Использование элементов математической логики на уроках математики в начальных классах

Теоретические основы изучения элементов математической логики в начальной школе. Суть логической структуры математических понятий и предложений. Психолого-педагогические основы использования элементов математической логики в начальном курсе математике.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 12.06.2016
Размер файла 621,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ДИПЛОМНАЯ РАБОТА

Тема дипломной работы

«Использование элементов математической логики на уроках математики в начальных классах»

2016

Оглавление

математический логика начальный

Введение

Глава 1. Теоретические основы изучения элементов математической логики в начальной школе

1.1 Понятие логической структуры математических понятий и предложений

1.2 Изучение логики как раздела математики

1.3 Логические рассуждения

Выводы по 1 главе

Глава 2. Использование элементов математической логики на уроках математики в начальных классах

2.1 Использование элементов логики в начальном курсе математике

2.2 Психолого-педагогические основы использования элементов математической логики по УМК «Перспективная начальная школа»

2.3 Система заданий, нацеленная на формирование понятия «элементы математической логики» у учащихся по окончанию начальной школы

Выводы по 2 главе

Заключение

Список литературы

Приложения

Введение

В настоящее время в стране ведутся интенсивные поиски путей усовершенствования математического образования. На основании Федерального Государственного образовательного Стандарта Нового Общего Образования учащиеся начальной школы должны придерживаться требований к результатам освоения основной образовательной программы начального общего образования по предмету математика:

1) использовать начальные математические знания для описания и объяснения окружающих предметов, процессов, явлений, а также оценки их количественных и пространственных отношений;

2) овладеть основами логического и алгоритмического мышления, пространственного воображения и математической речи, измерения, пересчета, прикидки и оценки, наглядного представления данных и процессов, записи и выполнения алгоритмов;

3) уметь выполнять устно и письменно арифметические действия с числами и числовыми выражениями, решать текстовые задачи, умение действовать в соответствии с алгоритмом и строить простейшие алгоритмы, исследовать, распознавать и изображать геометрические фигуры, работать с таблицами, схемами, графиками и диаграммами, цепочками, совокупностями, представлять, анализировать и интерпретировать данные [1].

На сегодняшний день, математическое образование является частью системы среднего образования и в то же время своеобразной самостоятельной ступенью обучения. Новое содержание математического образования ориентировано главным образом на формирование культуры и самостоятельности мышления младших школьников, элементов учебной деятельности средствами и методами математики. В ходе обучения дети должны научиться общим способам действия, осуществляя пошаговый контроль и самооценку выполненной деятельности, чтобы установить соответствие своих действий намеченному плану.

Именно поэтому, не случайно в программах по математике особое внимание уделяется формированию алгоритмической, логической и комбинаторной линии, которые получают свое развитие в процессе изучения арифметических, алгебраических и геометрических разделов программы [6].

В работах математиков А.Н. Колмогорова [15], А.И. Маркушевича А.С. [21] Столяра [32], A.M. Пышкало [27], П.М. Эрдниева [37] и др. освещены принципиальные вопросы совершенствования школьного математического образования, в частности вопросы, связанные с усилением логической основы школьного курса, включением в него элементов математической логики.

В последнее десятилетие, когда школа вступила в процесс модернизации, в практику внедряются новые стандарты, технологии, методики, разные учебные пособия, вопрос о преемственности в обучении между начальной и основной ступенями становится наиболее важным. Наличие комплекта учебников - важная составляющая преемственности между этими ступенями. По словам А.А. Столяра «необходима мыслительная, логическая программа, которая должна быть реализована в начальных и средних классах школы» [35].

Исследования психологов и педагогов В.В. Выготского[7], Л.В.Занкова [11], В.В. Давыдова [6], Н.М.Скаткина [30] и др. показывают, что при определенных условиях можно достичь не только высокого уровня знаний, умений и навыков, но и общего развития. В традиционном обучении развитие выступает как желательный, но далеко не предсказуемый продукт обучения [23].

На наш взгляд, в психолого-методической литературе проблема формирования элементов математической логики у учащихся рассмотрена частично, применительно к обучению математике в старших классах.

Таким образом, числовое множество, начиная с первых же классов общеобразовательной школы, представляет ту лабораторию, где можно более отчетливо формировать у учащихся навыки рассуждений, являющихся основой выяснения истинности или ложности того или иного подхода, той или иной постановки задачи. Возникает вопрос: "Является ли такая задача главной целью процесса обучения математике в школе и какая доля этой проблемы приходится на начальную школу"? Ответ на этот вопрос может быть получен только после тщательного анализа программы и учебников по математике для I - IV классов [6].

Актуальность проблемы является совершенствование содержания обучения математике в начальных классах с целью формирования элементов математической логики у младших школьников.

Целью исследования рассмотреть изучение элементов математической логики в рамках курса математики при обучении математики в 1-4 классах и разработать учебно-методические средства для ее реализации.

Объект исследования - процесс изучения элементов математической логики при обучении на уроках математики в начальной школе.

Предмет - методы и средства формирования у учащихся 1-4 классов элементов математической логики.

Гипотеза исследования заключается в том, что существует возможность организации процесса обучения математике, которые наряду с подготовкой математических знаний и умений сознательно и систематически мы будем развивать логические навыки.

Для достижения поставленной цели и реализации гипотезы были определены следующие задачи исследования:

1. Дать понятие логической структуры математических понятий и предложений;

2. Изучить логику как науку и раздел математики;

3. Выяснить что такое логические рассуждения и дать их определения;

4. Проанализировать стандарты образования, учебные программы и действующие школьные учебники по математике с точки зрения логического развития учащихся;

5. Выявить психолого-педагогические и методические основы формирования у детей элементов математической логики в процессе обучения математике в начальных классах;

6. Провести экспериментальное исследование по проверке эффективности разработанных методик в условиях начальной школы.

Теоретико-методологическую основу исследования составили: основные положения диалектико-материалистической философии и разработанное на их основе учение о личностно-деятельном подходе в обучении (А.С.Выготский [7], А.Н.Леонтьев, С.Л.Рубинштейн[25] и др.); исходные положения теории развивающего обучения (В.В.Давыдов, Л.В.Занков[11], Н.А.Менчинская, Д.Б.Эльконин [36], Н.В.Якиманская[38] и др.); основополагающие идеи методистов-математиков (А.М. Пышкало[27], П.М.Эрдниев[37]).

Глава 1. Теоретические основы изучения элементов математической логики в начальной школе

1.1 Понятие логической структуры математических понятий и предложений

Изучая математику в школе, необходимо усвоить определенную систему понятий, предложений и доказательств, но чтобы овладеть этой системой и затем успешно применять приобретенные знания и умения, обучая младших школьников и решая задачу их развития средствами математики, нужно понять каковы особенности математических понятий, как устроены их определения, предложения, выражающие свойства понятий, и доказательства[5].

Такие знания нужны учителю начальных классов потому, что он первым вводит детей в мир математических знаний, и от того, как грамотно и успешно он это делает, зависит и отношение ребенка к изучению математики в дальнейшем.

Изучение этого материала связано с овладением теоретико-множественным языком, который будет использоваться не только при рассмотрении логической структуры математических понятий, предложений и доказательств, но и при построении всего курса.

Понятия, которые изучаются в начальном курсе математики, обычно представляют в виде четырех групп. В первую включаются понятия, связанные с числами и операциями над ними: число, сложение, слагаемое, больше и т.д. Во ворую входят алгебраические понятия: выражение, равенство, уравнение и т.п. Третью составляют геометрические понятия: прямая, отрезок, треугольник и др. Четвертую группу образуют понятия, связанные с величинами и их измерением [34].

Чтобы изучать такое обилие самых разных понятий, необходимо иметь представление о понятии как логической категории и особенностях математических понятий.

В логике понятия рассматривают как форму мысли, отражающую объекты (предметы или явления) в их существенных и общих свойствах. Языковой формой понятия является слово или группа слов.

Чтобы сделать мысль о предмете означает иметь возможность отличить его от других аналогичных объектов. Математические понятия имеют ряд особенностей. Главным является то, что математические объекты, в отношении которых формируются концепции, на самом деле не существует. Все математические объекты создаются умом человека. Идеально подходит объектов, что отражает реальные предметы или явления.

Например, в геометрии изучают форму и размеры предметов, не принимая во внимание другие свойства: цвет, массу, твердость и т.д. От всего этого отвлекаются, абстрагируются. Поэтому в геометрии вместо слова «предмет» говорят «геометрическая фигура».

Результатом абстрагирования являются и такие математические понятия, как «число» и «величина».

Вообще математические объекты существуют лишь в мышлении человека и в тех знаках и символах, которые образуют математический язык.

Изучая пространственные формы и количественные отношения материального мира, математика не только пользуется различными приемами абстрагирования, но и само абстрагирование выступает как многоступенчатый процесс.

Появление в математике новых понятий, а значит, и новых терминов, обозначающих эти понятия, предполагает их определение.

Определением обычно называют предложение, разъясняющее суть нового термина (или обозначения). Как правило, делают это на основе ранее введённых понятий.

Так как определение понятия через род и видовое отличие является по существу условным соглашением о введении нового термина или замены какой-либо совокупности известных терминов, то об определении нельзя сказать, верное оно или неверное; его не доказывают и не опровергают. Но формулируя определения, придерживаются ряда правил:

· Определение должно быть соразмерным. Это означает, что объемы, определяемого и определяющего понятий должны совпадать. Это правило вытекает из того, что определяемое и определяющее понятия взаимозаменяемы;

· В определении (или их системе) не должно быть порочного круга. Это означает, что нельзя определять понятие через само себя (в определяющем не должно содержаться определяемого термина) или определять его через другое, которое, в свою очередь, определять через него. Так как в математике рассматривают не просто отдельные понятия. А их систему, то данное правило запрещает порочный круг и в системе определений;

· Определение должно быть ясным. Это не первый взгляд очевидное правило, но оно означает многое. Прежде всего, требуется, чтобы значение терминов, входящих в определяющее понятие, были известны к моменту введения определения нового понятия. К условиям ясности определения относят также рекомендацию включать в видовое отличие лишь столько свойств, сколько необходимо и достаточно для выделения определяемых объектов из объема родового понятия[31].

При изучении математики в начальных классах определения через род и видовое отличие используют редко. Понятий в начальном курсе математики очень много.

При изучении математики в начальной школе чаще всего используют так называемые неявные определения. В их структуре нельзя выделить определяемое и определяющее. Среди них различают контекстуальные и остенсивные.

В контекстуальных определениях содержание нового понятия раскрывается через отрывок текста, через контекст, через анализ конкретной ситуации. Описывающей смысл вводимого понятия. Посредством контекста устанавливается связь определяемого понятия с другими, известными, и тем самым косвенно раскрывается его содержание. Примером контекстуального определения может быть определение уравнения и его решения.

Остенсивные определения - определения путем показа. Они используются для введения терминов путем демонстрации объектов, которые этими терминами обозначаются. Например, таким путем можно определить в начальной школе понятия равенства и неравенства[31].

Изучение реальных процессов, математические описания, использут как естественный вербальный язык и символическое значение. Описания построены с помощью предложений. Но, что математическое знание будет точное, адекватное отражение реальности, которая нас окружает, эти предложения должны быть правдой. Каждый математический тезис характеризуется содержанием и логической форме (структуре) и содержание неразрывно связано с формой, и невозможно понять первое, не понимать второго.

Относительно понятий и отношений между ними можно высказывать различные суждения. Языковой формой суждений являются повествовательные предложения. Например. В начальном курсе математики можно встретить такие предложения:

1) Число 12 - четное;

2) 2+5>8;

3) Х + 5 = 8;

4) В числе 15 один десяток и 5 единиц;

5) От перестановки множителей произведение не изменяется;

6) Некоторые числа делятся на 3.

Мы видим, что предложения, используемые в математике, могут быть записаны как на естественном (русском) языке, так и на математическом, с использованием символов. О предложениях 1,4,5 и 6 можно сказать, что они несут верную информацию, а о предложении 2 - ложную. Относительно предложения х +5 = 8 вообще нельзя сказать истинное оно или ложное. Взгляд на предложение с позиции - истинно или ложь привел к понятию высказывания.

Высказывание в математике называют предложение, относительно которого имеет смысл вопрос: истинно оно или ложно.

1.2 Изучение логики как раздела математики

Логика - одна из древнейших наук. Точно установить, кто, когда и где впервые обратился к тем аспектам мышления, которые составляют предмет логики, в настоящее время не представляется возможным. Как указывает Ивин А.А. [12], отдельные истоки логического учения можно обнаружить еще в индии, в конце II тысячелетия до н.э. однако если говорить о возникновении логики как науки, то есть о более или менее систематизированной совокупности знаний, то справедливым будет считать родиной логики великую цивилизацию Древней Греции. Именно здесь в V - IV веках до н.э. в период бурного развития демократии и связанного с ним небывалого оживления общественно-политической жизни трудами Демокрита, Платона и Сократа были заложены основы этой науки. Родоначальником же, «отцом» логики, по праву считается величайший мыслитель древности. Ученик Платона - Аристотель (384-322 гг. до н.э.). именно он в своих трудах, объединенных общим названием «Органон» (орудие познания), впервые обстоятельно проанализировал и описал основные логические формы и правила рассуждений, а именно: формы выводов из так называемых категорических суждений - категорический силлогизм («Первая аналитика»), сформулировал основные принципы научных доказательств («Вторая аналитика»), дал анализ смысла некоторых видов высказываний («Об истолковании»), наметил основные подходы к разработке учения о понятии («Категории»). Серьезное внимание Аристотель уделял также разоблачению различного рода логических ошибок и софистических приемов в спорах («О софистических опровержениях»).

Логика имеет долгую и богатую историю, неразрывно связанную с историей развития общества в целом.

Возникновению логики как теории предшествовала уходящая в глубь тысячелетий практика мышления. С развитием трудовой, материально-производственной деятельности людей шло постепенное совершенствование и развитие их мыслительных способностей, прежде всего способности к абстракции и умозаключению. А это рано или поздно, но неизбежно должно было привести к тому, что объектом исследования стало само мышление с его формами и законами.

Как указывает Ивин А.А. [12], история свидетельствует, что отдельные логические проблемы возникают перед мыслительным взором человека уже свыше2,5 тыс. лет назад - сначала в Древней Индии и древнем Китае. Затем они получают более полную разработку в Древней Греции и Риме. Лишь постепенно складывается более или менее стройная система логических знаний, оформляется самостоятельная наука[12].

Каковы причины возникновения логики? Ивин А.А. [12] считает, что основными являются две. Одна из них - зарождение и первоначальное развитие наук, прежде всего математики. Этот процесс относится к VI в. До н.э. и получает наиболее полное развитие в Древней Греции. Рождаясь в борьбе с мифологией и религией, наука основывалась на теоретическом мышлении, предполагающем умозаключения и доказательства. Отсюда - необходимость исследования природы самого мышления как средства познания.

По мнению Курбатова В.И. [17], логика и возникла, прежде всего, как попытка выявить и обосновать те требования, которым должно удовлетворять научное мышление, чтобы его результаты соответствовали - действительности.

Другая, пожалуй, еще более важная причина - это развитие ораторского искусства, в том числе судебного, которое расцвело в условиях древнегреческой демократии. Величайший римский оратор и ученый Цицерон (106-43 гг. до н.э.), говоря о могуществе оратора, обладателя «божественного дара» - красноречия, подчеркивал: «Он может безопасно пребывать даже среди вооруженных врагов, огражденный не столько своим жезлом, сколько своим званием оратора; он может своим словом вызвать негодование сограждан и низвергнуть кару на виноватого в преступлении и обмане, а невинного силою своего дарования спасти от суда и наказания; он способен побудить робкий и нерешительный народ к подвигу, способен вывести его из заблуждения, способен воспламенить против негодяев и унять ропот против достойных мужей; он умеет, наконец, одним своим словом и взволновать и успокоить любые людские страсти, когда это требует обстоятельства дела» [17].

По словам Ивина А.А.[12], основателем логики - или, как иногда говорят «отцом логики» - принято считать крупнейшего древнегреческого философа и ученого-энциклопедиста Аристотеля (384-322 гг. до н.э.). Следует, однако, учитывать, что первое довольно развернутое и систематическое изложение логических проблем фактически дал более ранний древнегреческий философ и естествоиспытатель Демокрит (460- примерно 370 г. До н.э.). Среди его многочисленных трудов был и обширный трактат в трех книгах «О логическом, или О канонах». Здесь не только были раскрыты сущность познания, его основные формы и критерии истины, но и показана огромная роль логических рассуждений в познании, дана классификация суждений. Подвергнуты решительной критике некоторые виды выводного знания и предпринята попытка разработать индуктивную логику - логику опытного знания. К сожалению, этот трактат Демокрита, как и все остальные, до нас не дошел.

Новый, более высокий этап в развитии логики начинается с XVII в. Этот этап органически связан с созданием в ее рамках наряду с дедуктивной логикой логики индуктивной. В ней нашли отражение многообразные процессы получения общих знаний на основе все более накапливавшегося эмпирического материала. Потребность в получении таких знаний наиболее полно осознал и выразил в своих трудах выдающийся английский философ и естествоиспытатель Ф.Бэкон (1561-1626). Он и стал родоначальником индуктивной логики. «…логика, которая теперь имеется, бесполезна для открытия знаний», - вынес он свой суровый приговор [12]. Поэтому как бы в противовес старому «Органону» Аристотеля Бэкон написал «Новый Органон…», где изложил индуктивную логику. Главное внимание в ней он обратил на разработку индуктивных методов определения причинной зависимости явлений. В этом огромная заслуга Бэкона. Однако созданное им учение об индукции по иронии судьбы оказалось не отрицанием предшествующей логики. А ее дальнейшим обогащением и развитие. Оно способствовало созданию обобщенной теории умозаключений. И это естественно, ибо, как будет показано ниже, индукция и дедукция не исключает, а предполагают друг друга и находятся в органическом единстве.

Известный вклад в развитие традиционной формальной логики внесли русские ученые. Так, уже в первых трактатах по логике начиная приблизительно с X в. предпринимались попытки самостоятельного комментирования трудов Аристотеля и других ученых. Оригинальные логические концепции в России разрабатывались в XVIII в. и связаны прежде всего с именами М.Ломоносова (1711-1765) и А.Радищева (1749-1802). Расцвет логических исследований в нашей стране относится к концу XIXв.

Грандиозную попытку выработать целостную систему новой, диалектической логики предпринял немецкий философ - Г.Гегель (1770-1831). В своем основополагающем труде «Наука логики»[16] он, прежде всего, раскрыл фундаментальное противоречие между наличными логическими теориями и действительной практикой мышления, которое к тому времени достигло значительных высот.

Как указывает Курбатов В.И.[17], Гегель заново подверг исследованию природу мышления, его законы и формы. В этой связи он пришел к выводу, что «диалектика составляет природу самого мышления, что в, качестве рассудка оно должно впадать в отрицание самого себя, в противоречие». Свою задачу мыслитель видел в том, чтобы найти способ разрешения этих противоречий. Гегель подверг жесточайшей критике прежнюю, обычную логику за ее связь с метафизическим методом познания. Но в этой своей критике зашел так далеко, что отверг ее принципы, основанные на законе тождества и законе противоречия.

Ивин А.А.[12] говорит, что проблемы диалектической логики, ее соотношения с формальной нашли дальнейшую конкретизацию и развитие в трудах философов и ученых Германии К.Маркса )1818-1883) и Ф.Энгельса (1820-1895). Используя богатейший мыслительный материал, накопленный философией, естественными и общественными науками, они создали качественную новую, диалектико-материалистическую систему, которая нашла воплощение в таких произведениях, как «Капитал» К.Маркса, «Анти-Дюринг» и «Диалектика природы» Ф.Энгельса. с этих общефилософских позиций Маркс и Энгельс и оценивали специальное «учение о мышлении и его законах» - логику и диалектику. Они не отрицали значение формальной логики, не считали ее «бессмыслицей», но подчеркивали ее исторический характер. Так, Энгельс отмечал, что теоретическое мышление каждой эпохи - это исторический продукт, принимающий в различные времена очень различные формы и вместе с тем очень различное содержание. «Следовательно, наука о мышлении, как и всякая другая наука, есть историческая наука, наука об историческом развитии человеческого мышления» [12].

В последние десятилетия в нашей стране предпринято не мало плодотворных попыток систематического изложения диалектической логики. Разработки идут в двух магистральных направлениях. С одной стороны, это раскрытие закономерностей отражения в человеческом мышлении развивающейся действительности, ее объективных противоречий, а с другой - раскрытие закономерностей развития самого мышления, его собственной диалектики.

В условиях научно-технической революции, когда науки переходят на новые, более глубокие уровни познания и когда возрастает роль диалектического мышления, потребность в диалектической логике все более усиливается. Она получает новые стимулы для своего дальнейшего развития.

Подлинную революцию в логических исследованиях вызвало создание во второй половине 19 века математической логики, которая получила еще название символической и обозначила новый, современный этап в развитии логики.

Зачатки этой логики прослеживаются уже у Аристотеля, а так же у его последователей, стоиков в виде элементов логики предикатов и теории модальных выводов, а также логики высказываний. Однако систематическая разработка ее проблем относится к гораздо более позднему времени.

Как указывает Ивин А.А.[12], растущие успехи в развитии математики и проникновение математических методов в другие науки уже во второй половине 17 века настоятельно выдвигали две фундаментальные проблемы. С одной стороны, это применение логики для разработки теоретических оснований математики, а с другой - математизация самой логики как науки. Наиболее глубокую и плодотворную попытку решить вставшие проблемы предпринял крупнейший немецкий философ и математик Г.Лейбниц (1646-1416). Тем самым он стал, по существу, зачинателем математической логики. Лейбниц мечтал о том времени, когда ученые будут заниматься не эмпирическими исследованиями, а исчислениями с карандашом в руках. Он стремился изобрести для этого универсальный символический язык, посредством которого можно было бы рационализировать любую эмпирическую науку. Новое знание, по его мнению, будет результатом логической калькуляции - исчисления.

По мнению Курбатова В.И.[17], идеи Лейбница получили некоторое развитие в 18 веке и первой половине 19 века. Однако наиболее благоприятные условия для мощного развития символической логики сложились лишь со второй половины 19 века. К этому времени математизация наук достигла особенно значительного прогресса, а в самой математике возникли новые фундаментальные проблемы ее обоснования. Английский ученый, математик и логик Жд. Буль (1815-1864) в своих работах, прежде всего, применял математику к логике. Он дал математический анализ теории умозаключений, выработал логическое исчисление («Булева алгебра»). Немецкий логик и математик Г.Фреге (1848-1925) применил логику для исследования математики. Посредством расширенного исчисления предикатов он построил формализованную систему арифметики.

Так открылся новый, современный этап в развитии логических исследований. Пожалуй, наиболее важная отличительная особенность этого этапа состоит в разработке и использовании новых методов решения традиционных логических проблем. Это разработка и применение искусственного, так называемого формализованного языка - языка символов, т.е. буквенных и других знаков (отсюда и наиболее общее наименование современной логики - «символическая»).

Как указывает Ивин А.А. [12], различают два вида логических исчислений: исчисление высказываний и исчисление предикатов. При первом допускается отвлечение от внутренней, понятийной структуры суждений, а при втором эта структура учитывается и соответственно символический язык обогащается, дополняется новыми знаками.

Значение символических языков в логике трудно переоценить. Г.Фреге сравнивал его со значением телескопа и микроскопа. А немецкий философ Г.Клаус (1912-1974) считал, что создание формализованного языка имело для техники логического вывода такое же значение, какое в сфере производства имел переход от ручного труда к машинному. Возникая на основе традиционной формальной логики, символическая логика, с одной стороны, уточняет, углубляет и обобщает прежние представления о логических законах и формах, особенно в теории выводов, а с другой - все более значительно расширяет и обогащает логическую проблематику. Современная логика - сложнейшая и высокоразвитая система знаний. Она включает в себя множество направлений, отдельных, относительно самостоятельных «логик», все более полно выражающих запросы практики и в конечном счете отражающих многообразие сложность окружающего мира, единство и многообразие самого мышления об этом мире.

Символическая логика находит все более широкое применение в других науках - не только в математике, но и в физике, биологии, кибернетике, экономике, лингвистике. Она приводит к возникновению новых отраслей знаний (математика). Особенно впечатляюща и наглядна роль логики в сфере производства. Открывая возможность как бы автоматизировать процесс рассуждений, она позволяет передать некоторые функции мышления техническим устройствам. Ее результаты находят все более широкое применение в технике: при создании релейно-контактных схем, вычислительных машин, информационно-логических систем и т.д. По образному выражению одного из ученых, современная логика - это не только «инструмент» точной мысли, но и «мысль» точного инструмента, электронного автомата. Достижения современной логики используется и в правовой сфере. Так, в криминалистике на разных этапах исследования производится логико-математическая обработка собранной информации.

Растущие потребности научно-технического прогресса обуславливают дальнейшее интенсивное развитие современной логики.

Остается сказать, что в разработку систем символической логики внесли важный вклад русские ученые. Среди них особенно выделяется П.Порецкий (1846-1907). Он первым в России начал чтение лекций по математической логике. Математическая логика продолжается развиваться и сейчас.

По мнению Курбатова В.И.[17], изучение математической логики дисциплинирует ум. Вспоминая известное изречение М.В.Ломоносова о математике, можно сказать, что математическая логика более чем какая-либо другая математическая наука «ум в порядок приводит».

Язык любой алгебры состоит из множества знаков, называемого алфавитом этого языка.

Знаки алфавита по аналогии со знаками алфавита естественного языка называют буквами.

Естественно возникает вопрос: какие буквы должны содержаться в алфавите языка числовой алгебры?

Прежде всего, очевидно, мы должны иметь буквы для обозначения элементов множества -- носителя алгебры, в данном случае для обозначения чисел, и переменные для элементов этого множества.

Применяя для обозначения чисел десятичную систему счисления, мы должны включить в алфавит числовой алгебры десять букв, называемых цифрами: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, с помощью которых по определенным правилам конструируются названия любых чисел.

В качестве числовых переменных (переменных для чисел любого из множеств N, N0, Z, Q или R) применяются буквы латинского алфавита а, Ъ, с, х, у, z или одна какая-нибудь из этих букв с индексом, например Х1, X2, Xn.

Иногда буквы латинского алфавита применяются и в качестве числовых постоянных, т. е. в качестве названий чисел (когда речь идет об определенном, но не важно, каком именно, конкретном числе). В таком случае начальные буквы латинского алфавита а, b, с обычно применяются в качестве постоянных, а последние буквы х, у, z -- в качестве переменных.

Нам нужны также буквы для обозначения операций. Для сложения и умножения применяются известные знаки (буквы) + и * соответственно.

Кроме того, роль знаков препинания в языке алгебры играют скобки (левая и правая).

Таким образом, алфавит языка, на котором описывается какая-нибудь числовая алгебра, должен включать множество, состоящее из четырех классов букв: I -- цифры, из которых конструируются названия чисел; II -- буквы латинского алфавита -- числовые переменные или постоянные; III -- знаки операций; IV -- скобки.

Знаки вычитания (--) и деления (:) могут быть введены определениями соответствующих операций.

Постепенно алфавит числовой алгебры дополняется и другими «буквами», в частности, вводятся знаки бинарных отношений «равно», «меньше», «больше».

Все перечисленные знаки входят в алфавит математического языка, языка искусственного, возникшего в связи с необходимостью в точных, сжатых и однозначно понимаемых формулировках математических законов, правил, доказательств.

Исторически символика математики создавалась веками при участии многих выдающихся ученых. Так, считают, что обозначение неизвестных величин буквами использовал еще Диофант (III в.), широкое применение прописных букв латинского алфавита в алгебре началось с Виета (XVI в.). строчные буквы этого алфавита ввел для обозначения Р.Декарт (XVII в.). знак равенства (=) впервые появился в работах английского ученого Р.Рекорда (XVI в.), но стал он общеупотребительным только в XVIII веке. Знаки неравенства (< , >) появились в начале XVII столетия, ввел их английский математик Гариот. И хотя знаки «=», «>», «<» появились не так давно, сами понятия равенства и неравенства возникли в глубокой древности [28].

Высказывание в математике называют предложение, относительно которого имеет смысл вопрос: истинно оно или ложно.

Относительно понятий и отношений между ними можно высказывать различные суждения. Языковой формой суждений являются повествовательные предложения. Например. В начальном курсе математики можно встретить такие предложения:

1) Число 12 - четное;

2) 2+5>8;

3) Х + 5 = 8;

4) В числе 15 один десяток и 5 единиц;

5) От перестановки множителей произведение не изменяется;

6) Некоторые числа делятся на 3.

Мы видим, что предложения, используемые в математике, могут быть записаны как на естественном (русском) языке, так и на математическом, с использованием символов. О предложениях 1,4,5 и 6 можно сказать, что они несут верную информацию, а о предложении 2 - ложную. Относительно предложения х +5 = 8 вообще нельзя сказать истинное оно или ложное.

Если заданы высказывания А и В, то из них можно составить новые высказывания, используя связки «и», «или», «если … , то …», «либо … , либо …», «в том и только в том случае, если», а так же частицу «не». Пусть, например, А означает высказывание «Сейчас солнечно», а В - высказывание «Сейчас ветрено». Тогда высказывание «А и В» означает: «Сейчас солнечно и ветрено», высказывание «Если не А, то и не В» - «Если сейчас не солнечно, то и не ветрено».

Такие высказывания называются составными, а входящие в них высказывания А и В - элементарными высказываниями. Два составных высказывания А и В называются равносильными, если они одновременно истинны и одновременно ложны при любых предположениях об истинности входящих в них элементарных высказываний. В этом случае пишут: А=В.

Уже с первого урока математики учащиеся начальных классов встречаются с высказываниями, в основном, с истинными. Они знакомятся с такими высказываниями: 2 > 1, 1 < 2, 3 > 2, 2 + 1 = 3, 3 - 1= 2.

Если А - некоторое высказывание, то, утверждая, что оно ложно, мы получаем новое высказывание, которое называют отрицанием высказывания А и обозначают символом В.

Таким образом, если некоторое высказывание истинно, то его отрицание ложно, и наоборот. Этот вывод можно записать при помощи таблицы, в которой «И» означает истинное высказывание, а «Л» - ложное. Таблицы подобного вида называют таблицами истинности (см. прил.2 рис.1) [32].

Пусть А и В - два элементарных высказывания. Соединив их союзом «и», получим новое высказывание, которое называется конъюнкцией данных высказываний и обозначается А ? В. Запись А ? В читают: «А и В».

По определению, конъюнкция двух высказываний истина в том и только в том случае, когда истины оба высказывания. Если же хотя бы одно из них ложно, то и конъюнкция ложна (см. прил.2 рис.2)[32] .

Рассмотрим высказывание «7 - 4 = 3 и 4 - четное число». Оно является конъюнкцией двух высказываний: «7 - 4 = 3» и «4 - четное число». Так как оба высказывания истинны, то и их конъюнкция является истинной.

Если в конъюнкции А ? В поменять местами высказывания А и В, то получим конъюнкцию вида В ? А. Из таблицы истинности видно, что формулы А ? В и В ? А при различных значениях высказываний А и В либо одновременно истинны, либо одновременно ложны.

Следовательно, они равносильны, и для любых высказываний А и В имеем: А ? В = В ? А

Эта запись выражает коммутативное свойство конъюнкции, позволяющее менять местами члены конъюнкции.

Составив таблицы истинности для (А ? В) ? С и А ? (В ? С), получим, что при любых значениях истинности высказываний А, В, С значения истинности высказываний (А ? В) ? С и А ? (В ? С) совпадают.

Таким образом, (А ? В) ? С = А ? (В ? С).

Это равенство выражает свойство ассоциативности конъюнкции. Такая конъюнкция истина тогда и только тогда, когда все входящие в нее высказывания истины.

Соединив два элементарных высказывания А и В союзом «или», получим новое высказывание, называемое дизъюнкцией данных высказываний. Дизъюнкцию высказываний А и В обозначают А?В и читают «А или В». Дизъюнкция ложна только в том случае, когда оба высказывания, из которых она образована, ложны; во всех остальных случаях дизъюнкция истинна. Таблица истинности дизъюнкции имеет вид (см. прил.2 рис.3) [32].

Для дизъюнкции, так же как и для конъюнкции, можно указать ряд равносильностей. Для любых А,В, и С имеем:

А ? В = В ? А (коммутативность дизъюнкции);

(А ? В) ? С = А ? (В ? С) (ассоциативность дизъюнкции).

Свойство ассоциативности дизъюнкции позволяет опускать скобки и писать А ? В ? С вместо (А ? В) ? С.

При помощи таблиц истинности нетрудно установить, что

(А ? В) ? С = (А ? С) ? (В ? С)

(А ? В) ? С = (А ? С) ? (В ?С)

Первое равенство выражает дистрибутивный закон конъюнкции относительно дизъюнкции, а второе - дистрибутивный закон дизъюнкции относительно конъюнкции.

Операции конъюнкции, дизъюнкции и отрицания связаны следующими отношениями, справедливость которых можно установить при помощи таблиц истинности:

Эти отношения называют формулами де Моргана.

Рассмотрим составное высказывание, которое образовано из двух элементарных при помощи слов «если … , то …».

Пусть, например, даны высказывания А: «Вчера было воскресенье» и В: «Я не был на работе». Тогда составное высказывание «Если вчера было воскресенье, то я не был на работе» имеет формулу «Если А, то В».

Высказывание «Если А, то В» называют импликацией высказываний А, В и при помощи символов записывают так: А => B. Высказывание А, входящее в импликацию А=>В, называют условием импликации, а высказывание В - ее заключением.

Условились считать, что импликация «Если А, то В» ложна лишь в одном случае: высказывание А истинно, а высказывание В ложно; во всех других случаях импликация истинна.

Поэтому таблица истинности импликации «Если А, то В» имеет вид (см. прил.2 рис.4) [32].

Из двух высказываний А и В можно составить новое высказывание, которое читается так: «А в том и только в том случае, если В». Это высказывание называют эквиваленцией высказываний А и В и обозначают: А В. Считают, что высказывание А В истинно, если оба высказывания А и В истинны или оба высказывания А и В ложны. В остальных случаях (т.е. если одно высказывание истинно, а другое высказывание ложно) эквиваленцию считают ложной. Таким образом, таблица истинности для эквиваленции А и В имеет вид (см. прил.2 рис.5) [32].

1.3 Логические рассуждения

Любое рассуждение состоит из цепочки высказываний, вытекающих друг из друга по определенным правилам. Умение рассуждать, правильно обосновывать свои выводы необходимо людям любой профессии. Рассуждать человек учится с того момента, когда начинает говорить, но целенаправленное обучение логике рассуждений начинается в школе. Уже начальный курс математики предполагает развитие у учащихся навыков проведения сравнения, классификации объектов, анализа фактов, доказательства простейших утверждений. Логичность рассуждений требуется не только для решения математических задач, но и для грамматического анализа, усвоения начал природоведения и т.д. Поэтому учитель начальных классов должен быть знаком с логикой, т.е. с наукой о законах и формах мышления, об общих схемах рассуждений.

Основные типы суждений и умозаключений рассматриваются в классической логике, созданной древнегреческим философом Аристотелем (384-322 гг. до н.э.) [26].

В логике рассуждения делятся на:

1. правильные;

2. неправильные.

Правильное рассуждение - это рассуждение, в котором соблюдаются все правила и законы логики. Неправильное соображения - это рассуждение, в котором допускаются логических ошибок вследствие нарушения правил или законов логики.

Логические ошибки бывают двух видов:

1. паралогизмы;

2. софизмы.

Паралогизмы - это логические ошибки, которые допускаются в процессах рассуждения неумышленно (по незнанию).

Софизмы - это логические ошибки, которые допускаются в процессах рассуждения намеренно с целью введения в заблуждение оппонента, обоснование ложного утверждения, какой вздор т.д.

Софизмы известны еще с давних времен. Такими соображениями широко пользовались в своей практике софисты. Именно от них и происходит название «софизм» До нашего времени дошли многочисленные примеры рассуждений, которые применяли софисты в различных спорах. Приведем некоторые из них.

Самый известный античный софизм - это рассуждение, получившее название «Рогатый».

Представьте себе ситуацию: один человек хочет убедить другую в том, что та имеет рога. Для этого приводится такое обоснование: «То, чего ты не терял, ты имеешь. Рога ты не терял. Итак, у тебя есть рога ».

Это размышления на первый взгляд кажется правильным. Но в нем допущено логическую ошибку, которую человек, не разбирается в логике, вряд ли сможет сразу найти.

Приведем еще один пример. В Протагора (основателя школы софистов) был ученик Еватл. Учитель и ученик заключили соглашение, согласно которому Еватл заплатить за обучение лишь после того, как выиграет свой первый судебный процесс. Но, окончив учебу, Еватл не спешил выступать в суде. Терпение у учителя лопнуло, и он подал на своего ученика в суд «Еватл в любом случае должен будет мне заплатить, - размышлял Протагор. - Он либо выиграет этот процесс, или проигрывает его. Если выиграет - заплатить по договоренности; если проиграет - заплатит по приговору суда ». «Ничего подобного, - возражал Еватл. - Действительно, я либо выиграю процесс, либо проиграю его.

Если выиграю - решение суда освободит меня от платы, если же проиграю - не буду платить по нашей договоренности *.

В этом примере также допускается логическая ошибка. А какая именно - выясним далее.

Основной задачей логики является анализ правильных соображений. Специалисты из логики стремятся выявить и исследовать схемы таких соображений, определить их различные типы и т.д. Неправильные рассуждения в логике анализируются лишь с точки зрения тех ошибок, которые в них допущено.

Следует отметить, что правильность рассуждения еще не означает истинности его посылок и заключения. Вообще логика не занимается определением истинности или ложности посылок и выводов соображений. Но в логике существует такое правило: если соображения построено правильно (в соответствии с правилами и законами логики) и при этом оно опирается на истинные предпосылки, то вывод такого рассуждения всегда будет безусловно истинным. В других случаях истинность вывода не может быть гарантирована.

Так, если соображения построено неправильно, то, даже, несмотря на то, что его предпосылки - истинные, заключение такого рассуждения может быть в одном случае - истинным, а во втором - ложным.

Рассмотрим для примера такие два соображения, которые построены по одной неправильной схеме:

(1) Логика - наука.

Алхимия - не логика.

Алхимия - не наука.

(2) Логика - наука.

Право - не логика.

Право - не наука.

Очевидно, что в первом рассуждении заключение является истинным, но во втором - он неправильный, хотя предпосылки в обоих случаях - истинные утверждения.

Так же нельзя гарантировать истинности выводу соображения, когда хотя бы один из его посылок будет неверным, даже если это рассуждение - правильное.

Правильное рассуждение - рассуждение, в котором одни мысли (выводы) с необходимостью вытекающих из других мнений (посылок).

Примером правильного рассуждения может быть такое умозаключение: «Каждый гражданин Украины должен признать ее Конституцию. Все народные депутаты Украины - граждане Украины. Итак, каждый из них должен признать Конституцию своего государства», а примером истинной мысли - суждение: «Есть граждане Украины, которые не признают крайней мере некоторых статей Конституции своего государства».

Неправильным надо считать такое рассуждение: «Поскольку экономический кризис в Украине явно дает о себе знать после провозглашения ее самостоятельности, то последнее и является причиной этого кризиса». Логическую ошибку такого типа называют «после этого - вследствие этого». Она заключается в том, что временную последовательность событий в подобных случаях отождествляют с причинно. Примером неистинным мнения может быть любое положение, которое не соответствует действительности, скажем, утверждение, будто украинской нации вообще не существует.

Целью познания является получение истинных знаний. Для того чтобы получить такие знания с помощью рассуждений, нужно, во-первых, иметь истинные предпосылки, а во-вторых, правильно их сочетать, рассуждать по законам логики. При использовании ложных посылок допускают фактических ошибок, а при нарушении законов логики, правил построения соображений делают логические ошибки. Фактических ошибок, конечно, надо избегать, что не всегда удается. Что касается логических, то человек высокой интеллектуальной культуры может избежать этих ошибок, поскольку давно уже сформулированы основные законы логически правильного мышления, правила построения рассуждений и даже осмысленно типичные ошибки в рассуждениях.

Логика учит правильно рассуждать, не допускать логических ошибок, отличать правильные рассуждения от неправильных. Она классифицирует правильные соображения с целью их системного осмысления. В этом контексте может возникнуть вопрос: поскольку соображений множество, то можно, выражаясь словами Козьмы Пруткова, охватить безграничное? Да, можно, поскольку логика учит рассуждать, ориентируясь не на конкретное содержание мыслей, которые входят в состав рассуждения, а на схему, структуру рассуждения, форму сочетания этих мыслей. Скажем, форма рассуждения типа «Каждый х у, а данный г является х; следовательно, данный г у» правильная, и знание ее правильности включает в себя значительно более богатую информацию, чем знание правильности отдельного содержательного рассуждения аналогичной формы. А форма рассуждения по схеме «Каждый х у, а г тоже есть у; следовательно, г является х» относится к неправильным. Как грамматика изучает формы слов и их сочетаний в предложении, абстрагируясь от конкретного содержания языковых выражений, так и логика исследует формы мнений и их сочетаний, отвлекаясь от конкретного содержания этих мыслей.

Чтобы выявить форму мысли или соображения, их необходимо формализовать.

Выводы по 1 главе

Исходя из вышесказанного, можно сделать следующие выводы:

1. Логика возникла как раздел философского знания. Основными причинами возникновения являются развитие наук и ораторского искусства. Так как наука основывается на теоретическом мышлении, предполагающем построение умозаключений и доказательств, то возникает необходимость исследования самого мышления как формы познания.

2. В современной науке значение символической логики очень велико. Она находит приложение в кибернетике, нейрофизиологии, лингвистике. Символическая логика является современным этапом в развитии формальной логики. Она изучает процессы рассуждения и доказательства посредством его отображения в логических системах. Таким образом, по своему предмету эта наука является логикой, а по методу - математикой.

Изучив материалы, мы уточнили свои представления о математических понятиях:

- это понятия об идеальных объектах;

- каждое математическое понятие имеет термин, объем и содержание;

- понятиям дают определения; они могут быть явными и неявными. К неявным относят контекстуальные и остенсивные определения;

- изучения понятий происходит из класса в класс с расширенным изучением темы.

При изучении материала, мы познакомились с понятиями, с помощью которых уточнили смысл употребляемых в математике союзов «и», «или», частицы «не», слов «всякий», «существует», «следовательно» и «равносильно». Это понятия:

-высказывание;

- элементарные высказывания;

- логические связки;

- составные высказывания;

- конъюнкция высказываний;

- дизъюнкция высказываний;

- отрицание высказываний.

Рассмотрели правила:

- определения значения истинности составного высказывания;

- построения отрицания предложений различной структуры.

Глава 2. Использование элементов математической логики на уроках математики в начальных классах

2.1 Использование элементов логики в начальном курсе математики

Математика дает реальные предпосылки для развития логического мышления, задача учителя - полнее использовать эти возможности при обучении детей математике. Однако, конкретной программы развития логических приемов мышления, которые должны быть сформулированы при изучении данного предмета, нет. В результате работа над развитием логического мышления идет без знания системы необходимых приемов, без знания их содержания и последовательности формирования.

Баракина В.Т. [5] выделяет следующие требования к знаниям, умениям и навыкам учащихся при изучении элементов логики в начальной школе:

1. Элементы теории множеств:

- познакомиться со множествами различной природы на конкретных примерах и способами их записи (перечислением);

- научиться выделять элементы множества;

- познакомиться с основными типами отношений между множествами и способом их изображения с помощью кругов Эйлера-Венна;

- научиться выполнять некоторые операции над множествами (объединение, пересечение).

2. Элементы теории высказываний:

- познакомиться с высказыванием на уровне представлений;

- научиться отличать высказывания от других предложений;

- познакомиться с основными видами высказываний;

- научится выполнять некоторые операции над высказываниями (отрицание, конъюнкция, дизъюнкция).

3. Элементы комбинаторики:

- познакомиться с данным понятием на уровне представлений;

- учиться различать комбинаторные задачи от других типов текстовых задач, рассматриваемых на уроках математики;

- научиться решать задачи на определение числа размещений изn элементов по m элементов.

Элементы логики в начальной школе рассматриваются на уроках как математики, так и информатики. При этом уровень требований к знаниям, умениям и навыкам учащихся, а также содержание обучения по данному разделу несколько отличается в различных программах. Это связанно, прежде всего с тем, что в настоящее время Федеральный Государственный Образовательный Стандарт Начального Общего Образования не предполагает обязательного рассмотрения данной темы в 1-4 классах [1].

В настоящее время все курсы математики нацелены на развитие учащихся. Так, например, курс Истоминой Н.Б. [13] своей главной целью имеет развитие приемов умственной деятельности учащихся, мыслительных операций: анализа, синтеза, сравнения, классификации, аналогии, обобщения.

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.