Роль сучасних методів візуалізації у плануванні променевої терапії та моніторингу онкогінекологічних хворих (огляд літератури)

Визначення поширеності пухлинного процесу, контроль ефективності лікування та виявлення рецидиву - основні завдання радіологічних методів досліджень. Моніторинг стану онкогінекологічних пацієнтів шляхом клінічних обстежень і оцінки пухлинних маркерів.

Рубрика Медицина
Вид статья
Язык украинский
Дата добавления 29.06.2024
Размер файла 134,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

The proposed RT planning algorithm begins with the initial and detailed diagnosis of cancer disease. At the same time linear dimensions of tumors subject to conformal remote RT and BT are determined by means of diagnostic ultrasound. For example, for CC and carcinoma of the corpus uteri their size and volume are determined, as well as the size of the lesion and the thickness of the unchanged uterine wall. Elastography data and blood flow characteristics are used to select the BT conditions (type of endostat, its geometry) and indirect assessment of radiochemo-sensitivity Further planning of RT involves conducting an independent topometric study with inserted endostats and contrasting of organs at risk. It was found that the visual pattern obtained at this stage with the help of diagnostic ultrasound is less informative due to the subjective perception of signal in comparison with CT, which really reflects not only the external contours of tumor and organs at risk, but also bone structures, combined (metal and plastic) endostatic devices, and detectors of the direct dosimetry (scintillative or thermoluminescent ones) [47, 54, 55].

The data of various studies allow to state that CT technology is quite in demand for visualization of endostats, dosimeter detectors, and actually the BT planning for all types of tumor processes, while the contact high-energy BT retains its decisive role in sustainable treatment of tumors in the framework of both combined and independent RT impact. At the same time the CT-topometry is repeatedly performed in case of a high-grade tumor resorption (more than 50 %) to correct the type and method of endostat placement and the plan of further BT [51, 53, 56].

The use of MRI and in recent years of PET-CT and PET-MRI provides information that significantly expands the possibilities of individual PT planning, but these visualization methods have certain financial and methodological limitations in the specialized healthcare institutions, as they require the allocation of independent time, availability of MRI-compatible endostats and medical conditions for MRI examination with inserted endostats. Studies have shown that PET-CT has an advantage over CT when planning the RT. More precise planning of irradiation allows minimizing the irradiation of intact tissues, and concentrating the radiation effect directly on tumors. Diagnostic accuracy of PET-MRI is significantly higher in malignant and benign neoplasms. Reduced radiation dose and better detection of lesions, as well as a significant and strong correlation between tumor metabolism and higher cellularity in the foci of CC allows the widespread use of PET-MRI in future in the planning and control of RT sessions [38, 39, 57].

Control of the effectiveness of treatment and monitoring of the RT or complex therapy results, as well as differential diagnosis of radiation complications and disease relapses is the next stage of implementation of diagnostic algorithm. A range of diagnostic methods from ultrasound to PET-CT technologies are used to reliably monitor the state of primary focus, detect recurrence or generalization of cancer process [58, 59].

Currently the BT in cancer healthcare institutions countrywide is mainly represented by its automated variants with remote delivery of the small-sized closed sources of high activity based on Iridium 192 (192Ir) or Cobalt 60 (60Co) radionuclides in the pre-placed and directly fixed in tumor or its bed intrastats or endostats. Planning is mainly carried out using the 3D-dosimetric planning systems requiring a direct monitoring of the proposed and actual delivered radiation doses by means of in vivo dosimetry. The latter is necessary in order to guarantee the quality of BT and prevent complications that often accompany treatment [53, 60, 61].

Conclusion

Thus, for the planning of conformal RT and BT it is necessary to use contemporary visualization technologies taking into account the integrated computer software for contouring the target tumor and risk organs using MRI, CT, and PET-CT technologies in accordance with requirements for the formation of therapeutic dose distribution in three planes and volume, formulated by radiotherapists and medical physicists, which allows to optimize the task by the volume of irradiation and reduce the dose load on organs at risk. MRI and transanal endoscopic diagnostic ultrasound remains the clinical standard for disease staging. Technological progress has made it possible to expand the quantitative functional assessment using MRI to examine the whole body with accurate determination of cancer stage. The additional detection of metastases in small lymph nodes, in unexpected pelvic and inguinal lymph nodes, as well as the detection of hidden distant metastases is a specific advantage of PET-CT. In addition, PET-CT provides information on biological features of tumors, such as metabolism, hypoxia and proliferation, which can help to identify the radioresistant areas and use them to optimize the treatment plans. Therefore, involvement of MRI and PET-CT in the planning of conformal RT and BT is justified, despite the increase in economic costs of RT, the indications for which should be expanded, especially in the period of emergency situation.

In conclusion, it should be noted that PET-CT is an objective method of examination of patients with locally advanced CC both in the initial planning of multicomponent treatment and in the survey of patients with suspected disease generalization. PET should be included in diagnostic algorithm when examining the CC patients, especially in cases of visualization of parametrial tissue or involvement of regional and distant lymph nodes. In addition, PET is of a great value in the determining of metastatic dissemination, diagnosing of tumor recurrence, choosing of strategy and tactics of treatment arrangements, and evaluating their effectiveness.

Thus, PET-CT is often used for staging, longterm follow-up, treatment planning, and predicting the response to treatment in cancer patients.

References / Список використаних джерел

1. Shen L.F., Zhou S.H., Yu Q. Predicting response to radiotherapy in tumors with PET/CT: when and how? Transl Cancer Res. 2020;9(4): 2972-2981. doi: 10.21037/tcr.2020.03.16.

2. Mironova YuA, Lebedeva AM. [Relevance of positron emission tomography in the diagnosis of locally advanced cervical cancer].

3. Acuff S.N., Jackson A.S., Subramaniam R.M., Osborne D. Practical considerations for integrating PET/CT into radiation therapy planning. J Nucl Med Technol. 2018;46(4):343-348. doi: 10.2967/jnmt.118.209452.

4. Jelercic S., Rajer M. The role of PET-CT in radiotherapy planning of solid tumours. Radiol Oncol. 2015;49(1):1-9. doi: 10.2478/raon- 2013-0071.

5. Harchenko K.V., Olyinichenko O.G., Kliusov O.M. [Role of PET-CT diagnostics in early detected relapse of ovarian cancer]. Clin Oncol. 2016;3(23):49-54. Ukrainian.

6. Nudnov N.V., Titova V.A. [Contemporary imaging methods and their role in planning the contact radiation therapy (brachytherapy)]. Roentgenology Radiology Bulletin. 2021;102(5):268-275. doi: 10.20862/0042-4676-2021-102-5-268-275. Russian.

7. Tsien C., Cao Y., Chenevert T. Clinical applications for diffusion magnetic resonance imaging in radiotherapy. Semin Radiat Oncol. 2014;24(3):218-226. doi: 10.1016/j.semradonc.2014.02.004.

8. Boellard R., Delgado-Botton R., Oyen W.J.G., Giammarile F., Tatsch K., Eschner W., et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015; 42(2):328-354. doi: 10.1007/s00259-014-2961-x.

9. Anderson T., Elman S., Matesan M., Carnell J., Mittra E., Behnia F. Pictoral review of NCCN Guidelines for use of FDG PET in oncology. J Nucl Med. 2017;58(suppl. 1):974.

10. Hillner B.E., Siegel B.A., Liu D., Shields A.F., Gareen I.F., Hanna L., et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol. 2008;26(13):2155-2161. doi: 10.1200/JCO.2007.14.5631.

11. Bi Y., Li L. Pathologically confi rmed brain metastases from primary uterine cervical tumors: two cases and a literature review. World J Surg Oncol. 2019;17(1):174. doi: 10.1186/s12957-019-1720-7/.

12. Vetter S.Y., Steffen K., Swartman B., Schnetzke M., Keil H., Franke J., et al. Influence of intraoperative conventional fluoroscopy versus cone beam CT on long-term clinical outcome in isolated displaced talar fractures. J Orthop Surg Res. 2019;14(1):8. doi: 10.1186/s13018-018-1043-3.

13. Zhai X., Yang Y., Wan J., Zhu R., Wu Y. Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and increases radiosensitivity in nasopharyngeal carcinoma cells. Oncol Rep. 2013;30(6):2983- 2991. doi: 10.3892/or.2013.2735.

14. Chang J.Y., Senan S., Paul M.A., Mehran R.J., Louie AV., Balter P., et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol. 2015; 16(6):630-637. doi: 10.1016/S1470-2045(15)70168-3.

15. Li C., Lan X., Yuan H., Feng H., Xia X., Zhang Y. 18F-FDG PET predicts pathological response to preoperative chemoradiotherapy in Shen L.F., Zhou S.H., Yu Q. Predicting response to radiotherapy in tumors with PET/CT: when and how? Transl. Cancer Res. 2020. Vol. 9, no, 4. P. 2972-2981. doi: 10.21037/tcr.2020.03.16.

16. Миронова Ю.А. Лебедева А.М. Актуальность позитронно-эмиссионной томографии в диагностике местнораспространенного рака шейки матки. Научно-образовательный журнал для студентов и преподавателей «StudNet». 2020. № 9. С. 920-922. doi: 10.24411/2658-4964-2020-10224.

17. Practical considerations for integrating PET/CT into radiation therapy planning / S.N. Acuff, A.S. Jackson, R.M. Subramaniam, D. Osborne. J Nucl. Med. Technol. 2018. Vol. 46. P. 343-348. doi: 10.2967/jnmt.118.209452.

18. Jelercic S., Rajer M. The role of PET-CT in radiotherapy planning of solid tumours. Radiol. Oncol. 2015. Vol. 49. P. 1-9. doi: 10.2478/raon-2013-0071.

19. Харченко К.В., Олійніченко О.Г., Клюсов О.М. Роль ПЕТ-КТ-діагностики у ранньому виявленні рецидиву рака яєчника. Клин, онкол. 2016. № 3 (23). С. 49-54.

20. Нуднов Н.В., Титова В.А. Современные методы визуализации и их роль в планировании контактной лучевой терапии (брахитерапии). Вестник рентгенологии и радиологии. 2021. Т. 102, № 5. С. 268-275. doi: 10.20862/0042-4676-2021-102-5-268-275.

21. Tsien C., Cao Y., Chenevert T. Clinical applications for diffusion magnetic resonance imaging in radiotherapy. Semin. Radiat. Oncol. 2014. Vol. 24, no. 3. P. 218-226. doi: 10.1016/j.semradonc.2014.02.004.

22. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 / R. Boellard, R. Delgado-Botton, W.J.G. Oyen et al. Eur. J. Nucl. Med. Mol. Imaging. 2015. Vol. 42, no. 2. P. 328-354. doi: 10.1007/s00259-014-2961-x.

23. Pictorial review of NCCN guidelines for use of FDG PET in oncology / T. Anderson, S. Elman, M. Matesan et al. J Nucl. Med. 2017. Vol. 58, suppl. 1. Abstr. 974.

24. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry / B.E. Hillner, B.A. Siegel, D. Liu et al. J Clin. Oncol. 2008. Vol. 26. P. 2155-2161. doi: 10.1200/JCO.2007.14.5631.

25. Bi Y., Li L. Pathologically confi rmed brain metastases from primary uterine cervical tumors: two cases and a literature review. World J. Surg. Oncol. 2019. Vol. 17, no. 1. P. 174. doi: 10.1186/s12957-019-1720-7/.

26. Influence of intraoperative conventional fluoroscopy versus cone beam CT on long-term clinical outcome in isolated displaced talar fractures / S.Y. Vetter, K. Steffen, B. Swartman et al. J. Orthop. Surg. Res. 2019. Vol 14, no. 1. P. 8. doi: 10.1186/s13018-018-1043-3.

27. Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and increases radiosensitivity in nasopharyngeal carcinoma cells / X. Zhai, Y. Yang, J. Wan et al. Oncol. Rep. 2013. Vol. 30. P. 2983-2991. doi: 10.3892/or.2013.2735.

28. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials / J.Y. Chang, S. Senan, M.A. Paul et al. Lancet Oncol. 2015. Vol. 16, no. 6. P. 630-637. doi: 10.1016/S1470-2045(15)70168-3.

29. Scientific and Educational Journal for Students and Teachers «StudNet» 2020;9:920-922. doi: 10.24411/2658-4964-202010224. Russian.

30. 18F-FDG PET predicts pathological response to preoperative chemoradiotherapy in patients with primary rectal cancer: a metaanalysis / C. Li, X. Lan, H. Yuan et al. Ann. Nucl. Med. 2014. Vol. 28. P. 436-446. doi: 10.1007/s12149-014-0837-6.

31. Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM Radiation Therapy Committee Task Group / K. K. Brock, S. Mutic, T. R. McNutt et al. Med. Phys. 2017. Vol. 44, no. 132. P. e43-e76. doi: 10.1002/mp.12256.

32. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer / H. Ashamalla, S. Rafla, K. Parikh et al. Int. J. Radiat. Oncol. Biol. Phys. 2005. Vol. 63. P. 1016-1023. doi: 10.1016/j.ijrobp.2005.04.021.

33. Wang Y., Yin W., Zhu X. Blocked autophagy enhances radiosensitivity of nasopharyngeal carcinoma cell line CNE-2 in vitro. Acta Otolaryngol. 2014. Vol. 134. P. 105-110. doi: 10.3109/00016489. 2013.844365.

34. Berberine radiosensitizes human nasopharyngeal carcinoma by suppressing hypoxia-inducible factor-1alpha expression / C. Zhang, Х. Yang, Q. Zhang et al. Acta Otolaryngol. 2014. Vol. 134. P. 185-192. doi: 10.3109/00016489.2013.850176.

35. The role of positron emission tomography imaging in radiotherapy target delineation / H. Menon, C. Guo, V. Verma, C. B. Simone 2nd. PET Clin. 2020. Vol. 15, no. 1. P. 45-53. doi: 10.1016/j.cpet.2019.08.002.

36. Use of PET and other functional imaging to guide target delineation in radiation oncology / V. Verma, J. Choi, A. Sawant et al. Semin. Radiat. Oncol. 2018. Vol. 28. P. 171-177. doi: 10.1016/j.sem-radonc.2018.02.001.

37. Identification of time-to-peak on dynamic 18F-FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma / B. Suchorska, A. Giese, A. Biczok et al. Neuro Oncol. 2018. Vol. 20, iss. 2. P. 279-288. doi: 10.1093/neuonc/nox153.

38. Stat3 inhibitor Stattic exhibits potent antitumor activity and induces chemo- and radio-sensitivity in nasopharyngeal carcinoma / Y. Pan, F. Zhou, R. Zhang et al. PLoS One. 2013. Vol. 8. P. e54565. doi: 10.1371/journal.pone.0054565.

39. Li S.P., Padhani A. Tumor response assessments with diffusion and perfusion MRI. J Magn. Reson. Imaging. 2012. Vol. 35. P. 745763. doi: 10.1002/jmri.22838.

40. Patterns of failure for patients with glioblastoma following O-(2- [(18)F]fluoroethyl)-L-tyrosine PET- and MRI-guided radiotherapy / M. Lundemann, J.C. Costa, I. Law et al. Radiother. Oncol. 2017. Vol. 122, no. 3. P. 380-386. doi: 10.1016/j.radonc.2017.01.002.

41. Nodal parameters of FDG PET/CT performed during radiotherapy for locally advanced mucosal primary head and neck squamous cell carcinoma can predict treatment outcomes: SUVmean and response rate are useful imaging biomarkers / P. Lin, M. Min, M. Lee et al. Eur. J. Nucl. Med. Mol. Imaging. 2017. Vol. 44, no. 5. P. 801-811. doi: 10.1007/s00259-016-3584-1.

42. Garcia-Figueiras R., Padhani A., Baleato-Gonzalez S. Therapy monitoring with functional and molecular MR imaging. Magn. Reson. patients with primary rectal cancer: a meta-analysis. Ann Nucl Med. 2014;28(5):436-446. doi: 10.1007/s12149-014-0837-6.

43. Brock K.K., Mutic S., McNutt T.R., Li H., Kessler M.L. Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017;44(7):e43-e76. doi: 10.1002/mp.12256.

44. Ashamalla H., Rafla S., Parikh K., Mokhtar B., Goswami G., Kambam S., et al. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys. 2005;63(4):1016-1023. doi: 10.1016/j.ijrobp.2005.04.021.

45. Wang Y., Yin W., Zhu X. Blocked autophagy enhances radiosensitivity of nasopharyngeal carcinoma cell line CNE-2 in vitro. Acta Otolaryngol. 2014;134(1):105-110. doi: 10.3109/00016489.2013.844365.

46. Zhang C., Yang X., Zhang Q., Yang B., Xu L., Qin Q., et al. Berberine radiosensitizes human nasopharyngeal carcinoma by suppressing hypoxia-inducible factor-1alpha expression. Acta Otolaryngol. 2014;134(2):185-192. doi: 10.3109/00016489.2013.850176.

47. Menon H., Guo C., Verma V., Simone C.B. 2nd. The role of positron emission tomography imaging in radiotherapy target delineation. PET Clin. 2020;15(1):45-53. doi: 10.1016/j.cpet.2019.08.002.

48. Verma V., Choi J., Sawant A., Gullapalli R.P., Chen W., Alavi A., Simone CB 2nd. Use of PET and other functional imaging to guide target delineation in radiation oncology. Semin Radiat Oncol. 2018;28(3): 171-177. doi: 10.1016/j.semradonc.2018.02.001.

49. Suchorska B., Giese A., Biczok A., Unterrainer M., Weller M., Drexler M., et al. Identification of time-to-peak on dynamic 18F-FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma. Neuro Oncol. 2018;20(2):279-288. doi: 10.1093/neuonc/nox153.

50. Pan Y., Zhou F., Zhang R., Claret F.X. Stat3 inhibitor Stattic exhibits potent antitumor activity and induces chemo- and radio-sensitivity in nasopharyngeal carcinoma. PLoS One. 2013;8(1):e54565. doi: 10.1371/journal.pone.0054565.

51. Li S.P., Padhani A. Tumor response assessments with diffusion and perfusion MRI. J Magn Reson Imaging. 2012;35(4):745-763. doi: 10.1002/jmri.22838.

52. Lundemann M., Costa J.C., Law I., Engelholm S.A., Muhic A., Poulsen H.S., et al. Patterns of failure for patients with glioblastoma following O-(2-[(18)F]fluoroethyl)-L-tyrosine PET- and MRI-guided radiotherapy. Radiother Oncol. 2017;122(3):380-386. doi: 10.1016/j.radonc.2017.01.002.

53. Lin P., Min M., Lee M., Holloway L., Forstner D., Bray V., Fowler A. Nodal parameters of FDG PET/CT performed during radiotherapy for locally advanced mucosal primary head and neck squamous cell carcinoma can predict treatment outcomes: SUVmean and response rate are useful imaging biomarkers. Eur J Nucl Med Mol Imaging. 2017;44(5):801-811. doi: 10.1007/s00259-016-3584-1.

54. Garcia-Figueiras R, Padhani A, Baleato-Gonzalez S. Therapy monitoring with functional and molecular MR imaging. Magn Reson Imaging Clin N Am. 2016;24(1 ):261-288. doi: 10.1016/j.mric.2015.08.003.

55. Imaging. Clin. N. Am. 2016. Vol. 24. P. 261-288. doi: 10.1016/j.mric.2015.08.003.

56. Tumor responses to radiation therapy: use of dynamic contrast material-enhanced CT to monitor functional and anatomical indices / C. Harvey, J. Morgan, M. Blomley et al. Acad. Radiol. 2002. Vol. 9, suppl. 1. P. S215-219. doi: 10.1016/s1076-6332(03)80439-7.

57. Advances in neuro-oncology imaging / K.-J. Langen, N. Galldiks, E. Hattingen, N.J. Shah. Nat. Rev. Neurol. 2017. Vol. 13, no. 5. P. 279-289. doi: 10.1038/nrneurol.2017.44.

58. Effect of radiochemotherapy on T2* MRI in HNSCC and its relation to FMISO PET derived hypoxia and FDG PET / N. Wiedenmann, H. Bunea, H.C. Rischke et al. Radiat. Oncol. 2018. Vol. 13, no. 1. P. 159. doi: 10.1186/s13014-018-1103-1.

59. The dose distribution in dominant intraprostatic tumour lesions defined by multiparametric MRI and PSMA PET/CT correlates with the outcome in patients treated with primary radiation therapy for prostate cancer / C. Zamboglou, C.M. Klein, B. Thomann et al. Radiat. Oncol. 2018. Vol. 13, no. 1. P. 65. doi: 10.1186/s13014-18-1014-1.

60. Surgical versus clinical staging prior to primary chemoradiation in patients with cervical cancer FIGO stages IIB-IVA: oncologic results of a prospective randomized international multicenter (Uterus-11) intergroup study / S. Marnitz, A.T. Tsunoda, P. Martus et al. Int. J. Gynecol. Cancer. 2020. Vol. 30, no. 12. P. 1855-1861. doi: 10.1136/ijgc-2020-001973.

61. Perioperative morbidity and rate of upstaging after laparoscopic staging for patients with locally advanced cervical cancer: results of a prospective randomized trial / C. Kohler, A. Mustea, S. Marnitz et al. Am. J. Obstet. Gynecol. 2015. Vol. 213, no. 4. P. 503.e1-503.e57. doi: 10.1016/j.ajog.2015.05.026.

62. Incidence of histologically proven pelvic and para-aortic lymph node metastases and rate of upstaging in patients with locally advanced cervical cancer: results of a prospective randomized trial / A.T. Tsunoda, S. Marnitz, J. Soares Nunes et al. Oncology. 2017. Vol. 92, no. 4. P. 213-220. doi: 10.1159/000453666.

63. Prognostic value of posttreatment 18F?FDG PET/CT and predictors of metabolic response to therapy in patients with locally advanced cervical cancer treated with concomitant chemoradiation therapy: an analysis of intensity- and volume-based PET parameters / G. M. Lima, A. Matti, G. Vara et al. Eur. J. Nucl. Med. Mol. Imaging. 2018. Vol. 45, no. 12. P. 2139-2146. doi: 10.1007/s00259-018-4077-1.

64. The role of FDG-PET/CT in predicting the histopathological response in locally advanced cervical carcinoma treated by chemo-radiotherapy followed by radical surgery: a prospective study / V. Rufini, A. Collarino, M.L. Calcagni et al. Eur. J. Nucl. Med. Mol. Imaging. 2020. Vol. 47, no. 5. P. 1228-1238. doi: 10.1007/s00259-19-04436-y.

65. The clinical value of PET and PET/CT in the diagnosis and management of suspected cervical cancer recurrence / Z. Zhou, X. Liu, K. Hu, F. Zhang. Nucl. Med. Commun. 2018. Vol. 39, no. 2. P. 97102. doi: 10.1097/MNM.0000000000000775.

66. Harvey C., Morgan J., Blomley M., Dooher A., de Souza N., Dawson P. Tumor responses to radiation therapy: use of dynamic contrast material-enhanced CT to monitor functional and anatomical indices. Acad Radiol. 2002;9(1,suppl):215-219. doi: 10.1016/s1076-6332(03)80439-7.

67. Langen K.-J., Galldiks N., Hattingen E., Shah N.J. Advances in neurooncology imaging. Nat Rev Neurol. 2017;13(5):279. doi: 10.1038/nrneurol.2017.44.

68. Wiedenmann N., Bunea H., Rischke H.C., Bunea A., Majerus L., Bielak L., et al. Effect of radiochemotherapy on T2* MRI in HNSCC and its relation to FMISO PET derived hypoxia and FDG PET. Radiat Oncol. 2018;13(1):159. doi: 10.1186/s13014-018-1103-1.

69. Zamboglou C., Klein C.M., Thomann B., Fassbender T.F., Rischke H.C., Kirste S., et al. The dose distribution in dominant intraprostatic tumour lesions defined by multiparametric MRI and PSMA PET/CT correlates with the outcome in patients treated with primary radiation therapy for prostate cancer. Radiat Oncol. 2018;13(1):65. doi: 10. 1186/s13014-018-1014-1.

70. Marnitz S., Tsunoda A.T., Martus P., Vieira M., Affonso Junior R.J., Nunes J., et al. Surgical versus clinical staging prior to primary chemoradiation in patients with cervical cancer FIGO stages IIB-IVA: oncologic results of a prospective randomized international multicenter (Uterus-11) intergroup study. Int J Gynecol Cancer. 2020;30(12):1855-1861. doi: 10.1136/ijgc-2020-001973.

71. Kohler C., Mustea A., Marnitz S., Schneider A., Chiantera V., Ulrich U., et al. Perioperative morbidity and rate of upstaging after laparoscopic staging for patients with locally advanced cervical cancer: results of a prospective randomized trial. Am J Obstet Gynecol. 2015;213(4):503.e1-503.e57. doi: 10.1016/j.ajog.2015.05.026.

72. Tsunoda A.T., Marnitz S., Soares Nunes J., Mattos de Cunha Andrade C.E., Scapulatempo Neto C., Blohmer J.U., et al. Incidence of histologically proven pelvic and para-aortic lymph node metastases and rate of upstaging in patients with locally advanced cervical cancer: results of a prospective randomized trial. Oncology. 2017;92(4): 213-220. doi: 10.1159/000453666.

73. Lima G.M., Matti A., Vara G., Dondi G., Naselli N., De Crescenzo E.M., et al. Prognostic value of posttreatment 18F-FDG PET/CT and predictors of metabolic response to therapy in patients with locally advanced cervical cancer treated with concomitant chemoradiation therapy: an analysis of intensity- and volume-based PET parameters. Eur J Nucl Med Mol Imaging. 2018;45(12):2139-2146. doi: 10.1007/s00259-018-4077-1.

74. Rufini V., Collarino A., Calcagni M.L., Meduri G.M., Fuoco V., Pasciuto T., et al. The role of FDG-PET/CT in predicting the histopathological response in locally advanced cervical carcinoma treated by chemo-radiotherapy followed by radical surgery: a prospective study. Eur J Nucl Med Mol Imaging. 2020;47(5):1228-1238. doi: 10.1007/s00259-019-04436-y.

75. Zhou Z., Liu X., Hu K., Zhang F. The clinical value of PET and PET/CT in the diagnosis and management of suspected cervical cancer recurrence. Nucl Med Commun. 2018;39(2):97-102. doi: 10. 1097/MNM.0000000000000775.

76. Identification of distant metastatic disease in uterine cervical and endometrial cancers with FDG PET/CT: analysis from the ACRIN 6671/GOG 0233 multicenter trial / M.S. Gee, M. Atri, A.I. Bandos et al. Radiology. 2017. Vol. 287, no. 1. P. 176-184. doi: 10.1148/radiol.2017170963.

77. Cervical cancer histology and tumor differentiation affect 18F-fluorodeoxyglucose uptake / E.A. Kidd, C.R. Spencer, P.C. Huettner et al. Cancer. 2009. Vol. 115, no. 15. P. 3548-3554. doi: 10.1002/cncr.24400.

78. Results from neoadjuvant chemotherapy followed by surgery compared to chemoradiation for stage Ib2-IIb cervical cancer, EORTC 55994 / G. Kenter, S. Greggi, I. Vergote et al. J. Clin. Oncol. 2019. Vol. 37, no. 15_suppl. Abstr. 5503. doi: 10.1200/JCO.2019.37.15_suppl.5503.

79. Palaniswamy S.S., Borde C.R., Subramanyam P. 18F-FDG PET/CT in the evaluation of cancer cervix: Where do we stand today? Nlucl. Med. Commun. 2018. Vol. 39, no. 7. P. 583-592. doi: 10.1097/MNM.0000000000000851.

80. Comparison of rigid and deformable image registration for nasopharyngeal carcinoma radiotherapy planning with diagnostic position PET/CT / Y. Kai, H. Arimura, R. Toya et al. Jpn. J. Radiol. 2020. Vol. 38. P. 256-264. doi: 10.1007/s11604-019-00911-6.

81. The technical design and concept of a PET/CT linac for biology-guided radiotherapy / O.M. Oderinde, S.M. Shirvani, P.D. Olcott et al. Clin. Transl. Radiat. Oncol. 2021. Vol. 29. P. 106-112. doi: 10. 1016/j.ctro.2021.04.003.

82. Positron emission tomography/magnetic resonance imaging evaluation of lung cancer: current status and future prospects / S.H. Yoon, J.M. Goo, S.M. Lee et al. J. Thorac. Imaging. 2014. Vol. 29, no. 1. P. 4-16. doi: 10.1097/RTI.0000000000000062.

83. Quantitative parameters of intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI): potential application in predicting pathological grades of pancreatic ductal adenocarcinoma / W. Ma, G. Zhang, J. Ren et al. Quant. Imaging Med. Surg. 2018. Vol. 8. P. 301-310. doi: 10.21037/qims.2018.04.08.

84. Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome / P.W. Grigsby, B.A. Siegel, F. Dehdashti et al. J. Clin. Oncol. 2004. Vol. 22, no. 11. P. 2167-2171. doi: 10.1200/JCO.2004.09.035.

85. Солодкий В.А., Сергеев Н.И., Титова В.А. КТ и МРТ-визуализация эндостатов для контактной лучевой терапии на внутриполосных аппаратах нового поколения. Медицинская физика. 2020. № 3. С. 53-58.

86. Positron emission tomography for unexplained elevation of serum squamous cell carcinoma antigen levels during follow-up for patients with cervical malignancies: a phase II study / T.C. Chang, K.S. Law, J.H. Hong et al. Cancer. 2004. Vol. 101. P. 164-171. doi: 10.1002/cncr.20349.

87. Head-to-head intra-individual comparison of biodistribution and tumor uptake of 68Ga-FAPI and 18F-FDG PET/CT in cancer patients / F.L. Giesel, C. Kratochwil, J. Schlittenhardt et al. Eur. J.

88. Gee M.S., Atri M., Bandos A.I., Mannel R.S., Gold M.A., Lee S.I. Identification of distant metastatic disease in uterine cervical and endometrial cancers with FDG PET/CT: analysis from the ACRIN 6671/GOG 0233 multicenter trial. Radiology. 2017;287(1 ):176-184. doi: 10.1148/radiol.2017170963.

89. Kidd E.A., Spencer C.R., Huettner P.C., Siegel B.A., Dehdashti F., Rader J.S., Grigsby P.W. Cervical cancer histology and tumor differentiation affect 18F-fluorodeoxyglucose uptake. Cancer. 2009;115(15): 3548-3554. doi: 10.1002/cncr.24400.

90. Kenter G., Greggi S., Vergote I., Katsaros D., Kobierski J., Massuger L., et al. Results from neoadjuvant chemotherapy followed by surgery compared to chemoradiation for stage Ib2-IIb cervical cancer, EORTC 55994. J Clin Oncol. 2019;37(15_suppl):5503-5503. doi: 10.1200/JCO.2019.37.15_suppl.5503.

91. Palaniswamy S.S., Borde C.R., Subramanyam P. 18F-FDG PET/CT in the evaluation of cancer cervix: Where do we stand today? Nucl Med Commun. 2018;39(7):583-592. doi: 10.1097/MNM.0000000000000851.

92. Kai Y., Arimura H., Toya R., Saito T., Matsuyama T., Fukugawa Y., et al. Comparison of rigid and deformable image registration for nasopharyngeal carcinoma radiotherapy planning with diagnostic position PET/CT. Jpn J Radiol. 2020;38(3):256-264. doi: 10.1007/s11604-019-00911-6.

93. Oderinde O.M., Shirvani S.M., Olcott P.D., Kuduvalli G., Mazin S., Larkin D. The technical design and concept of a PET/CT linac for biology- guided radiotherapy. Clin Transl Radiat Oncol. 2021;29:106-112. doi: 10.1016/j.ctro.2021.04.003.

94. Yoon S.H., Goo J.M., Lee S.M., Park C.M., Seo H.J., Cheon G.J. Positron emission tomography/magnetic resonance imaging evaluation of lung cancer: current status and future prospects. J Thorac Imaging. 2014;29(1):4-16. doi: 10.1097/RTI.0000000000000062.

95. Ma W., Zhang G., Ren J., Pan Q., Wen D., Zhong J., et al. Quantitative parameters of intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI): potential application in predicting pathological grades of pancreatic ductal adenocarcinoma. Quant Imaging Med Surg. 2018;8(3):301-310. doi: 10.21037/qims.2018.04.08.

96. Grigsby P.W., Siegel B.A., Dehdashti F., Rader J., Zoberi I. Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol. 2004;22(11):2167-2171. doi: 10.1200/JCO.2004.09.035.

97. Solodkiy V.A., Sergeyev N.I., Titova V.A. [CT and MRI visualization of endostats for contact radiation therapy using new generation intracavitary devices]. Med Physics. 2020;3:53-58. Russian.

98. Chang T.C., Law K.S., Hong J.H., Lai C.H., Ng K.K., Hsueh S., et al. Positron emission tomography for unexplained elevation of serum squamous cell carcinoma antigen levels during follow-up for patients with cervical malignancies: a phase II study. Cancer. 2004;101(1):164-171. doi: 10.1002/cncr.20349.

99. Giesel F.L., Kratochwil C., Schlittenhardt J., Dendl K., Eiber M., Staudinger F, et al. Head-to-head intra-individual comparison of biodistribution and tumor uptake of 68Ga-FAPI and 18F-FDG Nucl. Med. Mol. Imaging. 2021. Vol. 48, no. 13. P. 4377-4385. doi: 10.1007/s00259-021-05307-1.

100. Value of 18F-FDG PET for predicting response to neoadjuvant therapy in rectal cancer: systematic review and meta-analysis / A.M. Maffione, M.C. Marzola, C. Capirci et al. Am. J. Roentgenol. 2015. Vol. 204, no. 6. P. 1261-1268. doi: 10.2214/AJR.14.13210.

101. Calculation of the MKD-04 scintillation dosimeter for g radiation from a 192Ir sourse / V.N. Vasil'ev, A.V. Sumin, A.M. Medvedkov et al. Biomed. Eng. 2020. Vol. 54, no. 2. P. 113-116. doi: 10.1007/s10527-020-09985-3.

102. The Will Rogers phenomenon, breast cancer and race / M.R. Nittala, E.K. Mundra, S. Packianathan et al. BMC Cancer. 2021. Vol. 21. P. 554. doi: 10.1186/s12885-021-08125-8.

103. Capabilities of new complex pelvic MRI examination in vagina neoplastic lesion diagnosis and treatment planning / J. Kreynina, S.P. Burnashkina, N.V. Nudnov, V.A. Solodky. In: 15th Biennial Meeting of the International Gynecologic Cancer Society. Melbourne, Australia; November 8-11, 2014.

104. PET/CT imaging for tatget volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEAconsensus report 2014 / T. Conert et al. Radiother. Oncol. 2014. Vol. 116, no. 1. P. 27-34. doi: 10.1016/j.radonc.2015.03.014.

105. PET/CT evaluation of cervical cancer: spectrum of disease / H. Son, A. Kositwattanarerk, M. P. Hayes et al. J Radiographics. 2010. Vol. 30, no. 5. P. 1251-1268. doi: 10.1148/rg.305105703.

106. Позитронная эмиссионная томография в диагностике и мониторинге лимфопролиферативных заболеваний / В.И. Чернов, Е.А. Дудникова, В.Е. Гольдберг и др. Медицинская радиология и радиационная безопасность. 2018. Т. 6, № 63. С. 41-50.

107. Reevaluation body weight and age with standardized uptake value in the liver cancer for [18F] FDG PET/CT. / A.B. Hade, S.M. Kadam, S.I., Essa. EastEur. J. Physics. 2023. Vol. 2. P. 277-281. doi: 10.26565/2312-4334-2023-2-31.

108. Meta-analysis of the additional value of integrated 18FDG PET-CT for tumor distant metastasis staging: comparison with 18FDG PET alone and CT alone / Gao G., Gong B., Shen W. Surg Oncol. 2013. Vol. 22. P. 195-200.

109. Radiosensitizing effect of irisquinone on glioma through the down-regulation of HIF-1alpha evaluated by 18F-FDG and 18F-FMISO PET/CT / H. Wang, Y. Zhang, W. Yu, et al. Nucl. Med. Commun. 2016. Vol. 37, no. 7. P. 705-714. doi: 10.1097/MNM.0000000000000498.

110. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors / J. Strosberg, G. El-Haddad, E. Wolin et al. New Engl. J. Med. 2017. Vol. 376, no. 2. P. 125-135. doi: 10.1056/ NEJMoa1607427.

111. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT) / C. Kratochwil, W.P. Fendler, M. Eiber et al. Eur. J. Nucl. Med. Mol. Imaging. 2019. Vol. 46, no. 12. P. 2536-2544. doi: 10.1007/s00259-019-04485-3.

112. PET/CT in cancer patients. Eur J Nucl Med Mol Imaging. 2021;48(13):4377-4385. doi: 10.1007/s00259-021-05307-1.

113. Maffione A.M., Marzola M.C., Capirci C., Colletti P.M., Rubello D. Value of 18F-FDG PET for predicting response to neoadjuvant therapy in rectal cancer: systematic review and meta-analysis. Am J Roentgenol. 2015;204(6):1261-1268. doi: 10.2214/AJR.14.13210.

114. Vasil'ev V.N., Sumin A.V., Medvedkov A.M., Kokontsev D.A., Titova V.A., Kokontsev A.A., Smyslov A.Yu. Calibration of the MKD-04 scintillation dosimeter for g radiation from a 192Ir sourse. Biomed Eng. 2020;54(2):113-116. doi: 10.1007/s10527-020-09985-3.

115. Nittala M.R., Mundra E.K., Packianathan S., Mehta D., Smith M.L., Woods W.C., et al. The Will Rogers phenomenon, breast cancer and race. BMC Cancer. 2021;21(1):554. doi: 10.1186/s12885-021-08125-8.

116. Kreynina J., Burnashkina S.P., Nudnov N.V., Solodky V.A. Capabilities of new complex pelvic MRI examination in vagina neoplastic lesion diagnosis and treatment planning. 15 Biennial Meeting of the International Gynecologic Cancer Society. Melbourne, Australia, November 8-11; 2014.

117. Konert T., Vogel W., MacManus M.P., Nestle U., Belderbos J., Gregoire V., et al. PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiother Oncol. 2015; 116(1 ):27-34. doi: 10.1016/j.radonc.2015.03.014.

118. Son H., Kositwattanarerk A., Hayes M.P., Chuang L., Rahaman J., Heiba S,et al. PET/CT evaluation of cervical cancer: spectrum of disease. J Radio Graphics. 2010;30(5):1251-1268. doi: 10.1148/rg.305105703.

119. Chernov V.I., Dudnikova Ye.A., Goldber B.E., Kravcuk T.L., Danilova A.V., Zelchan R.V., et al. [Positron emission tomography in the diagnosis and monitoring of lymphoproliferative diseases.] Med Radiol Radiat Safety. 2018;6(63):41-50.

120. Hade A.B., Kadam S.M., Essa S.I. Reevaluation body weight and age with standardized uptake value in the liver cancer for [18F] FDG PET/CT. East European Journal of Physics. 2023;2:277-281. doi: 10. 26565/2312-4334-2023-2-31.

121. Gao G., Gong B., Shen W. Meta-analysis of the additional value of integrated 18FDG PET-CT for tumor distant metastasis staging: comparison with 18FDG PET alone and CT alone. Surg Oncol. 2013;22(3):195-200.

122. Wang H., Zhang Y., Yu W., Zhao X., Xue Y., Xu H. Radiosensitizing effect of irisquinone on glioma through the downregulation of HIF-1alpha evaluated by 18F-FDG and 18F-FMISO PET/CT. Nucl Med Commun. 2016;37(7):705-714. doi: 10.1097/MNM.0000000000000498.

123. Strosberg J., El-Haddad G., Wolin E., Hendifar A., Yao J., Chasen B,et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. New Engl J Med. 2017;376(2):125-135. doi: 10.1056/nej-moa1607427.

124. Kratochwil C., Fendler W.P., Eiber M., Baum R., Bozkurt M.F., Czernin J., et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2019;46(12):2536-2544. doi: 10.1007/s00259-019-04485-3.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.