Формирование познавательного интереса на уроках математики
Историко-педагогический аспект проблемы формирования познавательного интереса как мотив учебной деятельности. Исследование познавательных интересов школьников: анкетирование и интервьюирование. Урок математики и информационно-компьютерные технологии.
Рубрика | Педагогика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 14.05.2014 |
Размер файла | 667,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Формирование познавательного интереса на уроках математики
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. Историко-педагогический аспект проблемы формирования познавательного интереса
1.1 Понятие о познавательном интересе
1.2 Познавательный интерес как мотив учебной деятельности
1.3 Уровни развития познавательного интереса
1.4 Динамика познавательных интересов детей
2. Исследование познавательных интересов школьников
2.1 Анкетирование
2.2 Интервьюирование школьников, учителей, родителей
2.3 Лабораторный эксперимент
2.4 Наблюдение. Показатели познавательного интереса
2.5 Монографические характеристики
2.6 Анализ результатов исследования познавательного интереса к учению
3. Формирование познавательных интересов на уроках математики
3.1 Содержание учебного материала
3.1.1 Новизна содержания учебного материала
3.1.2 Практическая значимость содержания знаний
3.1.3 Межпредметные связи
3.1.4 Исторический материал
3.2 Организация учебной деятельности
3.2.1 Проблемное обучение
3.2.2 Практические работы
3.2.3 Творческие работы
3.2.4 Информационно-компьютерные технологии
ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА
ПРИЛОЖЕНИЯ
ВВЕДЕНИЕ
Учение, лишенное всякого интереса
и взятое только силой принуждения, убивает
в ученике охоту к овладению знаниями.
Приохотить ребенка к учению гораздо более
достойная задача, чем приневолить.
К.Д. Ушинский
Современное общество ждет от школы мыслящих, инициативных, творческих выпускников с широким кругозором и прочными знаниями. Школа в условиях модернизации системы образования ищет пути, которые позволили бы выполнить этот заказ общества.
В любое время, в каждой школе и классе есть дети, которые отстают в учении от своих одноклассников по причине нежелания учиться, т.е. по причине отсутствия ценнейшего и самого важного из мотивов учения -- познавательного интереса.
Как же сделать учение интересным для учащихся? Как изжить скуку на уроке? Как разбудить в ученике стремление работать над собой, стремление к творчеству? педагогический учебный школьник математика
Чтобы ответить на эти вопросы обратилась к изучению проблемы формирования познавательного интереса школьников к учению на уроках математики.
Цель: Изучить наиболее эффективные способы и условия формирования познавательного интереса школьников к учению на уроках математики, обобщить и систематизировать личный опыт практической деятельности по формированию познавательного интереса учащихся.
Задачи:
· изучить психолого-педагогические и методические теоретические источники по данному вопросу;
· проанализировать программу по математике и учебную литературу с точки зрения возможностей решения поставленной проблемы;
· апробировать в процессе обучения учащихся различные виды работы по формированию познавательного интереса школьников к учению;
· в ходе работы использовать следующие методы исследования познавательных интересов:
-- анкетирование;
-- интервью;
-- лабораторный эксперимент;
-- наблюдение,
· проанализировать результативность проведенного исследования.
Объект исследования: процесс формирования познавательного интереса школьников к учению на уроках математики.
Гипотеза: Если создавать условия для формирования познавательного интереса и целенаправленно и регулярно его развивать, это будет способствовать достижению более высокого уровня познавательного интереса, и, следовательно, качественному росту результатов обучения.
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
1. Историко-педагогический аспект проблемы формирования познавательного интереса
Проблема интереса к учению в истории русской педагогической мысли и в практике обучения выкристаллизовывалась постепенно под влиянием требований жизни. Социально-экономические изменения в России, начиная со второй половины XVIII в. подводили к жизненно назревшим вопросам развития просвещения. К перестройке просвещения в России и поиску путей усвоения знаний, пригодных для развития в стране промышленности и торговли, с учётом, однако, интересов помещиков-крепостников, были привлечены образованнейшие для того времени люди, воспринявшие передовые идеи европейской педагогики, -- И.И. Бецкой и Ф.И. Янкович. Идеи И.И. Бецкого создать сословные учебные заведения и вырастить в них «новую породу людей» выражали новое отношение к природе человека. Природу ребёнка нельзя разбудить, пока учение будет горестным, нужно приохотить детей к занятиям, вызвать у них любовь к учению. Практически руководя перестройкой образования в России, Бецкой доказывал это в уставных документах и в своих работах. Однако реализовать идею не удалось. Дальнейший поиск системы образования и обучения осуществлялся Ф.И. Янковичем. Янкович выступал за использование в обучении элементов занимательности, игры, оживляющих занятия. Он впервые увидел связь интереса к учению с нравственностью. Линия связи интереса с нравственным воспитанием прослеживается и во взглядах Н.И. Новикова. Он отождествлял любопытство с потребностью в учении. Условием развития любопытства Н.И. Новиков считал знание воспитателя сил и способностей, которые дают наблюдения за занятиями ребёнка «по натуральному побуждению», выражающему интерес, внимание к изучаемому. Реализовать первые подступы к проблеме интереса в обучении было трудно. В училищах, организованных Н.И. Новиковым и в народных училищах, основанных Ф.И. Янковичем, преобладали зубрёжка, побои, и дети стремились убегать с уроков, пропускали занятия по нескольку месяцев. В первой половине XIX в. общественно-экономическое развитие России всё же привело к созданию в стране системы образования, требовавшей новой дидактической теории, которой в России в начале века ещё не было. Появляются отдельные, правда, переводные работы по педагогике. Впервые любопытство от любознательности отграничил В.Ф. Одоевский. Он считал, что свойственное детям любопытство при надлежащем руководстве может перерасти в любознательность, в страсть к познанию, развивающую умственную самостоятельность. В.Г. Белинский и А.И. Герцен были убеждены в том, что любознательность детей следует в первую очередь развивать при помощи естественных наук, книг, знакомящих с землёй, природой, которые сильнее всего могут заинтересовать детей, так как природа близка им. Для педагогических воззрений В.Г. Белинского и А.И. Герцена характерна связь интереса к познанию с интересом социальным. Но эта идея не могла найти своего воплощения, поскольку В.Г. Белинский писал в подцензурной России, а работы А.И. Герцена вообще были запрещены. И, тем не менее, передовая педагогическая мысль 60-70-х гг. XIX в. не обходила стороной проблему интереса в обучении, несмотря на то, что социальных исследований по этой проблеме всё ещё не было. Обстоятельно, в контексте своей педагогической теории проблему интереса рассмотрел К.Д. Ушинский. В своей теории он психологически обосновал интерес в обучении. Глубокая психологическая основа всей педагогической теории К.Д. Ушинского и проблемы интереса усилили внимание к природосообразному развитию детей. Обострённая критика обучения и воспитания в период общественно- педагогического подъёма привела к идее пристального внимания к внутреннему миру ребёнка на основе его полной свободы. Эту точку зрения отразил в своих педагогических взглядах Л.Н. Толстой. Он справедливо считал, что интерес ребёнка может раскрыться лишь в условиях, не стесняющих проявление его способностей и наклонностей. Интерес в педагогических взглядах Толстого является центром всей педагогической работы. Важнейшее условие проявления интереса -- это создание на уроке такой естественной, свободной атмосферы, которая вызывает подъём душевных сил ребёнка. Л.Н. Толстой всецело полагался на интересы детей, за учителем оставалось право лишь фиксировать увлечения детей, связанные с их природой. Н.А. Добролюбов и Н.Г. Чернышевский считали, что только воспитание, опирающееся на разумную свободу ребёнка, развивает его интересы и любознательность, укрепляет его ум и волю. С этих позиций Н.А. Добролюбов высоко оценивал школы Р. Оуэна, где учителя поддерживали и развивали интерес детей к учению. Но прогрессивные идеи трудно было применить на практике. Причин было много: неудовлетворительная подготовка учителей, особенно начальной школы, консерватизм учителей, перегруженность программ, тяжёлое материальное положение народного учителя. В начале XX в. отдельным изданием вышла работа по интересу в обучении А.И. Анастасиева. В этом исследовании весь процесс обучения раскрывался через призму интереса. После победы Октябрьской революции поиск новых путей учебно-воспитательной работы связывался с задачей воспитания поколений, способных строить коммунистическое общество. С марксистских позиций рассматривала проблему интереса Н.К. Крупская. Практическое применение прогрессивные идеи по проблеме интереса в обучении нашли в опыте педагогов А.С. Макаренко и С.Т. Шацкого. С.Т. Шацкий уделял самое серьёзное внимание проблеме интереса в обучении. Но С.Т. Шацкий не избежал противоречий: с одной стороны, как он считал, интерес -- важный фактор активного усвоения ребёнком социального опыта, с другой -- роль интереса он видел в приспособлении ребёнка к окружающей среде. А.С. Макаренко раскрывает некоторые методические приёмы поддержания и развития интереса: подсказка, вызывающая догадку, постановка интересного вопроса, введение нового материала, рассматривание иллюстраций, наталкивающих на вопросы, и т.д. Макаренко считал, что жизнь и труд ребёнка должны быть пронизаны интересом, что содержание образовательной работы определяется детским интересом. В диалектике воспитательного процесса А.С. Макаренко показал единство содержания, средств и методов воспитания, раскрыл логику воспитательного процесса, исходя из сочетания требований общественной жизни с интересами детского коллектива и интересами отдельной личности. Дальнейшая разработка проблемы интереса была связана с переходом на классно-урочную систему обучения. Ш.А. Амонашвили разрабатывал проблему интереса в обучении шестилеток. Интерес к учению слит со всей жизнедеятельностью младшего школьника: неосторожный поворот метода, однообразие приёма может расшатать интерес, который ещё очень хрупок. Лабораторией экспериментальной диалектики НИИ педагогики Грузии под руководством Ш.А. Амонашвили разработаны психолого-педагогические основы, заложенные в эксперименте по обучению шестилеток, накоплены приёмы стимулирования познавательных интересов детей (преднамеренные «ошибки» учителя, задачи на внимание, сочинительство сказок, задачи на сравнение и т.д.). Сегодня проблема интереса всё шире исследуется в контексте разнообразной деятельности учащихся, что позволяет творчески работающим учителям, воспитателям успешно формировать и развивать интересы учащихся, обогащая личность, воспитывать активное отношение к жизни.
1.1 Понятие о познавательном интересе
«Познавательный интерес - это избирательная направленность личности, обращенная к области познания, к ее предметной стороне и самому процессу овладения знаниями» (Г.И. Щукина).
Эта направленность характеризуется постоянным стремлением к познанию, к новым, более полным и глубоким знаниям. Систематически укрепляясь и развиваясь познавательный интерес становится основой положительного отношения к учению. Под его влиянием у человека постоянно возникают вопросы, ответы на которые он сам постоянно и активно ищет. При этом поисковая деятельность школьника совершается с увлечением, он испытывает эмоциональный подъем, радость от удачи. Познавательный интерес направлен не только на процесс познания, но и на результат его, а это всегда связано со стремлением к цели, с реализацией ее, преодолением трудностей, с волевым напряжением и усилием. Познавательный интерес - не враг волевого усилия, а верный его союзник. В интерес включены, следовательно, и волевые процессы. Таким образом, познавательный интерес - это соединение психических процессов: интеллектуального, волевого и эмоционального. Они очень важны для развития личности.
Условно все показатели, можно разделить на три группы [Щукина,3 с. 208]:
I.Показатели интеллектуальной активности: вопросы ученика, обращённые к учителю; стремление учащихся по собственному желанию участвовать в деятельности, в учебном процессе; активное оперирование приобретёнными знаниями, умениями и навыками; стремление поделиться с окружающими новой, свежей информацией, почерпнутой из разных источников за пределами учебной программы.
II.Показатели эмоциональных проявлений: переживание учащимися гнева, страха, возмущения радости, грусти, вдохновения, удовлетворения и другие менее значимые. Эмоциональные показатели становятся менее выраженными при переходе детей в старшие классы, где они уже умеют скрывать и регулировать своё эмоциональное состояние.
III.Показатели волевых проявлений: сосредоточенность внимания и слабая отвлекаемость; применение различных способов для разрешения сложной задачи; стремление учащихся к завершенности учебных действий, а также свободный выбор деятельности.
Итак, интеллектуальная, волевая и эмоциональная стороны познавательного интереса выступают как единое взаимосвязанное целое.
1.2 Познавательный интерес как мотив учебной деятельности
Познавательный интерес - один из самых значимых мотивов учения. В общей структуре мотивации познавательной деятельности этот мотив раньше других осознается учеником, который, не задумываясь, может указать на интересный и неинтересный ему школьный предмет, на интересный или неинтересный урок.
Действие познавательного интереса как мотива учения бескорыстно. Если это реально действующий мотив, то ему подчиняется деятельность на уроке, досуг, общение. Познавательная деятельность становится воодушевленной, свободной и легкой. Снимается проблема школьной перегрузки.
Познавательный интерес, взаимодействуя с социальными, нравственными мотивами, мотивом самовоспитания, обогащает личность.
Психологи и педагоги выделяют три основных мотива, побуждающих школьников учиться.
Во-первых, интерес к предмету. (Я изучаю математику не потому, что преследую какую-то цель, а потому, что сам процесс изучения доставляет мне удовольствие). Высшая степень интереса - это увлечение. Занятия при увлечении порождают сильные положительные эмоции, а невозможность заниматься воспринимается как лишение.
Во-вторых, сознательность. (Занятия по данному предмету мне не интересны, но я сознаю их необходимость и усилием воли заставляю себя заниматься).
В-третьих, принуждение. (Я занимаюсь потому, что меня заставляют родители, учителя). Часто принуждение поддерживается страхом наказания или соблазном награды. Различные меры принуждения в большинстве случаев не дают положительных результатов.
Мною совместно с психологом школы было проведено анкетирование 64 учащихся с целью определения мотива изучения школьниками математики и влияния мотива на эффективность обучения.
Некоторые результаты опроса представлены в таблице.
Результаты опроса учащихся, выявляющего мотив изучения математики
9А |
9Б |
10А |
Общий итог |
||
Интерес к предмету |
29% |
73% |
50% |
50% |
|
Сознательность |
71% |
27% |
50% |
50% |
|
Принуждение |
0 |
0 |
0 |
0 |
Из приведенных в таблице данных следует, что 50% учащихся изучают математику в силу интереса к предмету. 65% учащихся, ответивших, что изучают математику, потому что это им интересно, имеют по ней четвертные оценки 4 и 5. Значит, интерес к предмету - самый сильный стимул к учению.
В отличие от других стимулов, интерес в очень высокой степени повышает эффективность уроков. Так как ученики занимаются в силу своего внутреннего влечения, по собственному желанию, то учебный материал они усваивают достаточно легко и основательно, в силу этого имеют хорошие оценки по предмету. У большинства неуспевающих учеников обнаруживается отрицательное отношение к учению. Таким образом, чем выше интерес учащегося к предмету, тем активнее идет обучение и тем лучше его результаты. Чем ниже интерес, тем формальнее обучение, хуже его результаты. Отсутствие интереса приводит к низкому качеству обучения, быстрому забыванию и даже к полной потере приобретенных знаний, умений и навыков.
Значит, можно сделать вывод: для успешного обучения школьников необходимо вызвать у учащихся интерес к овладению знаниями.
Формируя познавательные интересы у учащихся, надо иметь в виду, что они не могут охватывать всех учебных предметов. Интересы носят избирательный характер, и один ученик, как правило, может заниматься с настоящим увлечением лишь по одному двум предметам. Но, наличие устойчивого интереса к тому или иному предмету положительно сказывается на учебной работе по другим предметам, тут имеют значение как интеллектуальные, так и моральные факторы. Интенсивное умственное развитие, связанное с углубленным изучением одного предмета, облегчает и делает более эффективным учение школьника по другим предметам. С другой стороны, достигаемые успехи в учебной работе по любимым предметам укрепляют чувство собственного достоинства ученика, и он стремится прилежно заниматься вообще.
Таким образом, важной задачей учителя является формирование у школьников первых двух мотивов учения - интереса к предмету и чувства долга, ответственности в учебе.
1.3 Уровни развития познавательного интереса
В развитии познавательного интереса можно выделить ряд уровней: любопытство, любознательность, собственно познавательный интерес, творческий интерес. Эти уровни определяют разную степень избирательной направленности, избирательного отношения ученика к предмету и, соответственно, степень влияния познавательного интереса на личность.
Любопытство - элементарная стадия познавательного интереса. Оно обусловлено чисто внешними обстоятельствами, привлекающими внимание человека. На этой стадии отсутствует подлинное стремление к познанию, но любопытство может быть его начальным толчком. Человек при этом является пассивным объектом внешнего воздействия. Любопытство - есть реакция на изменение обстановки, на появление нового в окружающем мире. Интерес этого уровня - поверхностный, фрагментарный, ситуативный, связанный с переживанием своего отношения к предмету в данный момент. Любопытство особенно характерно для младшего школьного возраста, когда вступающему в жизнь интересно все. Но интерес этот неглубок.
Любопытство в подростковом возрасте совсем не исчезает. Оно приобретает другую форму. Поле его действия суживается. Появляется более высокий уровень познавательного интереса -любознательность. Там, где для любопытства уже нет материала, для любознательного только начинается работа. Это - работа мысли; разбуженной случайным фактом. Это стремление к более глубокому анализу явлений действительности, к познанию новой неизвестной закономерности. Для любознательного ученика при решении задачи исчезает время и пространство.
На этапе любознательности интерес еще в полной мере не освободился от интереса к фабуле, к описаниям. И, тем не менее, он уже носит поисковый характер, связанный с желанием проникнуть в более глубокие основания знаний. При этом импульс активности исходит уже не со стороны, а от самого человека, что в корне меняет характер интереса. Такой интерес не угасает с окончанием той или иной ситуации, он заставляет все глубже погружаться в интересующую деятельность. Привлекательной для ученика становится сама деятельность. Постоянное погружение в деятельность предполагает наличие возможностей самостоятельной работы. Ученик становится субъектом деятельности. А познавательный интерес с уровня любознательности переходит на более высокий уровень собственно познавательного интереса.
Под творческим интересом понимают такой уровень познавательного интереса, когда ученик стремится осуществить самостоятельную, творческую, поисковую деятельность. Это, в основном, узкий интерес к определенной отрасли знаний, переходящий в профессиональный интерес.
Выявить интенсивность и уровни развития познавательного интереса мне помогло интервьюирование и анкетирование родителей и учителей.
1.4 Динамика познавательных интересов детей
В разные периоды жизни можно выделить предпочтительный уровень развития познавательного интереса, хотя переход с более низкого уровня на более высокий очень индивидуален.
У младших школьников этот интерес имеет яркую эмоциональную окраску. Это интерес к впечатлениям, описаниям, наблюдениям. Познавательный интерес подростков в значительной мере определяется новообразованием этого возраста - стремлением к взрослению, стремлением к самостоятельности. Познавательный процесс в этом возрасте, хотя не освободился еще от интереса к фабуле, но уже связан с желанием, проникнуть в основание знаний, в существующие закономерности.
В старшем школьном возрасте многое в познавательном интересе остается от подросткового уровня. Но сам ученик меняется. Меняется направленность его интересов. Появляется острый интерес к человеку, к его предназначению, к сверстникам, к взрослым, к противоположному полу, к будущей специальности. Круг интересов становится шире, что обуславливает некоторое снижение познавательного интереса у старших школьников. Но, тем не менее, познавательный интерес оказывает значительное влияние на жизненные планы старших школьников, на выбор специальности.
2. Исследование познавательных интересов школьников
При исследовании познавательных интересов школьников были использованы следующие методы:
-- анкетирование;
-- интервьюирование школьников, учителей, родителей;
-- лабораторный эксперимент;
-- наблюдение,
2.1 Анкетирование
Анкетирование позволило получить материал, на основе которого были установлены различные связи между познавательными интересами школьников и их отношением к учению, школе, учителю и т.д.
Одни анкеты требовали выбора одного или нескольких ответов из предлагаемых, например, в перечне учебных предметов предлагалось подчеркнуть те, которые вызывают интерес.
При составлении анкет и проведении анкетного опроса сочетались прямые вопросы с косвенными, что позволило проверить точность ответов. Но недостатком анкетирования явилось то, что оно не помогло зафиксировать процесса формирования интересов, оно лишь зафиксировало факт наличия или отсутствия этих интересов.
2.2 Интервьюирование школьников, учителей, родителей
Узнать возрастные и специфические, связанные с индивидуальным образом жизни, особенности, а так же уровень развития интересов каждого школьника помогли интервью с учителями, классными руководителями, родителями и сами учениками.
Интервью с учителями различных предметов позволили установить то общее и то особенное, что характеризует познавательные интересы классов, в которых я работаю.
Иногда интересы одного и того же школьника по-разному характеризовались различными учителями. Предположения, что у данного школьника доминирует познавательный интерес в определенной области или же учитель поверхностно знаком с интересами этого ученика, проверялись с помощью других методов.
2.3 Лабораторный эксперимент
Для диагностики познавательных интересов учащихся использовала также методику лабораторного эксперимента.
Эксперимент состоял в следующем. В начале урока в классе вывешивается таблица:
Номер задач |
Оценка задачи по уровню |
|||
проблемности |
сложности |
полезности |
||
1 2 3 4 5 6 7 8 9 10 11 12 |
5 5 5 2 4 4 2 3 4 4 3 3 |
4 4 3 3 5 5 5 2 4 3 2 3 |
4 2 4 3 4 2 4 5 5 5 5 2 |
Затем учитель говорит ученикам: «Каждый из вас должен выбрать из таблицы по своему усмотрению любое число задач, записать их номера на листочке я сдать этот листочек мне. Я взамен дам вам эти задачи, которые вы должны решить на уроке. За каждую решенную задачу вам будет начислено то число очков, которое указано в таблице. Будем соревноваться: кто наберет наибольшее число очков.
Каждая задача оценена по трем признакам: по проблемности, сложности и полезности. Под проблемностью следует понимать наличие в задаче новой проблемы -- нового вопроса, нового подхода к решению, новой ситуации. Под сложностью задачи следует понимать, насколько сложна, трудна задача, а под полезностью - отношение этой задачи к изучаемому нами материалу, насколько решение этой задачи поможет в усвоении и закреплении изучаемого материала. Чем выше число очков, указанных в таблице, тем больше уровень соответствующего признака. Поэтому подумайте, какие задачи выбрать и сколько, чтобы успеть решить за урок».
После того, как ученики сдадут учителю листки с номерами выбранных задач, он им раздаёт обычные задачи -- упражнения. При обработке результатов учитывается лишь выбор учащимися задач, а не их решение. Сила внутреннего мотива учения подсчитывается по формуле (приложение)
Свободный выбор задач явился своеобразным показателем познавательной активности учеников, связанной с познавательными интересами (предпочтение творческих задач репродуктивным, выбор задач поискового характера, выбор зданий по определенному предмету и проч.).
2.4 Наблюдение. Показатели познавательного интереса
Наблюдение дало возможность собрать факты, проследить сам процесс становления и развития интересов у отдельных учащихся и в классах, установить силу и слабость различных приемов побуждения познавательных действий учеников.
Определение уровней развития познавательного интереса учащихся опиралось на следующие показатели: уровень познавательной активности, волевые и эмоциональные проявления учащихся в процессе учебной деятельности и за ее пределами, предложенные Г.И. Шукиной [3 с. 208].
В таблице приведены показатели, по которым обнаруживался познавательный интерес у учащихся.
Проявления, характеризующие познавательную активность учащихся |
Эмоциональные проявления |
Показатели, раскрывающие картину устойчивости и силы познавательного интереса |
|
??вопросы, с которыми учащиеся обращались к учителю, взрослым; ??стремление учеников по собственному желанию, без указаний и требований, принять участие в рассмотрении и обсуждении вопросов, в дополнении и исправлении ответов товарищей; ??сосредоточенность произвольного внимания как свидетельство сосредоточенности мыслей на предмете интереса; ??характер процесса деятельности: а) как принимается задание - с готовностью к действию или безразличием; б) как выполняется познавательная задача - самостоятельно или по образцу; в) внимателен ученик или рас- сеян; г) каково отношение ученика к процессу своей деятельности ? увлечен или равнодушен; д) каков результат выполнения познавательной задачи (глубина, основательность, оригинальность или узость и примитивность в подходе). |
??в речевых реакциях - в восклицаниях (типа «Вот здорово!»), в обмене мнениями с соседом; ??в особом эмоциональном последствии, в наступившей тишине, свидетельствующем о взволнованности, поглощенности только что высказанными мыслями, суждениями о полноте чувств, которые испытывают учащиеся; ??в адекватности реакций учащихся в ответ на происходящее в классе (смех в ответ на юмор, мимика радости, разочарования, гнева, мыслительного напряжения, соответствующие содержанию ситуации). |
??избирательная направленность круга чтения учащихся; ??их участие по свободному выбору в различных формах и видах внеклассной работы (КВН, предметных кружках, вечерах, расширяющих кругозор); ??выполнение индивидуальных заданий; ??характер использования свободного времени |
2.5 Монографические характеристики
В результате проведённого исследования, с использованием всех названных методов, были составлены монографические характеристики учащихся, которые находились на разных уровнях развития познавательного интереса.
Так, Вера П., по результатам диагностики отнесена к высокому уровню, обладает сильным, глубоким и устойчивым познавательным интересом, который выступает как стержневой мотив учебной деятельности. Веру привлекают предметы естественно-математического цикла, она всегда готовится отвечать на уроке по дополнительным источникам литературы. Всегда выполняет домашние работы по всем учебным предметам без исключения. Ей свойственны увлеченность, сосредоточенность, интеллектуальная активность, положительные эмоции в процессе учебной деятельности. Девочка учится только на отлично. Как мотив учебной деятельности познавательный интерес занимает высшую степень в структуре мотивации учения, далее идут такие мотивы как профессиональная направленность, долг перед родителями, избегание неприятностей или потеря авторитета в классе.
Оля Б. обладает средним уровнем развития познавательного интереса. Проявляет избирательное отношение к определенным предметам, активность при побуждающих действиях учителя, предпочитает не творческий, а поисковый, реже репродуктивный вид учебной деятельности. Учится на “четыре” и “три”. Познавательный интерес как мотив учения занимает серединное место в структуре мотивации учения. Он находится следом за мотивом ответственности перед своей будущей семьей. Далее стоит мотив долга перед родителями, учителями (“...они ведь в меня верят, я не должна их расстраивать своими оценками, поэтому мне надо учиться на “четыре” и “пять”...”), значительное место в системе мотивации учения занимает мотив избегания плохих оценок, недовольных оценок со стороны учителей и родителей.
Алина Б. -- девочка со слабым неглубоким, неустойчивым познавательным интересом, соответствующим низкому уровню развития. Характеризуется аморфностью и изменчивостью. Девочка никогда самостоятельно не включается в процесс урока, никогда не отвечает по собственному желанию. Несистематическое выполнение домашних заданий снижает объем и качество приобретаемых знаний. Волевые качества не развиты: часто отвлекается, невнимательна при объяснении нового материала, предпочтение отдает репродуктивному виду учебной деятельности. Учится на “три” и “четыре”, “пятерки” редки. Характер ее работы на уроке свидетельствует о ситуативном характере познавательного интереса. Установлено, что в структуре мотивации учения познавательный интерес стоит на последней ступени, а первые занимают такие мотивы как: общение с другими, внеклассные мероприятия, аттестат, долг перед родителями (“...учеба -- это мое бремя, тяжелая работа...”). Т.е. познавательный интерес как мотив учения еще не осознан.
2.6 Анализ результатов исследования познавательного интереса к учению
Формирование познавательного интереса к учению является необходимым условием для повышения результатов обучения и развития творческих способностей учащихся.
Познавательный интерес - один из самых значимых мотивов учения, интерес к предмету - самый сильный стимул к учению.
В отличие от других стимулов, интерес в очень высокой степени повышает эффективность уроков. Так как ученики занимаются в силу своего внутреннего влечения, по собственному желанию, то учебный материал они усваивают достаточно легко и основательно, в силу этого имеют хорошие оценки по предмету. У большинства неуспевающих учеников обнаруживается отрицательное отношение к учению. Таким образом, чем выше интерес учащегося к предмету, тем активнее идет обучение и тем лучше его результаты. Чем ниже интерес, тем формальнее обучение, хуже его результаты. Отсутствие интереса приводит к низкому качеству обучения, быстрому забыванию и даже к полной потере приобретенных знаний, умений и навыков.
Результаты исследования показали наличие познавательного интереса, его более высокий уровень и интенсивность в классах, где в течение нескольких лет велась целенаправленная работа по его формированию (9-б, 10-А), по сравнению с классом, в котором я не работала (9-а).
Значит, можно сделать вывод: для успешного обучения школьников необходимо вызвать у учащихся интерес к овладению знаниями.
3.Формирование познавательных интересов на уроках математики
Познавательный интерес, как и всякая черта личности и мотив деятельности школьника, развивается и формируется в деятельности, и, прежде всего в учении. Формирование познавательных интересов учащихся в обучении может происходить по двум основным каналам, с одной стороны само содержание учебных предметов содержит в себе эту возможность, а с другой - путем определенной организации познавательной деятельности учащихся.
3.1 Содержание учебного материала
В содержании учебного материала на формирование познавательного интереса могут влиять:
· новизна;
· практическая значимость;
· межпредметные связи;
· исторические сведения.
3.1.1 Новизна содержания учебного материала
Первое, что является предметом познавательного интереса для школьников - это новые знания о мире. У части детей сам факт познавания чего-либо неизвестного для них вызывает интерес. Для других - изучаемый материал только тогда вызывает интерес, когда его содержание смогло их поразить, удивить, озадачить.
Для того чтобы, новый материал вызывал познавательный интерес у, как можно, большего количества учащихся я использую разные методические приёмы.
В 5-6 классах изложение нового материала провожу в виде сказок или путешествий. Например, при изучении средней скорости движения многие ученики, услышав слово «средняя», быстро ассоциируют его с понятием средней величины, познавательный интерес пропадает и понятие остаётся неусвоенным. Сказка же увлекает каждого пятиклассника, и материал усваивают все.
Задача-сказка. Затерялся в океан-море сказочный остров Тили-Били. День-деньской аборигены острова пускают кораблики в ручейках. Кораблики с моторчиками. Плывут они вначале вниз по течению, затем поворачиваются и проходят такое же расстояние против течения (если, конечно, справятся с ним).
По вечерам тилибильцы хвастают, чей кораблик красивее, чей быстроходнее. Спорят. Одни утверждают, что средняя скорость в медленно текущем ручье больше, другие говорят: «Нет, в быстром ручье и средняя скорость больше».
А как думаете вы? Что будет, если скорость течения равна собственной скорости кораблика?
Однажды тилибилец по имени Тилибом заявил, что средняя скорость кораблика не зависит от скорости течения и равна скорости в стоячей воде. Взял карандаш и стал доказывать это вычислением:
-- Скорость моего кораблика в луже 5 м/мин. Я пустил его по ручью, скорость течения которого 3 м/мин. Тогда вот что получается:
скорость по течению равна сумме (5+3) м/мин, т.е. 8 м/мин;
скорость против течения равна разности (5-3) м/мин, т.е. 2 м/мин;
средняя скорость -- это полусумма (8+2):2= 5 м/мин.
Размещено на http://www.allbest.ru/
Какой тут тарарам поднялся! Тилибом еле ноги уволок. Тилибилъцы кричали:
-- Позор Тилибому! Подлог! Среднюю скорость надо вычислятъ так:
-- Пусть считает Тиливили! Он самый рассудительный! Тиливили стал считать:
-- Кораблик Тилибома за минуту пройдет вниз 8 м; чтобы вернуться, вверх должен пройти столько же -- 8 м.
Тиливили заполнил таблицу, где S -- пройденное расстояние, V -- скорость, t -- время.
Направление |
S |
V |
t |
|
по течению |
8 м |
8 м/мин |
1 мин |
|
против течения |
8 м |
2 м/мин |
4 мин |
Самый рассудительный вычислил среднюю скорость
(8+8):(1+4)=16 : 5 - 3,2 (м/мин). Так был посрамлен Тилибом.
Некоторым ученикам довольно трудно вникать в громоздкие трудные математические правила, запоминать формулы, заучивать не понятные формулировки. Для таких ребят «нематематического уровня» применяю разные методические уловки.
Например. Сложение чисел с разными знаками (6кл).
Положительные - девочки, отрицательные - мальчики, сложив, не забудь, кого ты посчитал.
Если складываем девочек (положительное число) и мальчиков (отрицательное число), то побеждает сильнейший (ставим знак большего модуля).
Определения синуса и косинуса острого угла прямоугольного треугольника (8 кл) для учеников очень похожи, разница в одном слове «противолежащий» или «прилежащий» катеты.
Облегчает запоминание определений синуса и косинуса следующий стишок:
Коль не знаешь правил - минус.
Если "О", то будет синус.
Если "И", то - косинус.
Если знаешь - тебе плюс!
Под буквой «О» во второй строчке четверостишья подразумевается противолежащий катет, отношение которого к гипотенузе дает синус, под буквой «И» - прилежащий катет, отношение которого к гипотенузе дает косинус.
Изучая неравенства (8 кл), ребята путают знаки «>» и «<» и, изображая на координатной прямой множество чисел, удовлетворяющих неравенству вида х > а или х < а, допускают ошибки. Для предупреждения ошибок, предлагаю учащимся направлять штриховку по «стрелке» неравенства.
Избегать ошибок при раскрытии скобок (6 кл) помогает опорный сигнал. Слова «плюс» и «перепиши» начинаются с одной той же буквы «п», а слова «минус» и «меняй» - с буквы «м».
Или следующие стишки:
Перед скобкой вижу плюc, Перед скобкой минус,
Ошибиться не боюсь!Будьте осторожными!
Скобки раскрываю, Знаки изменяются
Знаки сохраняю. На противоположные.
Новые факты и сведения, новизна содержания - не единственный и не постоянный стимул познавательного интереса, которым располагает содержание обучения. После уроков изучения нового материала идет целая серия уроков, рассматривающих единое содержание, которое либо закрепляется, либо углубляется.
3.1.2 Практическая значимость содержания знаний
В содержании учебного материала на формирование познавательного интереса существенное влияние оказывает практическая значимость содержания знаний. Интерес к изучению того или иного математического вопроса зависит от убежденности учащегося в необходимости изучить данный вопрос. Использование мотивации в виде примеров практического использования математических фактов подводит ученика к осознанию необходимости теоретических знаний.
Примеров очень много. Приведу несколько.
Перед знакомством с арифметической прогрессией в 9 кл предлагаю ребятам представить, что бригада строителей, членами которой они являются, подряжается строить заводскую трубу. Договор по оплате: за 1-й метр - 950 рублей, за 2-й метр - на 320 рублей больше, за 3-й метр - ещё на 320 рублей больше и т.д. Сколько заплатят за 38-й метр? Сколько денег получит бригада, построив трубу высотой 40 м? А теперь представьте, что никто из вас не знаком с арифметической прогрессией и придётся считать. После такой мотивировки ученики с интересом изучают арифметическую прогрессию, а при постоянном возвращении к задаче о бригаде легче запоминают основные формулы n-го члена и суммы n-первых членов АП.
Тема: “Сумма n членов арифметической прогрессии”.
1. Представь, что ты прораб на стройке. Привезли и выгрузили большое кол-во труб. Нужно быстро определить, чтобы закрыть наряд шоферу, сколько их (труб). Как ты это сделаешь? Какое рационализаторское предложение внесешь по транспортировки и выгрузке труб?
В данном случае нужно выбрать такую форму контейнера, или захвата для выгрузки, чтобы подсчет труб осуществлялся по простым формулам. Один из способов: использовать естественное расположение труб штабелем так, чтобы в каждом верхнем ряду количество оказывается на одну меньше, чем в предыдущем нижнем, т.е. число труб в последовательных рядах образуют арифметическую прогрессию, и общее кол-во легко подсчитывается по формуле суммы арифметической прогрессии с разностью равной 1. (Газета “ Математика”, № 24/1997, стр. 2)
Перед изучением темы «Признак перпендикулярности прямой и плоскости» (10 кл) решаем с учениками такую практическую задачу: демонстрирую на уроке деревянную рейку, длиной около двух метров и формулирую вопрос: «Надо поставить столб для забора, как это вы сделаете?» После дискуссии пришли к выводу, что надо «посмотреть с двух сторон», т.е. проверить на глаз перпендикулярность к земле с двух направлениях. Такое практическое задание подводит учащихся к самостоятельной формулировке теоремы.
Для многих учеников источник формирования познавательных интересов лежит в их практической деятельности, поэтому чтобы ребят заинтересовал и теоретический аспект использую практические измерительные задачи. Например, выполнив измерительные, практические работы по теме «Подобие треугольников» в 8 классе, учащиеся уже с большим интересом изучают признаки подобия. К таким практическим работам относятся: определение высоты дома из положения, лёжа, определение высоты дерева с помощью булавочного прибора, определение высоты дерева с помощью высокого шеста, определение высоты дерева с помощью записной книжки, определение высоты дерева при помощи зеркала.
3.1.3 Межпредметные связи
Ещё одним стимулом интереса, заключённым в содержании учебного материала, являются межпредметные связи математики с другими дисциплинами. Благодаря прикладным задачам, позволяющим интегрировать материал математики и естественных дисциплин можно формировать познавательный интерес у школьников не только к своему предмету, но и к предметам своих коллег.
К сожалению, в действующих учебниках прослеживается на примерах тесная связь математики чаще с физикой. Однако считаю, что для формирования познавательного интереса необходимо показывать значимость математики не только для самой себя и физики, но и для других школьных предметов естественного цикла. А сделать это можно лишь при решении определённо поставленных задач практического характера.
Например. Задачи на использование понятия производной функции, которые реализуют связь между математикой и биологией. Одна из таких задач - задача о нахождении наибольшего значения численности популяций микроорганизмов.
Задача. В среду с определёнными условиями существования вносят популяцию из 100 бактерий. Численность популяции возрастает по закону: , где t выражено в часах. Найти максимальный размер этой популяции до момента её угасания.
Решение. Найдём производную от функции z(t):
;
, но - 1 не удовлетворяет условию задачи, значит необходимо рассмотреть поведение производной функции в окрестности точки 1.
Видно, что 1 - точка максимума.
А это и говорит о том, что в момент времени t = 1 (час) популяция достигнет своего наибольшего значения (будет иметь максимальный размер).
Тогда, (бактерий).
Ответ: 150 бактерий.
Учащимся можно предложить задание на нахождение области значения некоторой функции, например, при решении экологических задач.
Задача . Смена в некоторой экологической системе подчиняется принципам периодичности и цикличности (луг - болото, болото - луг). Нам известен закон, по которому она происходит: , где t - время. Требуется найти размах между циклами смены (т.е. найти разницу между положениями "болото" и "луг" на графике функции h(t)).
Решение. Для определённости будем считать, что наибольшему значению функции h(t) соответствует положение "луг", а наименьшему - "болото".
Преобразуем функцию h(t):
.
Для того чтобы найти наибольшее и наименьшее значения данной функции, необходимо отыскать её область значений.
В силу того, что , то . Сл.,, где 8 - наибольшее значение функции ("луг"), а 6 - наименьшее ("болото").
Тогда размах равен 8 - 6 = 2.
Ответ: 2.
А при рассмотрении определённого интеграла интересным будет решить задачу следующего содержания.
Задача . Известно, что скорость химической реакции может быть выражена следующей формулой
,
где t - время (в минутах), в течении которого идёт реакция. Требуется найти массу (в граммах) вступившего в реакцию вещества за промежуток времени [4; 16].
Решение. Известно, что
,
где - приращение массы вещества, вступившего в реакцию, соответствующее приращению времени . Таким образом, данный предел - производная от массы по времени.
В нашем случае известна функциональная зависимость скорости реакции от времени. Тогда массу вещества, вступившего в реакцию можно вычислить по формуле:
,
где [t0; T] - промежуток времени, за который идёт реакция.
Требуется найти массу вступившего в реакцию вещества на промежутке времени от 4 до 16 минут. Тогда t0 = 4, а T = 16.
Окончательно имеем:
(г).
Ответ: 4 г.
Несколько примеров задач, иллюстрирующих связь математики с географией.
1. Определить длину дуги экватора (или меридиана ) в 15°, 30°, 45° на глобусе масштаба 1:50000000.
2. При изучении темы «Треугольники» даётся задача с географическим содержанием. Например:
Три населённых пункта А, В и С расположены так, что пункт В находится в 2 км к северу и С - в 3 км к северо - западу от А.
D, E, F - три других населённых пункта, причём пункт Е расположен в 2 км к северо - востоку, а F - в 3 км к востоку от пункта D. Сделать чертёж и доказать, что расстояние между пунктами В и С такое же, как между пунктами Е и F.
3. Одним из распространённых и удобных средств, для определения площадей земельных участков по планам и картам является способ палетки. Чтобы определить площадь участка на местности, надо знать цену клеток палетки в масштабе данной карты, то есть значение площади на местности, которому соответствует площадь одной клетки. Например, если площадь клетки 1 см?, то её цена для карты в масштабе 1:5000 (1см - 50 м) 2500 м.кв. Учащиеся знакомятся с подобным применением палетки (используем любые доступные учащимся карты, в частности, карты атласов, которые заранее приносят на урок).
Примерное задание.
Для карты с масштабом 1 : 25000 построить палетку с квадратами, соответствующими по площади 5 га.
Площадь квадрата в данном случае составит не 1 см2, а 0,8 см2 ( 1см2 : 62500 м2 = Х см2 : 50000 м2). Сторона квадрата приближённо будет равна v0,8 = 0,9 см. Вычисление площадей при помощи полученной палетки гораздо удобнее по сравнению с палеткой через 1 см. Разумеется, такая наметка применима лишь для карт данного масштаба.
4. При изучении темы «Измерение углов» проводим практическую работу с компасом. Задаются следующие вопросы:
- каков угол между направлениями: север и северо-восток, север и восток, север и юго-восток?
- южный ветер сменился на юго-западный, найти угол поворота ветра.
5. При изучении в 7 классе темы "Решение линейных уравнений" можно использовать материал из географии. Площадь Антарктиды в два раза больше площади Австралии, площадь Северной Америки на 3 млн. кв. км. больше Австралии и Антарктиды вместе, площадь Южной Америки на 4 млн. кв. км. больше Антарктиды, площадь Африки на 6 млн. кв. км. Больше Северной Америки, а площадь Евразии составляет столько, сколько площадь Африки, Австралии и Южной Америки вместе. Площадь всех материков составляет 148 млн. кв. км.
А вот очень интересный литературный пример, которым можно воспользоваться при изучении площадей в 9 классе.
Ошибка Джека Лондона
Следующее место романа Джека Лондона «Маленькая хозяйка большого дома" дает материал для геометрического расчёта:
«Посреди поля возвышался стальной шест, врытый глубоко в землю. С верхушки шеста к краю поля тянулся трос, прикрепленный к трактору. Механики нажали рычаг -- и мотор заработал.
«Машина сама двинулась вперед, описывая окружность вокруг шеста, служившего ее центром.
« -- Чтобы окончательно усовершенствовать машину, -- сказал Грэхем, -- вам остается превратить окружность, которую она описывает, в квадрат.
« -- Да, на квадратном поле пропадает при такой системе очень много земли.
«Грэхем произвел некоторые вычисления, затем заметил:
« -- Теряется примерно три акра из каждых десяти.
« -- Не меньше».
Проверим этот расчет.
Решение
Расчет неверен: теряется меньше чем 0,3 всей земли. Пусть, в самом деле, сторона квадрата -- а. Площадь такого квадрата -- а 2. Диаметр вписанного круга равен также а, а его площадь -- . Пропадающая часть квадратного участка составляет:
= (1 - ) a2 = 0,22 a2.
Мы видим, что необработанная часть квадратного поля составляет не 30°/0, как полагали герои американского романиста, а только около 22°/0.
Создавая межпредметные связи, мы будем доказывать учащимся то, что математика не существует сама по себе и сама для себя, а она призвана быть центральным звеном всех естественных наук.
3.1.4 Исторический материал
Исторический материал в содержании обучения имеет большое значение для формирования познавательного интереса. Включения в урок математики элементов истории математики способствует укреплению познавательных интересов, углублению понимания материала, расширению кругозора учащихся, повышению их общей культуры.
На уроках я знакомлю ребят с биографиями великих учёных, с историей открытий и развития математики. Мотивирую введение нового понятия историей происхождения его термина.
Пример. «Конус» - это латинская форма греческого олова «конос» означающего сосновую шишку.
«Сфера» - латинская форма греческого слова «сфайра» - мяч.
«Линия» происходит от латинского слова «линеа», образовавшегося от слова «Linum» - лён, льняная нить, шнур, верёвка.
«Трапеция» - латинская форма греческого слова «трапедзион» - столик. От этого же корня происходит слово «трапеза», означающее по-гречески стол.
...Подобные документы
Понятие "познавательный интерес" в психолого-педагогической литературе. Механизмы формирования познавательного интереса у детей младшего школьного возраста. Рекомендации на развитие познавательного интереса на уроках математики у учащихся 1 класса.
курсовая работа [44,5 K], добавлен 10.01.2014Характерные особенности развития познавательного интереса у младших школьников нормальным психофизическим развитием и с умственной отсталостью. Разработка программы по формированию познавательного интереса у умственно отсталых детей на уроках математики.
дипломная работа [285,1 K], добавлен 02.03.2016Игра как условие развития познавательного интереса у младших школьников, особенности и пути его формирования. Разработка комплекса дидактических игр для 1 класса, опытно-экспериментальная работа по их использованию на уроках математики в начальной школе.
курсовая работа [2,5 M], добавлен 23.01.2014Понятие и структура, основные этапы познавательного процесса. Определение уровней и критериев сформированности познавательного интереса. Значение познавательных заданий историко-математического характера. Исторический материал на уроках математики.
курсовая работа [121,5 K], добавлен 04.07.2011Теоретические основы формирования и развития познавательного интереса младших школьников на уроках математики. Особенности и эффективность использования дидактических игр в работе учителя в начальных классах Кукморской школы № 2 Республики Татарстан.
презентация [5,4 M], добавлен 08.02.2010Интерес как мотив учения. Источники познавательного интереса, методы и методические приемы его формирования. Основные признаки наличия у учащихся познавательного интереса. Зависимость успешности обучения от отношения учащихся к учебной деятельности.
реферат [32,3 K], добавлен 18.08.2009Психолого-педагогические основы игровой деятельности. Сущность и виды игр, их роль в обучении и развитии познавательного интереса у младших школьников. Методика использования занимательных игр на уроках математики при изучении сложения и вычитания чисел.
курсовая работа [2,6 M], добавлен 16.01.2014Процесс формирования и развития познавательного интереса младших школьников. Взаимосвязь проблем воспитания познавательного интереса и развития мышления в процессе обучения математике. Дидактические игры, их виды и особенности использования в 1 классе.
дипломная работа [2,6 M], добавлен 11.01.2010Особенности теоретического обоснования формирования познавательного интереса младших школьников. Наглядность: понятие, суть, виды, требования. Диагностика мотивов учебы и познавательного интереса учащихся. Методика формирования познавательного интереса.
дипломная работа [241,2 K], добавлен 07.12.2008Сущность познавательной активности, её уровни и признаки. Пути формирования познавательного интереса младших школьников на уроках математики через использование творческих заданий при работе с понятиями. Условия формирования познавательного интереса.
курсовая работа [111,9 K], добавлен 22.05.2014Обоснование процесса формирования познавательного интереса младших школьников в педагогической науке. Анализ и оценка результатов формирования познавательного интереса младших школьников в учебной и внеучебной деятельности по литературному чтению.
дипломная работа [1,3 M], добавлен 19.01.2014Проблема формирования познавательного интереса младших школьников при обучении. Развитие познавательного интереса младших школьников через внедрение информационно–коммуникационных технологий. Разработка учебных занятий и методического обеспечения.
курсовая работа [108,3 K], добавлен 09.02.2011Особенности формирования познавательного интереса младших школьников с использованием информационно-коммуникационных технологий. Диагностика уровня развития познавательного интереса. Изучение животного мира в программе А.А. Плешакова "Зеленый дом".
дипломная работа [162,5 K], добавлен 04.02.2013Роль творческих заданий в формировании познавательных интересов школьников. Эффективность использования математических задач для формирования познавательного интереса. Совершенствование знаний, умений и навыков для решения уравнений высших степеней.
курсовая работа [28,1 K], добавлен 15.05.2014- Формирование познавательного интереса к чтению у младших школьников на основе применения средств ИКТ
Ознакомление с психолого-педагогическими аспектами формирования познавательного интереса младших школьников к чтению. Изучение эффективности программы формирования познавательного интереса на основе применения информационно-коммуникационных технологий.
дипломная работа [484,9 K], добавлен 02.07.2017 Роль и значение нестандартных уроков по математике в формировании познавательного интереса младших школьников. Опытно-экспериментальная работа по формированию познавательного интереса школьников на уроках-экскурсиях по математике в начальной школе.
дипломная работа [472,9 K], добавлен 23.09.2013Историко-педагогический аспект развития теории познавательного интереса учащихся; исследование его характера и уровня у подростков на базе СШ № 50; активизация мыслительной активности у школьников с отклонениями в поведении, включение их в деятельность.
дипломная работа [73,1 K], добавлен 19.02.2011Использование дидактических игр как средства обучения. Анализ реализации занимательных задач на уроках математики в начальной школе. Исследование уровня сформированности мыслительной деятельности учащихся и их познавательного интереса к математике.
дипломная работа [1,3 M], добавлен 14.05.2015Психолого-педагогические основы формирования познавательных интересов в семье. Пути и способы формирования познавательного интереса. Особенности современной семьи и возможности формирования познавательных интересов у детей.
дипломная работа [235,7 K], добавлен 08.08.2007Психолого-педагогические основы воспитания познавательного интереса в деятельности классного руководителя. Сущность познавательного интереса. Анализ опыта работы классных руководителей по формированию познавательного интереса.
дипломная работа [82,1 K], добавлен 08.08.2007