста.

    лекция [8,7 M], добавлен 29.10.2014

  • Патогенез железорефрактерной анемии, классификация лейкопений. Формирование "легочного сердца". Роль почек в реакциях компенсации нарушений кислотно-щелочного равновесия. Изменения в общем анализе крови при уремии. Этиология ишемической болезни сердца.

    контрольная работа [67,8 K], добавлен 12.12.2009

  • Холера - острая кишечная антропонозная инфекция, характеризующаяся поражением желудочно-кишечного тракта, нарушением водно-солевого обмена, обезвоживанием организма. Этиология заболевания. Эпидемиология, патогенез, клиническая картина. Диагностика холеры.

    презентация [1,2 M], добавлен 28.06.2013

  • Воспалительные заболевания околоносовых пазух. Понятия фронтитов, гайморитов, сфеноидитов. Хронический синусит, формируемый вследствие изменения реактивности организма, снижения иммунитета, а также аллергии. Физиотерапевтические методы, йоготерапия.

    доклад [18,3 K], добавлен 09.03.2011

  • Предмет, задачи возрастной физиологии и ее связь с другими науками. Общебиологические закономерности индивидуального развития. Возрастные особенности нервной системы и высшей нервной деятельности. Развитие сенсорных систем в онтогенезе.

    курс лекций [107,4 K], добавлен 06.04.2007

  • Физиология и нарушение водно-электролитного обмена как патология у тяжелобольных. Состав и структура внутриклеточного пространства. Группы, классификация и дифференциальная диагностика дисгидрии. Развитие, степени и признаки изотонической дегидратации.

    реферат [23,3 K], добавлен 28.09.2009

  • Объект, методы и основоположники патологической физиологии. Механизмы регуляции регионарного кровообращения и формы их нарушения. Расстройства в системе микроциркуляции. Виды кровотечений и клиника острой кровопотери. Формы эмболии и инфаркта миокарда.

    курсовая работа [40,6 K], добавлен 01.07.2010

  • Поддержание кислотно-щелочного равновесия. Дефицит меди в организме человека и развитие микроцитарной анемии и лейкопении. Железодефицитная гипохромная микроцитарная анемия. Нарушения обмена магния. Значительное уменьшение содержания в организме магния.

    реферат [22,3 K], добавлен 27.09.2011

  • Составные части и типы нефронов. Удаление из организма конечных продуктов обмена. Регуляция водно-солевого обмена и артериального давления. Фильтрация в почках и строение канальцевой системы почек. Мезангиальные клетки и капсула Шумлянского-Боумена.

    презентация [1,6 M], добавлен 02.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.