Молекулярные механизмы апоптоза при окислительном стрессе

Усиление программированной гибели мононуклеарных лейкоцитов крови в условиях окислительного стресса. Редокс-чувствительные элементы внутриклеточной сигнальной трансдукции. Изменение баланса белков-регуляторов апоптоза в мононуклеарных лейкоцитах.

Рубрика Медицина
Вид автореферат
Язык русский
Дата добавления 08.01.2018
Размер файла 676,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

На правах рукописи

молекулярные механизмы апоптоза при окислительном стрессе

14.00.16 - патологическая физиология

03.00.25 - гистология, цитология, клеточная биология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени доктора медицинских наук

Часовских Наталия Юрьевна

Томск - 2009

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Сибирский государственный медицинский университет Федерального агентства по здравоохранению и социальному развитию»

Научные консультанты:

доктор медицинских наук,

профессор

Рязанцева Наталья Владимировна

доктор медицинских наук,

профессор, академик РАМН,

заслуженный деятель науки РФ

Новицкий Вячеслав Викторович

Официальные оппоненты:

доктор медицинских наук, профессор,

член-корреспондент РАМН

Лишманов Юрий Борисович

доктор медицинских наук,

профессор, академик РАМН,

заслуженный деятель науки РФ

Шкурупий Вячеслав Алексеевич

доктор медицинских наук

Масная Наталья Владимировна

Ведущая организация: ГУ НИИ физиологии СО РАМН

Защита состоится «_____» _________ 2009 г. в ____ часов на заседании диссертационного совета Д 001.031.01 при Учреждении Российской академии медицинских наук НИИ фармакологии СО РАМН (634028, Томск, пр. Ленина, 3)

С диссертацией можно ознакомиться в библиотеке Учреждения Российской академии медицинских наук НИИ фармакологии СО РАМН

Автореферат разослан «_____» ___________ 2009 г.

Ученый секретарь

диссертационного совета,

доктор биологических наук Амосова Е.Н.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования

На современном этапе развития зарубежной и отечественной медико-биологической науки накоплен большой объем знаний о механизмах повреждения и адаптации клеточных систем при патологических процессах разного генеза. В центре внимания исследователей находятся ключевые механизмы регуляции апоптоза, который представляет собой активную форму клеточной гибели и является физиологическим механизмом устранения избыточных и/или функционально аномальных клеток. Известно, что развитие различных болезней (злокачественные новообразования, сердечно-сосудистые, нейродегенеративные, острые и хронические воспалительные процессы, сахарный диабет и др.) связано с нарушениями механизмов реализации апоптоза, приводящими к его излишнему активированию или ингибированию [Bredesen D.E., 2000; Меньщикова Е.Б. и соавт., 2006]. Наряду с этим важным звеном патогенеза данных заболеваний является дисбаланс окислительного метаболизма [Зенков Н.К. и соавт., 2001].

Развитие окислительного стресса при ряде патологий обусловлено резкой интенсификацией процессов свободно-радикального окисления и/или снижением резерва антиоксидантной защиты, что приводит к значительному накоплению активных форм кислорода (АФК) [Скулачев В.П., 1996]. Последние вызывают окислительную модификацию белковых и липидных молекул, повреждение ДНК, нарушение структуры мембран и др. [Дубинина Е.Е., 2001; Zhu H. et al., 2001; Mathers J. et al., 2004]. Вместе с тем известно, что АФК являются внутриклеточными мессенджерами, участвующими в регуляции различных клеточных процессов, в частности - апоптоза [Safa O., 2001; Sorescu D., 2001; Октябрьский О.Н., Смирнова Г.В., 2007].

Влияние АФК на про- и антиапоптотические мишени и механизмы осуществляется непосредственно или через внутриклеточные редокс-зависимые сигнал-передающие системы [Меньщикова Е.Б. и соавт., 2006]. При этом в клетке может происходить одновременная активация нескольких молекулярных путей, взаимодействующих между собой [Wajant H., 2002; Schultz D.R., Harrington W.G., 2003].

Индуцирующие апоптоз сигналы стимулируют множество киназ, включая митоген-активируемые протеинкиназы JNK и р38. Последние воздействуют на белки-мишени, связанные с функционированием факторов транскрипции и регуляцией программированной клеточной гибели: р53, NF-кB, АР-1 и др. [Gallo K.A., Johnson G.L., 2002; Меньщикова Е.Б. и соавт., 2006]. Под контролем редокс-чувствительных транскрипционных факторов находится синтез белков семейства Bcl-2, являющихся ключевыми регуляторами апоптоза. В частности, р53 активирует экспрессию Bid, PUMA и Noxa [Oda E. et al., 2001; Sax J.K. et al., 2002], NF-кB управляет генами, кодирующими белки Bcl-XL, IAP, A1, отвечающие за угнетение процесса апоптоза [Kucharczak J. et al., 2003]. Вместе с тем ряд исследований свидетельствуют о проявлениях редокс-чувствительными элементами сигнальной трансдукции как про-, так и антиапоптотической активности [Perkins N.D., 2004; Harada C., Nakamura K., 2006], зависящей от особенностей индуцирующих сигналов, комбинации возможных путей их передачи и типа клеток.

Данное обстоятельство затрудняет возможность идентификации механизмов развития заболеваний, сопровождающихся развитием окислительного стресса и сопряженных с дизрегуляцией летальной программы клеток. Необходимость разработки и внедрения селективных технологий управления апоптозом ставит перед фундаментальной наукой задачу идентификации редокс-чувствительных молекулярных мишеней и обосновывает целесообразность проведения комплексного исследования фундаментальных механизмов нарушения программированной гибели клеток в условиях окислительного стресса.

Цель исследования: установить редокс-чувствительные молекулярные механизмы апоптоза мононуклеарных лейкоцитов крови в условиях окислительного стресса.

Для достижения поставленной цели были сформулированы следующие задачи исследования:

1. Установить особенности реализации программированной гибели мононуклеарных лейкоцитов, состояния рецепторного и митохондрий-опосредованного путей инициации апоптоза при окислительном стрессе.

2. Оценить характер изменений МАР-киназных элементов (JNK, р38) системы сигнальной трансдукции в мононуклеарных клетках крови с использованием селективных ингибиторов (SP600125, ML3403) in vitro при окислительном стрессе.

3. Оценить роль транскрипционных факторов NF-кB и р53 в механизмах регуляции апоптоза мононуклеарных лейкоцитов при дисбалансе окислительного метаболизма.

4. Выявить особенности экспрессии мРНК и оценить содержание белков семейства Bcl-2 с про- и антиапоптотической активностью при окислительном стрессе.

5. Установить общие закономерности и особенности дизрегуляции программированной гибели мононуклеарных лейкоцитов в условиях окислительного стресса in vitro и при остром воспалительном процессе, сопровождающемся нарушением окислительного метаболизма.

Научная новизна

Впервые с помощью современных молекулярно-биологических методов проведено исследование редокс-чувствительных молекулярных механизмов реализации программированной гибели мононуклеарных лейкоцитов крови в условиях окислительного стресса in vitro и при остром воспалении.

Впервые при культивировании in vitro мононуклеарных лейкоцитов крови с 1 мМ Н2О2 показано, что нарастание продукции активных форм кислорода в клетках сопровождается увеличением содержания апоптотически измененных мононуклеарных лейкоцитов, опосредованным активацией митохондриального и повышенной готовностью клеток к TNFб-рецепторному пути инициации апоптоза. Установлено, что в условиях дисбаланса окислительного метаболизма усиливается фосфорилирование редокс-чувствительных JNK и p38 МАР-киназ, являющихся важным элементом системы сигнальной трансдукции апоптогенных сигналов. Впервые в эксперименте с использованием селективных ингибиторов МАР-киназ показано, что JNK влияет на продукцию IL-8, но не участвует (также как р38) в регуляции синтеза IL-10 в условиях дисбаланса окислительного метаболизма. Факторы транскрипции NF-кB и p53 через механизмы фосфорилирования МАР-киназами и/или непосредственного действия АФК влияют на экспрессию генов, кодирующих белки-регуляторы апоптоза (увеличение экспрессии проапоптотического протеина Вах и антиапоптотичекого Bcl-XL). Получены приоритетные данные об изменении содержания про- и антиапоптотических белков семейства Bcl-2 в мононуклеарных клетках крови при экспериментальном окислительном стрессе. Изменение соотношения ключевых белков-регуляторов апоптоза семейства Bcl-2 сопряжено с последовательной активацией редокс-чувствительных элементов сигнальной трансдукции (МАР-киназ и факторов транскрипции). Установлены однотипные молекулярные механизмы дизрегуляции программированной гибели мононуклеарных лейкоцитов крови при экспериментальном окислительном стрессе, индуцированном 1 мМ перекисью водорода, и остром воспалительном процессе. Выявлено, что редокс-чувствительные элементы внутриклеточных сигналпередающих систем являются мишенями для терапевтической коррекции нарушений апоптотической программы клеток.

Теоретическая и практическая значимость

Результаты проведенного исследования расширяют существующие представления о фундаментальных механизмах дизрегуляции апоптоза мононуклеарных лейкоцитов в условиях окислительного стресса. Установлена роль редокс-чувствительных МАР-киназ p38, JNK и факторов транскрипции р53, NF-kB в изменении баланса про- и антиапоптотических белков семейства Bcl-2. Полученные знания носят фундаментальный характер и могут служить основой для разработки молекулярной технологии воздействия на оксидант-опосредованную модуляцию активности ключевых регуляторов апоптоза. Идентифицированные в ходе исследования редокс-чувствительные молекулярные мишени могут быть использованы в разработке подходов селективного управления апоптозом клеток при патологических процессах, патогенез которых сопряжен с развитием окислительного стресса, а также с нарушением реализации летальной программы клеток.

Положения, выносимые на защиту

1. Усиление программированной гибели мононуклеарных лейкоцитов крови в условиях окислительного стресса сопряжено с активацией митохондрий-опосредованного и повышенной готовностью клеток к TNFб-рецепторному пути инициации апоптоза.

2. В реализацию летальной программы мононуклеарных лейкоцитов при окислительном стрессе вовлечены редокс-чувствительные элементы внутриклеточной сигнальной трансдукции (МАР-киназы р38 и JNK, факторы транскрипции NF-kB и р53).

3. В изменении баланса ключевых белков-регуляторов апоптоза в мононуклеарных лейкоцитах при окислительном стрессе участвуют факторы транскрипции NF-kB и р53, контролирующие экспрессию соответствующих генов.

4. Дизрегуляция апоптоза представляет собой один из компонентов патогенетических изменений при воспалении, сопровождающемся дисбалансом окислительного метаболизма.

Апробация и внедрение результатов работы. Результаты проведенных исследований докладывались и обсуждались на Российском медицинском форуме с международным участием «Фундаментальная наука и практика» (Москва, 2006), 5-й научно-практической конференции с международным участием «Достижения фундаментальных наук в решении актуальных проблем медицины» (Астрахань, 2006), III Всероссийской научно-практической конференции «Фундаментальные аспекты компенсаторно-приспособительных процессов» (Новосибирск, 2007), межрегиональной научно-практической конференции «Актуальные проблемы медицины» (Абакан, 2007), научно-практической конференции «Актуальные вопросы клиники, диагностики и лечения» (Санкт-Петербург, 2007).

Исследования поддержаны Советом по грантам при Президенте РФ для поддержки ведущих научных школ РФ в рамках проекта «Молекулярные основы нарушения гомеостаза клеток при актуальных заболеваниях инфекционной и неинфекционной природы» (НШ-4153.2006.7), РФФИ - «Молекулярные механизмы управления программированной гибелью клеток с использованием регуляторных молекул» (№ 07-04-12150), «Разработка технологии селективного управления внутриклеточными редокс-зависимыми сигнальными системами» (№ 09-04-99026), а также выполнены в рамках ФЦНТП «Исследования и разработки по приоритетным направлениям развития науки и техники на 2002-2006 годы» (государственные контракты № 02.442.11.7276 от 20.02.2006, № 02.445.11.7419 от 09.06.2006), ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2012 годы» (государственные контракты № 02.512.12.0013 от 01.08.2008, № 02.512.11.2285 от 10.03.2009). Основные результаты диссертационного исследования включены в лекционный курс по патологической физиологии («Патофизиология клетки», «Типовые патологические процессы», «Роль апоптоза клетки в патологии») для студентов лечебного и педиатрического факультетов ГОУ ВПО СибГМУ Росздрава.

Публикации. По материалам диссертации опубликовано 25 работ, из них 8 - в центральных рецензируемых журналах, рекомендованных ВАК, одна монография в соавторстве.

Объем и структура работы. Диссертация изложена на 219 страницах машинописного текста и состоит из введения, 6 глав, заключения, выводов и списка литературы, включающего 471 источник, из них - 122 отечественных и 349 зарубежных авторов. Работа иллюстрирована 9 таблицами и 46 рисунками.

ХАРАКТЕРИСТИКА ЭКСПЕРИМЕНТАЛЬНОГО И КЛИНИЧЕСКОГО МАТЕРИАЛА И МЕТОДЫ ИССЛЕДОВАНИЯ

лейкоцит окислительный стресс мононуклеарный

Регуляцию апоптоза при окислительном стрессе мы рассматривали с позиции существования типовых неспецифических механизмов изменения летальной программы клеток. Для того чтобы понять особенности влияния окислительного стресса на реализацию апоптоза, проводимое нами исследование (в соответствии с поставленными целью и задачами) было разделено на два последовательных этапа.

На первом этапе исследования предстояло выяснить, приводит ли дисбаланс окислительного метаболизма к нарушению реализации летальной программы клеток. Для этого проводили оценку выраженности апоптоза мононуклеарных лейкоцитов крови в условиях оксилительного стресса, состояния ключевых путей инициации программированной гибели клеток (рецепторный, митохондрий-опосредованный, ядерный).

На втором этапе исследования предполагалось проверить гипотезу о вовлечении редокс-чувствительных элементов сигнальной трансдукции в механизмы нарушения летальной программы клеток при окислительном стрессе. Для определения роли митоген-активированных протеинкиназ р38 и JNK в регуляции апоптоза клеток при окислительном стрессе использовали селективные ингибиторы МАР-киназ (ML3403 и SP600125), определяли наличие общих и фосфорилированных форм МАР-киназ, транскрипционных факторов р53 и NF-kB, фосфорилированного р53. Для определения участия протеинов семейства Bcl-2 в регуляции апоптоза измеряли внутриклеточное содержание про- (Вах, Bad) и антиапоптотических (Вcl-2, Bcl-XL) представителей данного семейства белков (табл. 1). Затем оценивали экспрессию генов белков-регуляторов апоптоза, находящихся под транскрипционным контролем р53 и NF-kB.

Для верификации молекулярных мишеней, ответственных за редокс-зависимую модуляцию апоптоза мононуклеарных лейкоцитов крови, проводилось манипулирование in vitro мононуклеарными лейкоцитами крови, полученными у здоровых доноров и больных острыми воспалительными заболеваниями.

В исследование были включены 46 здоровых доноров в возрасте от 18 до 50 лет (мужчины - 20, женщины - 26) и 49 больных (25 мужчин и 24 женщины в возрасте от 18 до 50 лет, средний возраст - 32±3 лет) с острыми воспалительными заболеваниями (внебольничная пневмония, острый аппендицит). Критериями исключения из программы исследования для здоровых доноров и больных острыми воспалительными заболеваниями являлись: возраст моложе 18 и старше 50 лет; период обострения хронических воспалительных заболеваний; аутоиммунные, наследственные и психические болезни, злокачественные новообразования, алкогольная и наркотическая зависимости; отсутствие информированного согласия.

Пациенты были обследованы при госпитализации в терапевтическое и хирургическое отделения ММЛПУ Городская больница №1 (главный врач - С.М. Кирютенко), госпитальные клиники ГОУ ВПО СибГМУ Росздрава (главный врач - Заслуженный врач РФ, канд. мед. наук В.М. Шевелев), клиники Военно-медицинского института МОРФ (зав. кафедрой терапии и усовершенствования врачей - канд. мед. наук, доцент Т.С. Агеева).

Материалом для исследования служила венозная кровь, взятая утром натощак из локтевой вены в количестве 10 мл и стабилизированная гепарином (25 Ед/мл).

Исследование проводилось на базе Межкафедральной научно-образовательной лаборатории молекулярной медицины ГОУ ВПО СибГМУ Росздрава (руководители - д-р мед. наук, проф. Н.В. Рязанцева, акад. РАМН В.В. Новицкий), лаборатории фармакогеномики НИИ химической биологии и фундаментальной медицины СО РАН (г. Новосибирск) (зав. лабораторией - канд. мед. наук М.Л. Филипенко).

Мононуклеарные лейкоциты выделяли из крови путем центрифугирования на слое фиколла (“Pharmacia” Швеция) плотностью 1,077 и инкубировали в течение 18 ч при температуре 37єС в полной питательной среде. Для определения роли митоген-активированных протеинкиназ р38 и JNK в регуляции апоптоза мононуклеарных лейкоцитов при окислительном стрессе использовали селективные ингибиторы МАР-киназ (ML3403 и SP600125 («Biosource», США) соответственно). Для индукции окислительного стресса в клеточные культуры добавляли перекись водорода в различных концентрациях (10 мкм, 50 мкм, 100 мкм, 500 мкм и 1 мМ). Методом проточной лазерной цитофлуориметрии с использованием цитометра Epics XL («Beckman Coulter», Франция) оценивали уровень внутриклеточной продукции АФК, количество апоптотически измененных клеток, содержание мононуклеарных лейкоцитов со сниженным трансмембранным митохондриальным потенциалом и число TNFR1-презентирующих клеток. Оценку реализации апоптоза мононуклеарных лейкоцитов проводили с использованием ФИТЦ-меченного аннексина V («ANNEXIN V FITC» («Beckman Coulter», Франция)), обладающего сродством к мембранно-связанному фосфатидилсерину [Van Engeland M., 1998]. Для подтверждения наличия в исследуемой культуре клеток с апоптотическими изменениями применяли TUNEL-метод («Webstain», США).

Таблица 1

Распределение здоровых доноров и пациентов с острыми воспалительными заболеваниями, в соответствии с проведенными методами исследования

Методы исследования

Группы обследованных (условия эксперимента)

Здоровые доноры

Больные с острым воспалением

Интактные клетки

Культивирование клеток in vitro с 10, 50, 100, 500 мкМ, 1мМ и 5мМ Н2О2

Культивирование клеток in vitro с 1мМ Н2О2 и селективными ингибиторами p38 ML3403 и JNK SP600125

Культивирование клеток, полученных у больных с острыми воспалительными заболеваниями (внебольничная пневмония и острый аппендицит)

Культивирование клеток у больных с острыми воспалительными заболеваниями и селективными ингибиторами p38 ML3403 и JNK SP600125

1

2

3

4

5

6

Оценка апоптоза мононуклеарных лейкоцитов в аннексиновом тесте с использованием проточной лазерной цитофлуориметрии

34

82

Не опреде-ляли

49

Не опреде-ляли

Определение уровня АФК в клетках с использованием проточной лазерной цитофлуориметрии

34

82

68

49

98

Оценка уровня митохондриального трансмембранного потенциала с использованием проточной лазерной цитофлуориметрии

34

82

Не опреде-ляли

49

Не опреде-ляли

Определение количества TNFR1-презентирующих клеток с использованием проточной лазерной цитофлуориметрии

18

18

Не опреде-ляли

49

Не опреде-ляли

Определение содержания общих и фосфо-форм

МАР-киназ (JNK, p38) и фосфорилированного р53 методом вестерн-блоттинга

4

4

4

4

4

Исследование содержания факторов транскрипции (p53 и NF-kB) и белков-регуляторов апоптоза (Bad и Bcl-XL) с использованием метода вестерн-блоттинг

4

4

Не опреде-ляли

4

Не опреде-ляли

Исследование содержания белков-регуляторов апоптоза (Bax и Bcl-2) с использованием метода вестерн-блоттинг

4

4

4

4

4

Оценка экспрессии мРНК генов белков-регуляторов апоптоза (bad, bax, bcl-2, bcl-XL) с использованием метода ПЦР в реальном времени

12

12

Не опреде-ляли

7

Не опреде-ляли

Исследование содержания IL-8, IL-10 и TNFб в супернатантах культур мононуклеарных лейкоцитов методом иммуноферментного анализа

11

11

22

22

22

Определение количества апоптотически измененных клеток TUNEL-методом

Не опреде-ляли

Не опреде-ляли

Не опреде-ляли

10

Не опреде-ляли

Количество клеток со сниженным уровнем потенциала митохондриальных мембран (?ш) регистрировали с использованием набора реагентов «MitoScreen» («BD Pharmigen», США). Уровень активных форм кислорода в клетках оценивали с помощью красителя с заблокированной флуоресценцией - дихлорфлюоресцеина диацетата («Sigma», США). Содержание мононуклеарных лейкоцитов, презентирующих на своей поверхности мембранную форму рецептора к фактору некроза опухоли-б 1-го типа (TNF-RI), определяли с помощью стандартных моноклональных антител к TNF-RI, меченных ФИТЦ («Immunotech», Франция).

Продукцию мононуклеарными лейкоцитами TNFб оценивали с помощью иммуноферментного анализа по инструкции, предлагаемой фирмой-производителем тест-систем («Протеиновый контур», Россия). В супернатантах интактных, перекись-стимулированных и культивированных с ингибиторами МАР-киназ культур мононуклеарных лейкоцитов определяли содержание IL-8 и IL-10, используя метод иммуноферментного анализа в соответствии с инструкцией к набору («Biosurce», USA) на микропланшетном фотометре Multiscan EX («ThermoLabSistems», Финляндия). Концентрации TNFб, IL-8 и IL-10 вычисляли по калибровочной кривой.

Для определения содержания активных и неактивных форм МАР-киназ р38, JNK, транскрипционных факторов (NF-kB, p53 и фосфо-формы р53) и белков-регуляторов апоптоза (Bcl-2, Bcl-XL, Bax, Bad) был использован метод вестерн-блоттинга. Клеточные экстракты получали путем лизиса клеток. Белки разделяли по молекулярной массе под действием электрического поля в течение 60 мин при напряжении 120 В. Для последующего исследования белки переносили на нитроцеллюлозную мембрану («Bio-Rad», США). Перенос белков осуществлялся электрофоретически в течение 90 мин при силе тока 60 мА. Нитроцеллюлозные блоты инкубировали с первичными антителами к активным и общим формам МАР-киназ (JNK 1 и 2, р38, фосфо JNK 1 и 2, фосфо р38), факторам транскрипции (р53 («Biosource», США), NF-kB («Biosource», США)), к фосфо-форме р53 («Biosource», США) и белкам-регуляторам (Bax («Biosource», США), Bcl-XL («Sigma», США), Bad («Biosource», США), Bcl-2 («Biosource», США)) в разведении 1:200. В качестве стандарта и внутреннего контроля использовали белок глицеро-3-фосфат-дегидрогеназу («Chemicon», США).

Для количественного определения экспрессии РНК генов bcl-2, bax, bcl-XL и bad использовали метод полимеразной цепной реакции в режиме реального времени. Выделение РНК из мононуклеаров крови осуществляли с применением гуанидин изотиоционата с последующей фенол-хлороформной экстракцией [Chomczynski P., Sacchi N., 1987]. Оценку качества выделенного препарата РНК проводили по итогам электрофоретического разделения. Возможные примеси геномной ДНК удаляли при помощи переосаждения в 2,5 М LiCl. Следующим шагом синтезировали ДНК на матрице РНК при участии обратной транскриптазы. Полученный фрагмент ДНК амплифицировали методом полимеразной цепной реакции (ПЦР) в режиме реального времени с использованием SYBR Green I («Мolecular Probe», США) на амплификаторе IQ5 («Bio-Rad», США). Амплификацию проводили с использованием режима, предполагающего предварительную денатурацию образцов (95°С, 2 мин) с последующими сорока циклами, включающими денатурацию (95°С, 15 сек) и отжиг (60°С, 45 сек). Праймеры, позволяющие специфично амплифицировать фрагменты кДНК генов bcl-2, bcl-XL, bax и bad, были предоставлены лабораторией фармакогеномики НИИ химической биологии и фундаментальной медицины СО РАН (г. Новосибирск). Для определения относительного количества кДНК в образце использовали критерий ddCt.

При оценке полученных данных использовали методы статистического описания и проверки статистических гипотез [Лакин Г.Ф., 1980]. Для каждой выборки вычисляли средневыборочные характеристики: среднее арифметическое, среднее квадратичное отклонение, ошибка среднего или медиана, первый и третий квартили. Проверку нормальности распределения количественных показателей проводили с использованием критерия Колмогорова-Смирнова. При соответствии нормальному закону распределения признака в исследуемых выборках проверку гипотезы о равенстве средних выборочных величин проводили с использованием t-критерия Стъюдента. В случае отсутствия согласия данных с нормальным распределением для оценки различий между зависимыми выборками применяли непараметрический критерий Вилкоксона. Для оценки достоверности различий независимых выборок использовали ранговый критерий Манна-Уитни. Наличие связи между изученными показателями проводили с использованием корреляционного анализа по методу Спирмена. Различия считались достоверными при уровне значимости р<0,05 [Лакин Г.Ф., 1980; Гланц С., 1999].

ОСОБЕННОСТИ РЕАЛИЗАЦИИ АПОПТОЗА МОНОНУКЛЕАРНЫХ ЛЕЙКОЦИТОВ КРОВИ В УСЛОВИЯХ ОКИСЛИТЕЛЬНОГО СТРЕССА

Интенсификация окислительных реакций при различных патологических состояниях может оказывать влияние на процессы реализации апоптоза (как в сторону активации, так и в сторону ингибирования), выступая в качестве дополнительного патогенетического механизма развития сердечно-сосудистых, онкологических заболеваний, воспалительных и нейродегенеративных процессов. Особый интерес исследователей в этом плане привлекает роль изменений редокс-статуса клетки в модуляции ее программированной гибели [Октябрьский О.Н., Смирнова Г.В., 2007]. Вместе с тем особенности функционирования отдельных систем передачи апоптогенных сигналов (вне- и внутриклеточных) в условиях изменения окислительного метаболизма требуют детального изучения.

При выборе методологии исследования мы руководствовались следующими позициями. С одной стороны, известно, что окислительный стресс выступает в качестве одного из важнейших патогенетических факторов развития различных заболеваний (воспалительные процессы любого генеза, злокачественные новообразования, сердечно-сосудистая и бронхо-легочная патологии, неврологические и психические заболевания, интоксикации разного генеза и др.). При этом механизмы генерации АФК носят типовой универсальный характер [Дубинина Е.Е., 2001]. В качестве примера патологического процесса, сопровождающегося дисбалансом окислительного метаболизма, нами был выбран острый воспалительный процесс у больных внебольничной пневмонией и острым аппендицитом.

С другой стороны, изучение роли какого-либо определенного молекулярного механизма требует создания экспериментальной модели, существенным плюсом которой является возможность анализа изолированной цепи событий, приводящих к патологическим изменениям [Веденов А.А., 1988]. В связи с этим в программу исследования был включен экспериментальный блок, основанный на моделировании окислительного стресса in vitro с использованием Н2О2.

Добавление в культуральную среду Н2О2 в различных конечных концентрациях является одним из наиболее распространенных способов моделирования окислительного стресса in vitro [Abe J. et al., 1997; Griendling K.K. et al., 2000; Chen K., Vita J.A. et al., 2001; Ding B., 2007].

Задачей экспериментального раздела исследования явилась оценка уровня внутриклеточной продукции АФК и количества апоптотически измененных мононуклеарных лейкоцитов при различных концентрациях перекиси водорода. При этом оптимальной для моделирования окислительного стресса in vitro считалась концентрация Н2О2, при которой внутриклеточный уровень АФК, превышая контрольные значения и вызывая интенсификацию процессов апоптоза, не приводил к возрастанию числа некротизированных клеток в культуре.

Оценка содержания АФК в клетках при добавлении в культуральную среду перекиси водорода в диапазоне концентраций от 10 до 500 мкМ не выявила значимых отклонений исследуемого показателя от аналогичного параметра в контроле (р>0,05) (рис. 1). Полученные нами данные свидетельствуют о сохранении баланса между анти- и прооксидантными системами мононуклеарных лейкоцитов при воздействии указанных концентраций перекиси водорода. Известно, что устойчивость клеток к воздействию Н2О2 обеспечивается глутатионпероксидазной и каталазной ферментативными системами [Меньщикова Е.Б. и соавт., 2006].

Добавление перекиси водорода в конечной концентрации 1 мМ в культуру мононуклеарных лейкоцитов приводило к повышению внутриклеточной продукции АФК в 2,5 раза (р<0,05) (рис. 1), что свидетельствует о нарушении баланса между про- и антиоксидантными системами клетки и может служить признаком дисбаланса окислительного метаболизма.

Помимо окислительного стресса, носящего как адаптивный, так и дезадаптивный характер, апоптоз является одним из фундаменальных механизмов регуляции клеточного гомеостаза. В связи с этим чрезвычайно интересна взаимозависимость и участие АФК в регуляции клеточного саморазрушения [Зенков Н.К. и соавт., 2001].

Рис.1. Уровень активных форм кислорода, содержание апоптотических клеток и клеток со сниженным трансмембранным потенциалом митохондрий в общей популяции мононуклеарных лейкоцитов периферической крови в условиях культивирования in vitro с различными концентрациями перекиси водорода и у больных острыми воспалительными заболеваниями

Примечание: 1 - интактная культура мононуклеарных лейкоцитов; 2 - инкубирование клеток с 10 мкМ Н2О2; 3 - инкубирование клеток с 50 мкМ Н2О2; 4 - инкубирование клеток с 100 мкМ Н2О2; 5 - инкубирование клеток с 500 мкМ Н2О2; 6 - инкубирование клеток с 1 мМ Н2О2; 7 - мононуклеарные лейкоциты крови, полученные у больных внебольничной пневмонией; 8 - мононуклеарные лейкоциты крови, полученные у больных острым аппендицитом

Показано, что ранним признаком апоптогенных изменений может служить изменение локализации фосфатидилсерина, а точнее - его перемещение с внутренней стороны клеточной мембраны на внешнюю. Исходя из факта присутствия фосфотидилсерина на поверхности мембраны апоптозных клеток, их регистрация может осуществляться с помощью соединения, обладающего сродством к нему, - ФИТЦ-меченного аннексина V [Van Engeland M. et al., 1998]. Именно такой методологический подход был использован в нашем исследовании.

Добавление в культуральную среду малых концентраций перекиси водорода (10-500 мкМ) не вызывало достоверных изменений количества апоптотически измененных клеток (р>0,05) (рис. 1). Выраженная индукция летальной программы была обнаружена в культуре мононуклеарных клеток, подверженной воздействию 1 мМ перекиси водорода.

Выявленные при экспериментальном окислительном стрессе изменения подтверждают факт участия АФК в индукции и передаче апоптотического сигнала.

Культивирование мононуклеарных лейкоцитов, полученных у здоровых доноров, с Н2О2 в концентрации, превышающей 1 мМ, приводило к возрастанию в культуре числа некротизированных клеток, определяемых при окраске трепановым синим. Данное обстоятельство заставило нас исключить дальнейшее исследование влияния перекиси водорода в концентрации выше 1 мМ на процесс апоптоза.

Как известно, реализация апоптогенной программы представляет собой три последовательных стадии: инициации, эффекторная и деградации [Thornberry N.A., Lazebnik Y., 1998; Kroemer G., Reed J., 2000]. Исследование различных путей инициации апоптоза способствует более глубокому пониманию механизмов его регуляции при окислительном стрессе, поэтому в ходе настоящего исследования оценивались основные варианты запуска программированной гибели клеток: митохондриальный, рецепторный (TNFб-опосредованный) и ядерный (р53-опосредованный).

В настоящее время накоплено большое количество данных, подтверждающих взаимосвязь между генерацией АФК, функцией митохондрий и реализацией апоптоза [Октябрьский О.Н., Смирнова Г.В., 2007]. Показано, что митохондрии могут выступать в качестве мишеней регуляторных молекул при передаче апоптогенного сигнала, а также в роли источника АФК, являющихся сигнальными молекулами данных каскадов [Green D.R., Reed J.C., 1998; Zhu H., Bunn H.F., 2001].

Митохондриальный путь инициации программы апоптоза включает изменения электронного транспорта и клеточного редокс-баланса, потерю митохондриального трансмембранного потенциала, взаимодействие про- и антиапоптотических белков семейства Bcl-2, выход апоптогенных факторов (цитохром с, AIF, Smac/DIABLO) [Liu X. et al., 1996; Antonsson B., 2001; Du C. et al., 2000; Wu G. еt al., 2000; Joza N. еt al., 2001; Li L.Y. et al., 2001; Cory S. еt al., 2002]. Последнее возможно только при повышении проницаемости ее наружной мембраны. В связи с этим нами в качестве показателя, характеризующего вовлеченность митохондриального пути в реализацию апопотоза при окислительном стрессе, оценивалась целостность митохондриальных мембран по показателю трансмембранного потенциала. Он является электрохимическим градиентом протонов, создаваемым цепью переноса электронов на внутренней мембране митохондрий. Рассеивание ?ш может происходить за счет открытия неселективных пор пермеабилизационного перехода между наружной и внутренней мембранами митохондрий [Susin S.A. et al., 1998].

Проведенное нами исследование показало, что добавление в культуральную среду Н2О2 в диапазоне концентраций от 10 до 500 мкМ не вызывало изменений уровня митохондриального трансмембранного потенциала мононуклеарных лейкоцитов (р>0,05), число аннексин-положительных клеток также не изменялось (рис. 1). В соответствии с гипотезой J.J. Lemasters et al. [1998], уменьшение ?ш в результате повышения проницаемости наружной митохондриальной мембраны является критическим фактором для развития апоптоза. Оказалось, что число клеток со сниженным трансмембранным потенциалом после воздействия 1 мМ перекиси водорода превышало аналогичные значения в контроле в 6,8 раза (р<0,05) (рис. 1), свидетельствуя об активации программированной гибели клеток по митохондриальному пути в условиях окислительного стресса.

Предположение об индукции апоптоза по митохондриальному пути в условиях окислительного стресса подтверждалось наличием положительной корреляции между увеличением числа апоптотически измененных клеток и возрастанием количества мононуклеарных лейкоцитов со сниженным ?ш при окислительном стрессе in vitro (r=0,78, p<0,05). Полученые результаты позволяют сделать вывод о том, что в условиях усиленной внутриклеточной продукции АФК передача сигнала апоптоза сопряжена с дисфункцией митохондрий, выражающейся в повышении проницаемости их мембран и снижении ?ш.

Другой важнейший путь запуска программы апоптоза, реализуемый в условиях окислительного стресса, - рецепторный [Самуилов В.Д. и соавт., 2000]. Его наиболее распространенный вариант - индукция летальной программы клеток с помощью суперсемейства TNF-рецепторов [Ярилин А.А., 2001]. Данное семейство включает Fas (C95, APO-1), TNF-R1, DR3/WS1-1, DR4/TRAIL-R1, DR5/TRAIL-R2 и DR6, «домены смерти» которых находятся в цитоплазматическом участке и обеспечивают активацию каспазного каскада [Garg A.K., Aggarwal B.B., 2002].

Проведенная нами оценка содержания клеток, несущих на своей поверхности TNFR1 выявила увеличение (в 4,7 раза) количества TNFR1-презентирующих клеток в случае воздействия на культуру мононуклеарных лейкоцитов in vitro 1 мМ перекиси водорода (p<0,05) (рис. 2). Полученные данные свидетельствуют о повышенной готовности клеток к запуску апоптотической программы по рецепторному пути в условиях окислительного стресса.

А В

Рис.2. Содержание TNFR1-презентирующих клеток (А) и уровень TNFб в супернатантах культур мононуклеарных лейкоцитов крови (В) при экспериментальном окислительном стрессе и у больных острыми воспалительными заболеваниями

Поскольку запуск TNF-опосредованного апоптоза обусловливается взаимодействием данного цитокина с соответствующим лигандом, для нас представляло интерес исследование продукции клетками TNFб, запускающего внутриклеточный каскад активации каспаз. Основными продуцентами TNFб являются моноциты и макрофаги, а также лимфоциты, естественные киллеры и гранулоциты крови [Фрейдлин И.С., 2001].

Оценка содержания TNFб в супернатантах культуры мононуклеарных лейкоцитов у здоровых доноров продемонстрировала, что добавление в культуральную среду перекиси водорода в концентрации 1 мМ не приводило к выраженному увеличению продукции TNFб клетками (p>0,05). Выявленное отсутствие изменений продукции TNFб в условиях окислительного стресса может свидетельствовать о нарушении вовлеченности редокс-сигнальных систем в наработку данного цитокина. Вместе с тем полученные результаты свидетельствуют о повышенной готовности клеток к реализации рецептор-опосредованного пути запуска апоптоза в условиях окислительного стресса in vitro.

Известно, что одной из мишеней АФК в клетке являются нуклеиновые кислоты. Возникающие при этом повреждения ДНК, обусловливающие активацию гена р53, могут приводить к запуску ядерного пути апоптоза [Чумаков П.М., 2000]. Данные, свидетельствующие о вовлеченности р53 в редокс-зависимые пути инициации апоптоза в мононуклеарных лейкоцитах, представлены в следующих главах.

Активация либо ингибирование программированной гибели клеток, как ведущего механизма ограничения пролиферации клеточных популяций, может лежать в основе развития ряда патологических состояний. С другой стороны, в качестве ведущего патогенетического фактора для большого числа заболеваний выступает окислительный стресс - универсальный механизм повреждения клеток, при котором механизмы генерации АФК являются однотипными. Отличительные особенности образования внутриклеточных АФК можно выявить только на начальных стадиях развития болезни [Дубинина Е.Е., 2001]. Острое воспаление является одним из примеров патологических процессов, характеризующихся как дисбалансом окислительного метаболизма, так и нарушениями реализации апоптоза. При воспалении усиление процессов свободно-радикального окисления сопровождается увеличением наработки АФК, играющих важную роль в регуляции редокс-чувствительных сигнальных систем клетки, экспрессии воспалительных медиаторов, программ выживания или гибели клетки.

Излишняя активация апоптотической гибели клеток может приводить к истощению защитных сил организма, в то время как ее ингибирование - к хронизации воспалительного процесса. Основные эффекторные молекулы воспалительной реакции - АФК, обеспечивая микробицидное, фугицидное и цитотоксическое действие, могут изменять жизнедеятельность всех клеток организма. В связи с этим в проведенном нами исследовании влияние дисбаланса окислительного метаболизма на программированную гибель мононуклеарных лейкоцитов оценивали на модели острого воспаления (внебольничная пневмония и острый аппендицит).

Анализ уровня АФК в мононуклеарных лейкоцитах, полученных у пациентов с острым воспалением, показал увеличение значений указанного параметра по сравнению с таковым в клетках у здоровых доноров в 2,1 раза (р<0,05) (рис. 1). Известно, что воспалительный процесс в тканях сопровождается значительной продукцией АФК, и прежде всего наиболее стабильной их формы - перекиси водорода [Крыжановский Г.Н., 2002]. Образованная при «дыхательном взрыве» перекись водорода может проникать в рядом расположенные клетки, вызывая в них увеличение продукции АФК за счет разобщения окислительного фосфорилирования. Распространяясь таким образом на значительные расстояния в отсутствие прямых межклеточных контактов, Н2О2 приводит к изменениям структуры и функции клеток крови, в частности, к зарегистрированному нами повышению продукции АФК мононуклеарными лейкоцитами крови, полученными у больных острыми воспалительными заболеваниями.

В результате исследования количества апоптотически измененных мононуклеарных лейкоцитов, выделенных из крови у пациентов с внебольничной пневмонией и острым аппендицитом, было продемонстрировано повышение данного показателя в 7,3 и 7,7 раза, соответственно, по сравнению с нормой (p<0,05) (рис. 1). Влияние окислительного стресса на развитие апоптоза мононуклеарных лейкоцитов подтверждалось наличием положительной корреляции между повышением уровня АФК и возрастанием количества аннексин-положительных мононуклеарных лейкоцитов при экспериментальном окислительном стрессе (r=0,84, p<0,05) и острых воспалительных заболеваниях (r=0,71, p<0,05). Полученные данные свидетельствуют о том, что увеличение внутриклеточной продукции АФК является одним из ведущих факторов интенсификации апоптоза мононуклеарных лейкоцитов при воспалении.

Помимо окислительного стресса, апоптоз, как это показано выше, также относится к типовым универсальным механизмам дизрегуляции клеточного гомеостаза, лежащим в основе развития большого числа распространенных заболеваний, в том числе воспалительных процессов.

Оценка выраженности апоптоза в культуре мононуклеарных лейкоцитов, выделенных из крови у пациентов с внебольничной пневмонией, показала увеличение данного показателя до 9,98(8,79-11,33)% по сравнению с контролем (p<0,05) (рис. 1). Количество апоптотически измененных мононуклеарных лейкоцитов, полученных у больных острым аппендицитом (10,46(9,83-10,94)%), также достоверно превышало их содержание в норме (p<0,05).

Отсутствие различий показателей апоптотической активности мононуклеарных лейкоцитов у больных острым аппендицитом, определенных с использованием лазерной проточной цитофлуориметрии и TUNEL-метода (р>0,05), подтверждает адекватность примененного нами аннексинового теста для характеристики реализации летальной программы клеток.

Относительное содержание апоптотических клеток в культурах мононуклеарных лейкоцитов у больных острым воспалением (внебольничная пневмония и острый аппендицит) оказалось достоверно ниже их количества при окислительном стрессе in vitro (р<0,05) (рис.1). Полученные нами результаты свидетельствуют о том, что острый воспалительный процесс характеризуется нарушением редокс-гомеостаза и сопровождается активацией процессов апоптотической гибели мононуклерных лейкоцитов крови.

Оценка количества мононуклеарных лейкоцитов со сниженным ?ш показала, что данная величина при остром воспалении в 5,6 раза превышала аналогичный параметр в контроле (р<0,05) и не отличалась от таковой в случае экспериментального окислительного стресса (р>0,05) (рис. 1).

Таким образом, нарушения баланса окислительного метаболизма мононуклеарных лейкоцитов, как в случае индукции окислительного стресса перекисью водорода, так и в случае острого воспаления (внебольничная пневмония и острый аппендицит) сопровождаются возрастанием числа клеток со сниженным трансмембранным потенциалом митохондрий.

Численность TNFR1-экспрессирующих клеток, выделенных из крови у больных острыми воспалительными заболеваниями, превышала в 4,5 раза соответствующие параметры в интактной культуре (p<0,05). По полученным данным, индуцируемый добавлением в культуральную среду перекиси водорода окислительный стресс и острый воспалительный процесс сопровождаются повышением готовности клеток к реализации TNF-опосредованного программированного механизма летальной программы клеток. Подтверждением этому служат результаты проведенной нами оценки продукции TNFб мононуклеарными лейкоцитами крови при остром воспалении. Анализ уровня продукции TNF-б показал, что величина этого показателя повышалась по сравнению с контролем в культурах мононуклеарных лейкоцитов крови, полученных у больных острым воспалением (p<0,05) и достоверно превышала таковую при окислительном стрессе in vitro (p<0,05).

В целом, проанализировав данные, характеризующие особенности реализации апоптоза при окислительном стрессе, полученные на первом этапе настоящего исследования, можно утверждать, что возрастание уровня АФК в мононуклеарных лейкоцитах крови сопряжено с активацией митохондриального и ядерного вариантов запуска апоптотической гибели, а также с повышенной готовностью инициации рецепторного пути (рис. 1).

Следующий этап нашего исследования был посвящен изучению молекулярных редокс-чувствительных механизмов данного явления, позволяющему идентифицировать молекулярные мишени для коррекции нарушений апоптоза при окислительном стрессе.

В настоящее время выявлено большое число сигнальных путей, регулируемых АФК. Среди них в наибольшей степени изучены механизмы, основанные на фосфорилировании и дефосфорилировании белков специфическими киназами и фосфатазами [Октябрьский О.Н., Смирнова Г.В., 2007]. В частности, универсальными трансмиттерами сигналов от множества трансмембранных рецепторов к внутриклеточным компартментам являются МАР-киназы. К числу последних относятся митоген-активируемые протеинкиназы JNK и р38, фосфорилирующие ответственные за реализацию летальной программы клеток белки-мишени, среди которых важное место занимают факторы транскрипции NF-kB и р53 (Gallo K.A., Johnson G. L., 2002). Активируемые киназами NF-kB и р53, в свою очередь, контролируют синтез ключевых белков-регуляторов апоптоза. Выбор про- или антиапоптогенной функции данными элементами сигнальной трансдукции зависит от особенностей инициирующих сигналов, комбинации возможных путей их передачи и типов клеток.

РОЛЬ МАР-КИНАЗ В РЕГУЛЯЦИИ АПОПТОЗА ПРИ ОКИСЛИТЕЛЬНОМ СТРЕССЕ

Различные воздействия на клетку - цитокины, гормоны, факторы роста и др. - обусловливают активацию определенных элементов системы сигнальной трансдукции [Гусев Н.Б., 2000]. Ее важнейшими звеньями являются протеинкиназы, активирующие друг друга по каскадному принципу. Особая роль в реализации клеточного ответа принадлежит редокс-чувствительным МАР (Mitogen-activated protein) киназам (МАРК). Данные киназы представлены тремя семействами: р38 (протеинкиназа 38 кДа), JNK/SAPK (c-Jun N-terminal kinase/Stress activated protein kinase) и ERK (Extracellular signal-regulated kinase). Последние ответственны за выживание и пролиферацию клеток, в то время как активация киназ семейств р38 и JNK/SAPK связана с инициацией апоптоза [Xia Z., Dickens M. et al., 1995; Потехина Е.С., Надеждина Е.С. 2002; Gallo K.A., Johnson G.L., 2002; Владимирская Е.Б., 2004].

JNK и p38 протеинкиназы фосфорилируют проапоптотические белки-мишени, связанные с регуляцией программированной клеточной гибели и функционированием соответствующих факторов транскрипции [Влаопулос С., Зумпурлис В.С., 2004]. Вместе с тем, ряд исследований свидетельствуют о наличии антиапоптотической активности JNK и p38 [Zechner D. et al., 1998; Craig R. et al., 2000; Hoover H.E. et al., 2000; Andrekа P. et al., 2001], зависящей от природы индуцирующего сигнала, сопутствующих условий стимуляции и типов клеток. В связи с этим возникает необходимость более подробного изучения роли стресс-активируемых протеинкиназ JNK и p38 в реализации летальной программы клеток при окислительном стрессе.

Активация JNK играет ведущую роль в запуске летальной программы клеток в ответ на стресс (воздействие воспалительных цитокинов IL-1 и TNF-б, свободных радикалов и др.) [Srivastava R.K., 1999]. Наиболее подвержен стрессовым воздействиям (в частности, при повреждении белков) механизм активации JNK, связанный с ингибированием JNK-инактивирующих фосфатаз [Влаопулос С., Зумпурлис В.С., 2004]. Вместе с тем JNK может оказывать и антиапоптогенное действие: выявлена активация процессов NO-индуцированного апоптоза за счет экспрессии доминант-негативной JNK1 либо доминант-негативной МКК4 [Andrekа P. et al., 2001]. Показано предотвращение апоптоза кардиомиоцитов (в условиях ишемии) ингибированием JNK1 [Hreniuk D. et al., 2001].

JNK может индуцировать апоптоз путем фосфорилирования и активации фактора транскрипции р53 по Thr8 [Влаопулос С., Зумпурлис В.С., 2004]. Известно, что редокс-чувствительная киназа JNK играет важную роль в митохондриальном пути реализации апоптоза [Tournier C. et al., 2000; Aoki H. et al., 2002; Baines C.P., Molkentin J.D., 2002]. Установлено, что JNK-киназа может проникать в митохондрии, где фосфорилирует и активирует проапоптотические белки Bax и Bad, а также инактивирует антиапоптотические белки семейства Bcl-2 [Fan M. et al., 2000; Tournier C. et al., 2000; Chawla-Sarkar M. et al., 2003; Harada C., Nakamura K., 2006]. Так, H. Aoki et al. [2002] показали, что активированные JNK и МКК4, локализованные в митохондриях, индуцируют высвобождение цитохрома с и усиливают апоптоз кардиомиоцитов. В литературе имеются сведения о том, что JNK, независимо от каспазы-8, непосредственно активирует расщепление Bid, облегчая таким образом реализацию митохондриального пути клеточной смерти [Deng J. et al., 2003]. Наконец, JNK киназа прямо фосфорилирует два дополнительных про-апоптотических белка Bim и Bmf, облегчая тем самым их транслокацию в митохондрии [Lei K., Davis R.J., 2003].

Роль р38 в реализации программированной гибели также неоднозначна. Установлено, что трансфекция МКК6 - элемента р38 киназного каскада - вызывает фосфорилирование шаперона -В-кристаллина, усиливая антиапоптотический эффект [Zechner D. et al., 1998; Craig R. et al., 2000; Hoover H.E. et al., 2000]. По данным C. Communal et al. [2000], ингибирование р38 приводит к увеличению апоптотической активности кардиомиоцитов.

Вместе с тем результаты большого числа исследований свидетельствует о вовлеченности р38 в индукцию летальной программы клеток. Ингибирование р38 блокирует апоптоз кардиомиоцитов, индуцированный ишемией, в культуре и in vivo [Zhu W. et al., 1999; Kang Y.J. et al., 2000; Sharov V.G. et al., 2003]. Активация р38 способствует экспрессии и митохондриальной трансдукции одного из важнейших апоптогенных белков - Вах, опосредуя свое влияние через фосфорилирование р53 [Kim S.J. et al., 2002; Mayr M. et al., 2002].

Таким образом, стресс-активируемые киназы, с одной стороны, являются неотъемлемым элементом системы регуляции летальной программы, а с другой, - играют ключевую роль в процессах пролиферации и дифференцировки клеток. Однако условия и факторы, способствующие проявлению апоптогенной функции МАР киназ (в том числе окислительный стресс), требуют детального изучения.

Для выяснения роли JNK, р38 в регуляции программы апоптоза при окислительном стрессе в нашей лаборатории было проведено двухэтапное исследование. На начальном этапе применялся широко распространенный подход к изучению функций МАР-киназ, основанный на оценке результатов эксперимента при их избирательном блокировании. В нашем исследовании регистрировалась активность процесса апоптоза в культурах клеток, инкубируемых с селективными ингибиторами JNK и р38 (SP600125 и ML3403, соответственно) в присутствии 100 мкМ либо 1 мМ Н2О2 (рис. 3).

Полученные данные свидетельствуют о том, что добавление ингибитора JNK (так же как и ингибитора р38) в культуру мононуклеарных лейкоцитов крови препятствовало увеличению числа аннексин-положительных клеток при окислительном стрессе in vitro и снижало их содержание у пациентов с острым воспалением.

Рис. 3. Содержание апоптотических клеток в общей популяции мононуклеарных лейкоцитов крови, при окислительном стрессе в условиях культивирования in vitro с ингибиторами МАР-киназ

...

Подобные документы

  • Морфология апоптоза - физиологической гибели клеток в живом организме. Структура и функции белков, участвующих в его регуляции. Цитопротекторы - лекарственные средства, защищающие здоровые клетки от цитотоксического действия лекарственных препаратов.

    презентация [1,5 M], добавлен 14.03.2017

  • Апоптоз - генетическая клеточная гибель: цитологические признаки, молекулярные процессы. Механизм умирания клетки: причины, стадии. Морфологические проявления апоптоза, заболевания, связанные с его нарушением, роль в защите от онкологических заболеваний.

    презентация [2,9 M], добавлен 25.12.2013

  • Создание анимации и визуализаций процесса апоптоза с использованием качественных (описательных) моделей. Описание рабочего прототипа программы симуляции молекулярных процессов, описываемых моделями на языке CellML. Визуализация биологических моделей.

    статья [28,4 K], добавлен 13.09.2015

  • Анализ форменных элементов крови: эритроцитов, лейкоцитов, тромбоцитов. Гемоглобин и его функции в работе организма. Гранулоциты, моноциты и лимфоциты как составлющие лейкоцитов. Паталогии в составе крови, их влияние на функции организма человека.

    реферат [31,4 K], добавлен 06.10.2008

  • Возрастная периодизация человека. Кроветворение в эмбриогенезе. Изменение концентрации эритроцитов, лейкоцитов, лимфоцитов и тромбоцитов с возрастом. Удельный вес и вязкость крови новорожденных и у пожилых людей. Классификация и сроки развития лейкоцитов.

    презентация [190,8 K], добавлен 26.05.2016

  • Внутренняя среда организма. Основные функции крови - жидкой ткани, состоящей из плазмы и взвешенных в ней кровяных телец. Значение белков плазмы. Форменные элементы крови. Взаимодействие веществ, приводящее к свертыванию крови. Группы крови, их описание.

    презентация [2,5 M], добавлен 19.04.2016

  • Первичные иммунодефициты: комбинированные, Т-клеточные, В-клеточные, дефекты системы мононуклеарных фагоцитов и гранулоцитов, недостаточность системы комплемента. Вторичные иммунодефициты: вирусные, при заболеваниях, при нарушении обмена веществ.

    реферат [26,6 K], добавлен 18.08.2014

  • Основные факторы развития рака молочной железы. Цитологическая и патологоанатомическая диагностика: техника пункции и этапы макроскопического исследования материала. Определение содержания стероидных гормонов, маркеров пролиферации, белков-супрессоров.

    курсовая работа [48,0 K], добавлен 26.05.2014

  • Перегревание — временное повышение температуры тела, особый вид стресса. Изучение изменений показателей кислородтранспортной функции крови и кислотно-основного состояния. Механизмы стабилизации и оптимизации кислородного потока в ткани при лихорадке.

    презентация [7,6 M], добавлен 02.02.2015

  • Функции крови - жидкой ткани сердечно-сосудистой системы позвоночных. Ее состав и форменные элементы. Формирование эритроцитов, типы патологий. Главная сфера действия лейкоцитов. Лимфоциты - основные клетки иммунной системы. Возрастные изменения крови.

    презентация [2,3 M], добавлен 14.10.2015

  • Прижизненное омертвление клеток и тканей организма. Основные механизмы апоптоза. Основные стадии некротического процесса. Микроскопические признаки некроза. Изменения ядра, цитоплазмы, межклеточного вещества. Травматический и токсический некрозы.

    презентация [765,5 K], добавлен 07.04.2016

  • Форменные элементы крови. Форма и строение эритроцитов. Основные функции лимфы и нейтрофилов. Типология групп крови. Морфологические признаки и биологическая роль лейкоцитов. Совместимость групп крови человека. Базофильные и эозинофильные гранулоциты.

    презентация [1,2 M], добавлен 22.03.2016

  • Обеспечение клеточного и гуморального иммунитета. Изменение числа клеток при стрессе, болевом раздражении и наркозе. Фагоцитоз и бактерицидное действие. Транспорт биологически активных веществ и антител. Защита организма от паразитарной инфекции.

    презентация [1,7 M], добавлен 16.01.2014

  • Функции, состав и форменные элементы крови. Характеристика, формирование и патология эритроцитов. Виды и главная сфера действия лейкоцитов. Основные клетки иммунной системы: эозинофилы, моноциты, лимфоциты, тромбоциты. Возрастные изменения крови.

    презентация [897,9 K], добавлен 30.04.2014

  • Содержание ДНК в ядрах опухолевых клеток и изменение числа хромосом. Атипизм обмена нуклеиновых кислот и углеводов. Изменение изоферментного спектра. Накопление в крови эмбриональных белков и ферментов. Изменение функционирования регуляторных систем.

    презентация [1,1 M], добавлен 15.09.2015

  • Механизмы развития лейкопений: угнетение лейкопоэза в костном мозге, повышенное разрушение лейкоцитов. Основные механизмы агранулоцитоза. Физиологический лейкоцитоз. Лейкемоидные реакции. Геморрагический синдром - геморрагии. Острый лимфобластный лейкоз.

    презентация [750,1 K], добавлен 04.11.2013

  • Современные представления об этиологии и патогенезе бронхиальной астмы. Определение газового состава артериальной крови. Исследование крови с подсчетом лейкоцитарной формулы на гематологическом анализаторе. Развитие гипоксии при бронхиальной астме.

    дипломная работа [1,0 M], добавлен 27.01.2018

  • Общая характеристика нарушений функций или строения клеток крови — эритроцитов, лейкоцитов или тромбоцитов, патологических изменений их числа, а также изменений свойств плазмы крови. Виды и проявления анемии, талассемии, диатеза, тромбоцитопатии.

    презентация [5,2 M], добавлен 26.06.2015

  • Общие функции крови: транспортная, гомеостатическая и регуляторная. Общее количество крови по отношению к массе тела у новорожденных и взрослых людей. Понятие гематокрита; физико-химические свойства крови. Белковые фракции плазмы крови и их значение.

    презентация [3,6 M], добавлен 08.01.2014

  • Научная деятельность канадского биолога и врача, создателя учения о стрессе Ганса Селье. Стресс как состояние психофизиологического напряжения, его основные виды и их характеристика. Стадии стресса, его причины и симптомы. Регуляция стрессовых реакций.

    презентация [2,2 M], добавлен 01.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.