Формування уявлень про число у дітей дошкільного віку

Сучасні підходи до математичного розвитку дошкільників. Мислення як основа навчання математиці. Значення дидактичного матеріалу при формуванні елементарних математичних уявлень. Виявлення особливостей навичок у кількісної та порядкової лічбі дітей.

Рубрика Педагогика
Вид курсовая работа
Язык украинский
Дата добавления 25.03.2016
Размер файла 59,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таблиця 1

Група

Рівні

Високий

Середній

Низький

Експериментальна група

6чол.

30%

10 чол.

50%

4чол.

20%

Контрольна група

4чол.

20%

9 чол.

45%

5чол

25%

Отже, обстеження дітей показало, що рівень їх уявлень про лічбу неоднаковий. До високого рівня відноситься 30% дітей групи, але наявність дітей з високим рівнем знань дозволяє припустити, що при правильно організованому навчанні й інші діти зможуть покращити свої результати.

2.2 Педагогічні умови формування уявлень про число у дітей старшого дошкільного віку

Після проведення констатуючого експерименту перед нами стояло завдання розробки ефективної системи роботи з навчання дітей лічбі з оптимальним використанням дидактичного матеріалу.

Нами було розроблено систему роботи, яка включала тематичні та комплексні заняття, дидактичні ігри, також для навчання лічбі використовувалась і трудова діяльність дітей.

Наводимо приклад тематичного заняття.

Тема: Кількісна та порядкова лічба.

Мета: Показати відмінність кількісної лічби від порядкової; закріпити вміння лічити в межах 5; розвивати увагу; виховувати допитливість.

Демонстраційний матеріал: 5 мотрійок, набір кольорової крейди.

Роздатковий матеріал /папір із смугами двох кольорів, 9 маленьких прямокутників.

Хід заняття

-- Діти із 1 класу приготували для вас сюрприз. Як ви думаєте, куди вони його сховали? (у мотрійки)

-- Мотрійки усі однакові? Чим вони схожі? Чим відрізняються?

-- А ти як думаєш?

-- В одній із цих мотрійок лежить сюрприз, а щоб його знайти треба виконати завдання школярів.

-- Скільки всього мотрійок? Насте, вийди порахуй мотрійок.

-- З якої сторони ти лічила мотрійок?

-- Єгоре, вийди порахуй мотрійок з іншої сторони. Чи змінилась кількість мотрійок?

-- А ти як думаєш?

-- Сюрприз лежить у четвертій мотрійці справа. Катю, виходь, знайди четверту мотрійку справа. Знайшла? А що у ній?

-- Якби ми з вами рахували з іншої сторони, ми змогли б знайти крейду? Чому?

-- Давайте перевіримо.

-- Що важливо було знати, щоб знайти сюрприз?

Давайте тепер хтось із вас заховає крейду і дасть нам подібне завдання (3- 4 рази).

-- Діти 1 класу попросили нас допомогти їм розставити книжки на полиці. Подивіться на ваших тацях лежить двоколірний папір і прямокутники. Папір - це наші полички, прямокутники - книжки. Викладіть усі книги на нижню поличку. Тепер візьміть третю зліва книжку і поставте її на верхню поличку (повторюється 4-5 разів).

-- Діти, ви правильно виконали усі завдання школярів.

-- Яке завдання було цікавим?

У підсумку диференційована оцінка діяльності дітей на занятті. Як бачимо у цьому занятті використано дуже простий і добре знайомий дітям дидактичний матеріал. Водночас висвітлення цього матеріалу в незвичному для дітей світлі та чіткі вказівки вихователя увесь час спрямовують увагу дітей на ретельне виконання завдань.

Тепер наведемо приклад комплексного заняття.

Тема: Вимірювання, порядкова лічба.

Мета: вчити визначати довжину предмета за допомогою кількох умовних мірок; закріпити навички порядкової лічби у межах 5; розвивати логічне мислення, увагу;виховувати позитивне ставлення до занять з математики.

Демонстраційний: фланелеграф із зображенням 3 козенят, річки, двох колод різної довжини 4 та 6 умовних мірок) ,6 умовних мірок (картонний квадрат 3х3 см).

Роздатковий матеріал: двосторонні квітки (по 6 штук).

Хід заняття

-- Дітн, погляньте Козенята йшли в гості до зайчика, аж на шляху трапилась річка. Треба зробити місток, та козенята ніяк не можуть вирішити, яку колоду треба взяти - довшу чи коротшу? Яка з двох колод підійде?

-- Яка колода довша? Яка коротша?

-- Чому ви так вважаєте? Як це перевірити?

-- А ти як думаєш?

-- Зараз ми виміряємо обидві колоди за допомогою цих квадратиків. Як можна назвати ці квадратики? (умовна мірка)

-- Андрію, іди виміряй меншу колоду. Як треба прикладати умовну мірку до початку колоди?

-- Як прикласти другу мірку? Чи можна накладати одну умовну мірку на іншу? Чому?

-- Чи можна робити відстань між мірками? Чому?

-- А ти як думаєш?

-- Андрію, скільки умовних мірок у меншій, коричневій, колоді?(4)

-- Микито, іди виміряй довшу, чорну, колоду. Скільки у ній умовних мірок?(6)

-- Тож яку колоду треба взяти козенятам - чорну чи коричневу? (чорну) Чому?

-- А ти як думаєш?

-- Коли козенята повертались додому, вони вирішили зібрати для нас букет із чарівних квітів. Вони лежать у ваших тацях. Викладіть квітки білою стороною догори. Зараз усі квітки сплять. Перегорніть третю квітку зліва. Вона розквітла (повторити 4-5 разів).

-- Діти, що вам сподобалось на занятті? Підсумок: диференційована оцінка діяльності дітей.

Це заняття розраховане на те, що діти вже мають деякі уявлення про

умовну мірку, про порядкову лічбу. Мета використання яскравого дидактичного матеріалу: утримувати увагу дошкільників на виконанні завдання та підтримку гарного настрою дітей.

Для практичного використання навичок лічби нами використовувались трудові доручення. Наприклад, чергові кожного разу перед накриттям столів отримували вказівки щодо того, скільки ложок покласти на певний стіл (відповідно до відвідування дітьми закладу).

Також нами були розроблені декілька дидактичних ігор та доповнені ті, що були у групі. Наприклад, ми розробили дидактичну гру, яку назвали «Сніданок для сонечка». Мета :розвивати вміння кількісної лічби, вчити вирішувати прості математичні приклади. Із картону виготовляють великі листочки із цифрами від 1 до 10 трохи менших сонечок із різною кількістю цяточок на спинці (від 1 до 10). Для навчання дітей вирішенню простих математичних прикладів гра видозмінюється на «Сніданок для двох сонечок». Для цього виготовляються трохи більші за розміром листочки приблизно з такими написами: «2+1» та «3+2»; або «4+3» та «6-5». Завдання дітей: посадити на листочок тих сонечок, на чиїх спинках стільки ж крапок, скільки й у відповідях на приклади.

2.3 Ефективність шляхів формування у старших дошкільників уявлень про число

По закінченню експериментальної роботи ми перевірили її ефективність. З цією метою були обстежені усі діти, які взяли участь в експерименті. Обстеження проводилось за методикою, аналогічній етапу констатації.

При виконанні першого завдання (показати цифри від 1 до 10) ніхто з дітей не відчував труднощів. Більшість дітей навіть змогли показати цифри у зворотному порядку (від 1 до 10).

Виконання другого завдання (порахувати кількість предметів на картці та позначити їх цифрою) у деяких дітей іще викликало труднощі, дехто робив помилки, але перевірка показала, що правила лічби засвоїли всі діти.

Третє завдання (на навички порядкової лічби) залишилось дещо за складним для дошкільників :не всі звертають увагу на те, з якої сторони просить рахувати експериментатор. Ефективність роботи проявилась у тому, що всі діти засвоїли порядкові числівники до 10. Результати обстеження представлені в таблиці 2.

Таблиця 2 Порівняльні результати уявлень про число в дітей КГта ЕГ

Групи

Констатуючий експеримент

Контрольний експеримент

високий

середній

низький

високий

сер

чол.

%

чол.

%

чол.

%

чол.

%

чол

ЕГ

6

30

10

50

4

20

9

45

10

КГ

4

20

9

45

7

35

5

25

10

Отже, контрольне обстеження дітей показало, що дітей з високим рівнем розвитку стало 10 (50% групи), із середнім рівнем - 9 (45%) і з низьким рівнем 1 дитина (5%).

Висновки

1. Підготовка дітей до школи одна зважливих задач дошкільного періоду. Зараз від першокласників вимагають чималого запасу знань та вмінь вже при вході до школи. І знання з математики є далеко не останніми у цьому запасі. На сьогодні існує багато досліджень з формування у дітей елементарних математичних уявлень, але не завжди при цьому приділялось достатньо уваги використанню у цьому процесі дидактичному матеріалу.

2. Дидактичні засоби навчання є одним із компонентів у тріаді «слово- образ-дія», який виконує такі функції: реалізовує принцип наочності; робить зрозумілими недоступні для дітей абстрактні поняття; дозволяє вихователю керувати діяльністю дітей та ін.

3. Виявлення рівнів уявлень дітей про кількісну та порядкову лічбу показало, що 6 чоловік відноситься до високого рівня, 10 до середнього та 4 чоловіки до низького рівня.

4. Для підвищення рівня уявлень дітей про кількісну та порядкову лічбу треба проводити цілеспрямовану роботу на заняттях різного типу (тематичні, комплексні, інтегровані) з використанням різноманітного матеріалу, дібраного за такими умовами: рівень знань дітей з даної теми (чим більше знань, тим простіша наочність); настрій дітей; в можливості вихователя. Також потрібно урізноманітнити та видозмінювати дидактичні як для самостійної роботи дітей, так і під керівництвом вихователя. І ще один важливий пункт у цій роботі - це практичне використання дітьми отриманих знань у вигляді чергувань та трудових доручень.

5. Таким чином, після проведення роботи за розробленою нами системою у групі дітей з високим рівнем знань стало 10, що склало 50% групи, із середнім рівнем - 9, що склало 45% та з низьким рівнем розвитку залишилась 1 дитина (5%) з групи.

Список використаної літератури

1. Багласва Н. Обчислювальна діяльність дошкільнят: Ознайомлення з величиною кожного з чисел першого десятка // Палітра педагога .- 2001.- №3.- С.10-13.

2. Выгодский М.Я. Справочник по элементарной математике. -23-е изд., - М.: Наука, 1974.-416 с.

3. Гайдаржийська Л. Слово. Образ. Дія. Роль дидактичних засобів у формуванні початкових математичних уявлень // Дошкільне .виховання.- 2000.- №4.-с.14-15.

4. Зайцева Л. Елементарна математична компетентність // Дошк. виховання, -2004.- №7.-С. 13-15

5. Зайцева Л. Математична компетентність: диференційований підхід // Палітра педагога.-2004.-№2.-С. 16-19

6. Кудрявцев Л.Д. Современная математика и ее преподавание. М.: Наука, 1980.

7. Леушина A.M. Формирование элементарных математических представлений у детей дошк.возраста. Учеб. пособие для студентов пед. ин-тов по специальности «Дошкольная педагогика и психология».- М.,«Просвещение», 1974.- 368 с.

8. Логіко-математичний розвиток дошкільників (за програмою «Дитина в дошкільні роки»).- 2-е вид., стереот. - Запоріжжя: ТОВ «ЛІПС» ЛТД 2006.-156 с.

9. Менчинская H.A., Моро М.И. Вопросы методики и психологии обучения арифметике в начальных классах.- М.: Изд-во «Просвещение», 1965.- 224 с.

10. Метельский Н.В. Дидактика математики: Общая методика и ее проблемы Минск: Изд-во БГУ, 1982.

11. Метлина Л.С. Математика в детском саду: Пособие для воспитателя дет.сада.- 2-е изд., перераб.- М.: «Просвещение», 984.- 256с., ил.

12. Психология. Учебник/ Под ред. А.А. Крылова.- М.: ПБОЮЛ М.А. Захаров, 2001.-584 с.

13. Сай М.К., Удальцова Е.И. Математика в детском саду. - 2-е изд., доп. и перераб.- Мн., Нар.асвета, 1990.- 96 с.

14. Столяренко Л.Д. Основы психологии. Ростов н/Д. Издательство «Феникс», 1997г.- 736с.

15. Фидлер М. Математика уже в детском саду: Пособие для воспитателя дет.сада/Пер.с польск. О.А. Павлович.- М.: «Просвещение», 1981.- 159 с.

16. Формирование элементарных матеметических представлений у детей дошкольного возраста/ Конфорович А.Г., Лебедева З.Е. Издательское объединение «Вища школа», 1976,- 232с.(на украинском языке).

17. Формирование элементарных математических представлений у дошкольников: Учеб.пособие для студентов пед.ин-стов по спец. № 231.

18. Педагогика и психология (дошк.) // Р.Л. Березина, З.А. Михайлова, Р.Л. Непомнящая и др.; Под ред. А.А. Столяра.- М.: «Просвещение», 1988.-303 с.

19. Харламов И.Ф. Педагогика: Учебник.- 5-е изд., перераб. и доп.- Мн.: Ушверсггзцкае, 1998.- 560 с.

20. Щербакова Е.И. Методика обучения математике в детском саду: Учеб. пособие для студ.дошк.отд-ний и фак.сред.пед.учеб.заведений.- М.: Издательский центр «Академия», 1998. - 272 с.

21. Щербакова Е.И. Методика формирования элементов математики у дошкольников. Учеб.пособ.- К.: Изд-во Европ.ун-та, 2005.- 392 с.

22. Щукина Г.И. Проблема познавательного интереса в педагогике. М.: Педагогика, 1971.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.