Розвиток логіки математичних уявлень за допомогою комп’ютера у дошкільників
Характеристика теоретичних основ розвитку логіки математичних уявлень за допомогою комп’ютера у дошкільників. Аналіз можливостей використання комп’ютера у сучасному дошкільному навчальному закладі. Діагностика рівня математичного розвитку дошкільників.
Рубрика | Педагогика |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 16.09.2019 |
Размер файла | 1,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
ДНІПРОПЕТРОВСЬКИЙ ПЕДАГОГІЧНИЙ КОЛЕДЖ
ДНІПРОПЕТРОВСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ ІМЕНІ ОЛЕСЯ ГОНЧАРА
КУРСОВА РОБОТА
на тему: РОЗВИТОК ЛОГІКИ МАТЕМАТИЧНИХ УЯВЛЕНЬ ЗА ДОПОМОГОЮ КОМП'ЮТЕРА У ДОШКІЛЬНИКІВ
логіка математичний комп'ютер дошкільник
м. Дніпропетровськ, 2017
ЗМІСТ
ВСТУП
РОЗДІЛ 1. ТЕОРЕТИЧНІ ОСНОВИ РОЗВИТКУ ЛОГІКИ МАТЕМАТИЧНИХ УЯВЛЕНЬ ЗА ДОПОМОГОЮ КОМП'ЮТЕРА У ДОШКІЛЬНИКІВ
1.1 Аналіз досліджень проблеми розвитку математичних уявлень дошкільників
1.2 Особливості використання комп'ютера для розвитку логіки математичних уявлень дошкільників
Висновки до першого розділу
РОЗДІЛ 2. ДОСЛІДЖЕННЯ СТАНУ ВИКОРИСТАННЯ КОМП'ЮТЕРА ДЛЯ РОЗВИТКУ ЛОГІКИ МАТЕМАТИЧНИХ УЯВЛЕНЬ ДОШКІЛЬНИКІВ
2.1 Аналіз можливостей використання комп'ютера у сучасному дошкільному навчальному закладі
2.2 Аналіз логіко-математичного аспекту базової програми розвитку дитини дошкільного віку «Я у світі»
2.3 Діагностика рівня математичного розвитку дошкільників
Висновки до другого розділу
РОЗДІЛ 3. УДОСКОНАЛЕННЯ РОБОТИ ЩОДО ВИКОРИСТАННЯ КОМП'ЮТЕРА ДЛЯ РОЗВИТКУ ЛОГІКИ МАТЕМАТИЧНИХ ПОНЯТЬ ДОШКІЛЬНИКІВ
3.1 Вимоги до організації занять дітей з комп'ютером в ДНЗ
3.2 Організація занять дітей з комп'ютером
3.3 Характеристика програмного комплексу для навчання дітей дошкільного віку елементарних математичних уявлень
Висновки до третього розділу
ВСТУП
Актуальність теми. У сучасних програмах з дошкільної освіти, Базовому компоненті дошкільної освіти серед завдань математичного розвитку і математичної підготовки дітей дошкільного віку зазначена потреба у формуванні не лише певних математичних понять і уявлень, а й логіко-математичних понять. Оновлення змісту навчання у початковій школі призвело до введення у курс математики вже в першому класі буквеної символіки, найпростіших алгебраїчних операцій, відрізків і дій над ними, що потребує сформованості логіко-математичних понять у вихованців дошкільних навчальних закладів.
Перебудова процесу викладання математики в початковій школі і нові психологічні дослідження виявили недоліки логіко-математичної підготовки в дитячому садку: неефективне використання можливостей дошкільників, що поступово зростають, і навчання, яке не сприяє розвитку особистості дитини, її творчих можливостей. Потреба переглянути зміст і форми навчання підштовхнула психологів і математиків започаткувати наукові напрями у розробленні проблем логіко-математичного розвитку дошкільників [Татаринова С.О. Проблема формування логіко-математичних понять у теорії і практиці дошкільної освіти / С.О. Татаринова // Теоретико-методичні проблеми виховання дітей та учнівської молоді. - 2014. - Вип. 18(2). - С. 306-312.].
В останнє десятиріччя проблема формування у дітей дошкільного віку математичних уявлень розглядалася у зв'язку з реалізацією індивідуально-диференційованого підходу (Н.І. Баглаєва, Т.М. Степанова); формуванням і розвитком математичних здібностей у дошкільників (А.В. Бєлошиста). У дослідженні Л. П. Гайдаржийської пропонується методика формування елементарних математичних уявлень у дітей старшого дошкільного віку; у Л.І. Зайцевої -- методика формування елементарної математичної компетентності в дітей старшого дошкільного віку. Особливості засвоєння абстрактних математичних понять вивчала М. Машовець; використання моделей у формуванні знань про час у дошкільників 5-7 років обґрунтовано у праці О.О. Фунтікової [Фунтикова О.А. Теоретические основы умственного развития дошкольников: моногр. / О.А. Фунтикова. - Сімферополь: Таврида, 1999. - 304 с.].
Упровадження у практику роботи дошкільних навчальних закладів Базової програми розвитку дитини дошкільного віку «Я у Світі» потребує нових методичних підходів до формування елементарних математичних уявлень, велику увагу приділено розвитку математичних здібностей дошкільників, пов'язаних зі сприйманням та виконанням логічних операцій на математичному матеріалі [Жигайло О.О. Формування математичної компетентності дошкільників засобами інформаційно-комунікаційних технологій / О.О. Жигайло // Педагогічна освіта: теорія і практика. - 2014. - Вип. 17. - С. 340-344.].
Аналіз психолого-педагогічних досліджень щодо проблеми розвитку логіки математичних уявлень дошкільників свідчить, що даною проблемою займалися О. Брежнєва, Г. Лєушина, М. Машовець, Л. Метліна, Т. Мусейнова, Б. Нікітін, Сазонова, О. Столяр, О. Фунті- кова, К. Щербакова, та ін.
Отже, зважаючи на актуальність проблеми була обрана тема курсової роботи «Розвиток логіки математичних уявлень за допомогою комп'ютера у дошкільників».
Мета дослідження: теоретично обґрунтувати та практично перевірити можливості використання комп'ютеру як засобу розвитку логіки математичних уявлень дошкільників.
Завдання курсової роботи
1. Здійснити аналіз досліджень проблеми розвитку математичних уявлень дошкільників;
2. Розкрити особливості використання комп'ютера для розвитку логіки математичних уявлень дошкільників;
3. Здійснити аналіз можливостей використання комп'ютера у сучасному дошкільному навчальному закладі та аналіз логіко-математичного аспекту базової програми розвитку дитини дошкільного віку «Я у світі»;
4. Провести діагностику рівня математичного розвитку дошкільників;
5. Визначити шляхи удосконалення роботи щодо використання комп'ютера для розвитку логіки математичних понять дошкільників.
Об'єкт дослідження - математичні уявлення дошкільників.
Предмет дослідження - комп'ютер як засіб розвитку логіки математичних уявлень дошкільників.
Методи дослідження:
- теоретичні: аналіз, синтез, узагальнення літературних даних з теми дослідження;
- емпіричні: вивчення шкільної документації, бесіда.
Практична значущість роботи полягає у можливості використання отриманих результатів дослідження у виховній роботі з дошкільниками щодо розвитку у них логіки математичних уявлень та як основа подальших наукових досліджень.
Структура роботи. Курсова робота складається зі вступу, 3 розділів, загальних висновків, списку використаних джерел та додатків. Загальна кількість сторінок роботи без додатків - . Список використаної літератури налічує джерела. Робота містить таблиці та рисунки.
РОЗДІЛ 1. ТЕОРЕТИЧНІ ОСНОВИ РОЗВИТКУ ЛОГІКИ МАТЕМАТИЧНИХ УЯВЛЕНЬ ЗА ДОПОМОГОЮ КОМП'ЮТЕРА У ДОШКІЛЬНИКІВ
1.1 Аналіз досліджень проблеми розвитку математичних уявлень дошкільників
Підґрунтям навчання математики дітей дошкільного віку є класична педагогіка. Ще в ХІХ столітті відомі педагоги цікавилися навчанням математики, яке традиційно починалось з формування уявлень про лічбу (Я.А. Коменський, М. Монтессорі, Й.Г. Песталоцці, Ф. Фребель). Їхні педагогічні системи містили дані про необхідність навчання дітей елементам математики, зокрема лічби, починаючи з дошкільного віку. Так, Я.А. Коменський у праці «Материнська школа» рекомендує до школи навчати дитину лічби в межах двадцяти, вмінню розрізняти числа більше-менше, парні-непарні, порівнювати предмети за розмірами, використовувати в практичній діяльності такі мірами, як: дюйм, п'ядь, крок, фунт. Саме ця праця вважається першою у світі програмою виховання та навчання дітей дошкільного віку в умовах родини.
Й.Г. Песталоцці досліджував проблему навчання дітей лічби в умовах суспільного виховання. Педагог рекомендував учити дітей розуміти дії над числами, однак він переоцінював роль механічних вправ у розвитку мислення, відокремлював розвиток мислення від накопичення знань. Подальший розвиток методики формування в дітей понять про число відбувся в системах сенсорного виховання Ф. Фребеля, М. Монтессорі. Як основний метод навчання та виховання Ф. Фребель рекомендував гру [Борисова З. Фрідріх Фребель - засновник ідеї дитячого садка / З. Борисова // Дошкільне виховання. - 2002. - № 12. - С. 5-7., с. 5]. Методика навчання М. Монтессорі базувалася на конкретних вправах, а дидактичний матеріал був лише засобом саморозвитку [Борисова З. Мета - самовиховання / Практичний матеріал М. Монтессорі і сенсорний розвиток дитини / З. Борисова // Дошкільне виховання. - 1998. - № 10.- С 8-11., с. 9; Дичківська І.М. Розвивальна роль Монтессорі-матеріалу / І.М. Дичківська // Дошкільне виховання. - 1998. - № 4. - С. 20-21., с. 20].
Л. Толстой видав «Азбуку», однією із частин якої є «Лічба». Критикуючи вже існуючі методи навчання, Л. Толстой пропонував навчати дітей лічби в прямому і зворотному напрямках у межах ста, спираючись на дитячий досвід, набутий під час гри. Він вважав, що таке навчання дітей лічби має особливе значення у зв'язку з розвитком у них пізнавальних інтересів.
Неодноразово про значення навчання дітей лічби до школи писав К. Ушинський. Він вважав важливим навчити дитину лічити окремі предмети та їх групи, виконувати дії додавання і віднімання, формувати поняття десятка, як одиниці лічби. Рекомендації К. Ушинського «про початкове навчання лічби» мали велике значення для складання програм з формування елементарних математичних уявлень [Ушинський К.Д. Вибрані твори / К.Д. Ушинський. - В 2 т. - К.: Рад. школа, 1983. - 421 с.; Ушинский К.Д. Человек как предмет воспитания / К.Д. Ушинський // Соч.: в 11 т. - М. - Л.: Изд-во ЛПИ РСФСР, 1948-1951. - Т. 8. - 776 с.].
Протягом ХІХ століття навчання дітей дошкільного віку лічби і формування в них розуміння числа викликало низку труднощів, адже в опублікованих на той час книгах Г. Архангельської, Ф. Блюхер, З. Пігулевської та ін. було описано лише окремі методичні прийоми проведення занять без теоретичного обґрунтування методики. Причиною цього був вплив на дошкільну освіту основних ідей шкільних методів навчання арифметики. Йшла боротьба між двома напрямками: метод вивчення чисел (монографічний), метод вивчення дій (обчислювальний). Основною причиною непорозуміння вважались гносеологічні погляди представників різних теорій на виникнення числа в створенні людини. Таким чином, суперечка точилася навкруги питання, що слід вважати первинним «число» чи «лічбу». Лічба та число протиставлялися один одному.
Кінець ХІХ століття ознаменувався критикою монографічного методу, недоліком якого математики вбачали механічне заучування основ арифметики при одноманітності методичних прийомів, що негативно позначалося на інтересі дітей до навчання. Із витісненням монографічного методу із шкіл, його частіше почали рекомендувати для дітей дошкільного віку. Тому педагоги-практики тривалий час будували навчання дітей дошкільного віку лічбі, керуючись ним. Та все ж, обидва методи зіграли позитивну роль у розвитку методики навчання лічби дітей дошкільного віку, яка увібрала в себе окремі позитивні моменти: прийоми, вправи, дидактичні засоби [Павлюк Т.О.].
Передові вітчизняні та зарубіжні педагоги, виходячи з досвіду безпосередньої роботи з дітьми, дійшли висновку про необхідність підготовки дошкільників до засвоєння математики в школі. Вчені визначили основний зміст навчання дітей дошкільного віку арифметики та формування уявлень про розмір, вимірювання, час, простір. Лічбу виокремлювали як головний засіб розумового розвитку й рекомендували навчати дітей виконувати ці дії якомога раніше. Але, визнаючи необхідність початкових знань у навчанні дітей, педагоги розуміли навчання як вправляння в практичних, ігрових діях з використанням наочного матеріалу. Зміст навчання дітей математики вони переносили з програм першого класу, розглядаючи дошкільний вік не як самоцінний у розвитку дитини, а як період підготовки її до школи. Недооцінювалася також і роль педагога в навчанні [Борисова З. Фрідріх Фребель - засновник ідеї дитячого садка / З. Борисова // Дошкільне виховання. - 2002. - № 12. - С. 5-7., с.7].
ХХ століття ознаменувалося масовістю суспільного дошкільного виховання. Є. Тихеєва, Л. Шлегер та ін. відзначали, що процес формування числових уявлень у дітей складний і тому необхідно цілеспрямовано навчати їх математиці.
Л. Шлегер вказувала, що діти мають вільно обирати собі заняття за власним бажанням, ставити собі мету і досягати її. Вона вважала, що лічбу слід пов'язувати з усіма видами діяльності дитини, а вихователь має створювати умови, які сприяють самовихованню та самонавчанню дітей [].
Є. Тихеєва чітко уявляла собі зміст ознайомлення дітей дошкільного віку з числом і лічбою. Вона вважала, що сучасна методика прагне того, щоб підвести дітей до засвоєння знань і уявлень самодіяльністю, заохоченням допитливості розуму. На її думку, усі числові уявлення, доступні для певного віку, дитина повинна брати з життя. Є. Тихеєва виступала проти «примушування і натиску» в розвитку дитини, точніше, вона висловлювалась проти систематичного навчання лічби на заняттях, пропонуючи ознайомлення дітей з лічильними операціями в процесі ігор («Лічба в житті маленьких дітей»). Заперечуючи стихійне виховання дитини, вона рекомендує спеціальні ігри-заняття для зміцнення потрібних навичок з лічби. Як засіб систематизації знань пропонує спеціальний добір дидактичного матеріалу, як лічильний пропонує використовувати природний матеріал [].
Згідно досліджень Г. Леушиної, в 10-20-х рр. ХХ століття для дитячих садків та домашнього навчання дітей до школи стали рекомендуватися праці, які складені згідно монографічного методу. У 30-х роках питання навчання дітей лічби було включено в програми радянського дитячого садка. Початковим теоретичним положенням було число та вивчення його складу. Із відходом від неорганізованого навчання дошкільників з'явилися проблеми з визначенням змісту, методів навчання дітей різних вікових груп дитячого садка. Практики не підтримували методику навчання лічби, що полягала у вивченні складу числа, вони прагнули до навчання дітей через елементи множини [Павлюк Т.О.].
Низка педагогів і психологів (І. Френкель, Н. Менчинська, Г. Леушина та ін.) підтверджували це в своїх дослідженнях. Це доводило положення про неможливість протиставлення числа лічбі. І вже в 40-х рр. ХХ ст. проблема навчання лічби дітей дошкільного віку все частіше цікавила дослідників [Леушина А.М., с. 5].
В. Кемніц пропонувала бесіди, ігри, практичні вправи, які формують у дітей уявлення про лічбу. Основним завданням навчання дошкільників математики визначила вивчення чисел від 1 до 10, причому кожне із них розглядалося окремо.
Значну увагу розробці методів навчання лічби дітей дошкільного віку приділила Ф. Блехер. Педагог вміщує до програми дошкільного навчального закладу лічбу в межах десяти на спеціальних заняттях і лічбу до двадцяти-тридцяти у вільній діяльності. Вона вважає за потрібне ознайомити дітей зі складом числа, порядковим числом, цифрами. У роботі з дітьми Ф. Блехер рекомендує використовувати картку з числовими фігурами і цифрами для закріплення порядкової лічби [].
Як основні засоби математичного розвитку дітей Ф. Блехер рекомендувала використовувати різні життєві ситуації. здобуті дітьми знання в повсякденному житті, вона пропонує закріплювати в індивідуальних іграх-заняттях із дидактичним матеріалом. Вперше в літературі з дошкільної педагогіки вона вказує на те, що дітям треба показати незалежність числа від розмірів, елементів, які його утворюють, відстані між ними, форми, розміщення, показати їм співвідношення між числами в числовому ряду. Водночас автор недооцінювала значення поелементного перелічування сукупностей і в цілому лічильної діяльності в математичному розвитку дитини. Головну увагу звертала на цілісне сприймання групи предметів.
Експериментальне вивчення особливостей формування у дітей дошкільного віку умінь та навичок лічби активізувалося в середині ХХ ст. У працях Г. Костюка, Н. Менчинської, І. Френзеля, Л. Яблокова науково обґрунтовано необхідність формування в дітей дошкільного віку уміння розрізняти окремі елементи в множині, уявлень про числівники та лічбу. Так, Г. Костюк, вважав, що поняття числа виникає в дитини в результаті розуміння нею кількісних відношень. Формування поняття про число - продукт аналізуючих, синтезуючих та узагальнюючих дій дитини з елементами множини. Згідно досліджень І. Френкеля та Л. Яблокова, першочерговим у навчанні дітей дошкільного віку лічби є формування уміння розпізнавати окремі елементи множин, а згодом засвоєння дітьми числівників та етапів оволодіння лічильними операціями. Окрім дослідження проблеми навчання дітей лічбі, Н. Менчинська займалася питанням ознайомлення їх з обчислювальною діяльністю [].
З. Пігулевською була розроблена система занять, у яких було розкрито методику навчання дітей лічби в різних вікових групах. Вона передбачає сприйняття множини через зір та на слух. Будучи прихильником монографічного методу, З. Пігулевська не включила в програму навчання, яке пов'язане з обчислювальною діяльністю [].
Ще однією спробою систематизації навчання лічби дітей була система Ф. Михайлової та Н. Бакст. Її особливістю є те, що спочатку вони рекомендували сформувати в дітей уявлення про множину, а потім навчати лічби [].
Та все ж питання як відносяться між собою сприймання множини, лічильна діяльність та поняття числа потребували подальших досліджень, якими і зацікавилася Г. Леушина, саме вона започаткувала основи сучасної дидактичної системи формування математичних уявлень. Вона провела глибоке дослідження вивчення лічильних операцій; розробила програму, зміст, методи і прийоми роботи з дітьми дошкільного віку; теоретико-множинний підхід у навчанні лічби. За вихідне поняття методики було взято конкретну множину, а не числа. Практичні дії дітей з множиною розглядалися як початкові етапи лічби [].
Навчання лічби базувалося на порівнянні двох предметних груп. У ході накопичення дітьми навичок кількісного порівняння декількох множин формується елементарне уявлення про число, як характеристику чисельності конкретної множини в зіставленні з іншою множиною. Дітям пропонується виконувати різні операції з множинами, вчити порівнювати їх, визначаючи різні якісні ознаки. На цій основі будувалося засвоєння кількісної і порядкової лічби.
Г. Леушина розглядала уміння порівнювати дві групи предметів із виділенням відношень між ними в плані підготовки дітей до навчання лічби, засвоєння чисел як сенсорну основу лічильної діяльності. У цьому вона бачила наступність між дочисловим періодом та ознайомленням із числом. Її дослідження дають змогу стверджувати, що уявлення про множину, а згодом і про число створюються в дітей у процесі поетапного формування у них навичок лічби. Автор рекомендує формувати в дітей дошкільного віку алгоритм лічильної діяльності (ефективність оволодіння дітьми лічбою залежить від їх навчання) [Леушина А.М., с. 6].
Зауважимо, що розвиток елементарних лічильних умінь у дітей дошкільного віку на основі принципів і методів, запропонованих Г. Леушиною здійснюється і зараз.
Разом з тим, дослідження П. Гальперіна, Л. Георгієва показали, що ознайомлення дітей з числом на основі порівняння конкретних множин, при навчанні лічби, дає неповне уявлення про число.
Проблема навчання математики дітей дошкільного віку відображена і у дослідженням психологів. Зокрема, В. Давидов розкрив психологічний механізм лічби як розумової діяльності, намітив шляхи формування поняття числа через засвоєння дітьми дій порівнювання, комплектування, вимірювання. Генезис поняття числа розглядався ним на основі кратного відношення будь-якої величини до її частини [Давыдов В.В. Проблемы развивающего обучения / В.В. Давыдов. - М.: Педагогіка, 1986. - 342 с.].
Подальші наукові дослідження педагогів та психологів були головним чином спрямовані на збагачення змісту та методів навчання дітей дошкільного віку лічби. Початок ХХІ століття відзначився переходом до особистісно-орієнтованої моделі навчання та інформатизацією та комп'ютеризацією навчально-виховного процесу дошкільних навчальних закладів, що позначилося і на навчанні дітей дошкільного віку лічби. З'явилися програми навчального та розвивального змісту, які допомагають педагогу формувати у дітей уявлення про лічбу.
1.2 Особливості використання комп'ютера для розвитку логіки математичних уявлень дошкільників
Згідно з Базовим компонентом дошкільної освіти України, вихователь має організовувати процес логіко-математичного розвитку дітей дошкільного віку не лише на спеціалізованих заняттях, а й протягом всієї життєдіяльності дитини у дошкільному навчальному закладі. Основним змістом нині діючих програм з математики в дитячому садку є досить широке коло уявлень і понять: колір, кількість, число, множина, підмножина, величина, міра, форма; уявлення й поняття про простір і час.
Для дітей молодшого й середнього дошкільного віку більш природним є набуття знань, умінь в ігровій, конструктивній, руховій, зображувальній діяльності. Найкращим варіантом у даному випадку буде використання інтегрованих занять: математика й малювання, конструювання й математика, комп'ютерна грамота й математика з поєднанням різноманітних ігрових методів і методів прямого навчання.
Саме тому навички роботи за комп'ютером мають великий потенціал щодо формування математичної компетентності дітей дошкільного віку. Це можливе за умови застосування спеціальних (діагностичних, розвивальних та навчальних) комп'ютерних ігор [Остапчук О. Інноваційний розвиток педагогічних систем в умовах модернізації освіти / О. Остапчук // Директор школи. - 2003. - № 5-6. - С. 149-153.].
Важливу роль у формуванні математичної компетентності дітей дошкільного віку посідає гра, як один із найцікавіших видів людської діяльності і провідна діяльність дошкільника, засіб всебічного розвитку.
Оскільки в домашніх умовах комп'ютери використовуються не тільки для роботи і навчання, а й для ігор, то постає питання правильного вибору: які комп'ютерні ігри розвивають дитину, а які мають сумнівну цінність. Тут важливими є знання жанрової класифікації ігор.
Основних жанрів комп'ютерних ігор кілька, однак у межах кожного з них існують свої різновиди. Ігри одного жанру можуть мати між собою багато спільного, водночас в одній грі можуть поєднуватися кілька жанрів.
Жигайло О.О. пропонує наступну умовну класифікацію комп'ютерних ігор [].
Адвентурні (пригодницькі) - ці ігри оформлені як мультиплікаційний фільм, однак з інтерактивними властивостями - можливістю управляти перебігом подій. Для розв'язання поставлених завдань потрібно бути кмітливим і мати розвинене логічне мислення. Головним у таких іграх є пошук. Різні предмети, на які натрапляє персонаж, подорожуючи в ігровому просторі, він використовує як засоби, зручні в конкретній ситуації.
Головна мета стратегічних ігор: управління ресурсами, корисними копалинами, військами, енергією чи іншими подібними складовими (юнітами). При цьому зазвичай потрібно здійснювати не тільки тривале планування, а й стежити за конкретною ситуацією. Стратегічні ігри розвивають у дітей наполегливість, здатність планувати свої дії, тренують багатофакторне мислення.
Для аркадних ігор характерний поділ гри на рівні, коли нагородою і метою є право переходу до наступного епізоду, так званої місії. Здебільшого в кінці кожної місії гравцеві потрібно подолати противника. В таких іграх існує система набору очків і бонусів (додаткових нагород), що надаються за особливі заслуги (швидкість проходження, перемога над сильним ворогом тощо). Аркадні ігри тренують окомір, увагу, швидкість реакції. Для дошкільників рекомендується обмежити такі ігри загалом.
В рольових іграх в розпорядженні гравця є невеликий загін персонажів, кожний з яких виконує певну роль чи функцію. Завдання героїв - спільними зусиллями дослідити віртуальний світ для виконання визначеної на початку гри мети. Метою може бути відшукування певного артефакту, людини тощо. На шляху до досягнення мети стають різні перешкоди, які потрібно подолати. Тут виявляється визначальний принцип рольової гри - використання потрібного персонажу в потрібний час і в потрібному місці, тобто те, що не виходить в одного, з легкістю може вийти в іншого.
Корисність логічних ігор полягає в тому, що вони розвивають логічне мислення, особливо в дітей дошкільного віку. Здебільшого це гра з одним завданням чи набором головоломок, які повинен розв'язати гравець. Типовими іграми цього жанру є різноманітні завдання на перестановку фігур або моделювання малюнків.
У назві ігор симуляторів (імітаторів) наявний певний префікс, наприклад: авто-, авіа- тощо. Перші імітатори з'явилися одночасно з аркадними іграми. Сьогодні можна знайти імітатори майже всіх технічних засобів - вітрильників, літаків, автомобілів тощо. У цих іграх увагу зосереджено на реакціях відповідному віртуальному середовищу, майже до найдрібнішого відображення технічних показників у авіасимуляторах чи характеристик гравців у спортивних симуляторах.
Існує кілька класифікацій комп'ютерних ігор, однак не можна категорично твердити, що ігри одного жанру успішні, а іншого - ні. Чимало залежить від конкретної гри. Найголовніше - ставлення дитини до гри. Для того щоб вихователі й батьки не заблукали в морі віртуальних розваг, потрібно володіти інформаційною культурою і виховувати її у дітей.
Інформаційна культура - це насамперед інтелектуальна активність людини, постійна потреба в новій інформації, її переробленні та самостійному інтерпретуванні [Інформаційні технології і засоби навчання: зб. наук. пр. / за ред. В.Ю. Викова, Ю.О. Жука / Ін-т засобів навчання АПН України. - К.: Атака, 2005. - 272 с.].
Реалізація можливостей інформаційних і комунікаційних технологій, що зазначені вище, дозволяє організувати такі види діяльності з використанням засобів ІТ для дітей дошкільного віку:
1) реєстрація, збір, накопичення, зберігання, обробка інформації про об'єкти, явища, процеси, які вивчаються, та передавання достатньо великих обсягів інформації, яка представлена у різноманітній формі;
2) інтерактивний діалог - взаємодія користувача з програмною та апаратною системою, яка характеризується реалізацією більш розвинених засобів ведення діалогу;
3) керування відображенням на екрані монітора моделей різних об'єктів, явищ, процесів, у тому числі і тих, які реально відбуваються;
4) автоматизований контроль (самоконтроль) результатів навчальної діяльності; корегування за результатами контролю, тестування.
Отже, засоби інформаційно-комунікаційних технологій використовуються у сучасному освітньому процесі, перш за все, як засоби навчання при організації різних видів навчальної діяльності.
Висновки до першого розділу
Взаємозв'язок розвитку математичних здібностей дітей дошкільного віку і формування логічної сфери дошкільників однією з найактуальніших методичних проблем за останні роки. Одним із засобів розвитку у дошкільників логіки математичних уявлень є комп'ютер.
Граючись у комп'ютерні ігри, діти краще розвивається, набагато легше опановують такі дисципліни, як література, українська та іноземна мови, вчаться розв'язувати задачі, розпізнавати предмети, називати їх форму, розмір, колір, знайомляться з кількісними співвідношеннями, числом, цифрою, з просторовими поняттями. Крім того, комп'ютер розширює уявлення дитини про навколишній світ, розвиває мислення, уяву, мовлення, збагачує словниковий запас тощо.
РОЗДІЛ 2. ДОСЛІДЖЕННЯ СТАНУ ВИКОРИСТАННЯ КОМП'ЮТЕРА ДЛЯ РОЗВИТКУ ЛОГІКИ МАТЕМАТИЧНИХ УЯВЛЕНЬ ДОШКІЛЬНИКІВ
2.1 Аналіз можливостей використання комп'ютера у сучасному дошкільному навчальному закладі
Передумовою оволодіння початковими математичними поняттями у дитини є формування розумових дій і операцій, які поступово складаються на основі зовнішніх практичних дій. Саме тому майбутні фахівці дошкільної галузі, розробляючи практичні завдання для дітей, обов'язково спираються на їх вікові психологічні та індивідуальні особливості. Так, розкриваючи тему «Геометрична фігура - квадрат», вихователі використовують інформаційні можливості програми Microsoft Front Page: дітям демонструються спочатку предмети, які візуально нагадують квадрат, потім складається периметр квадрата, далі він заповнюється кольором, а лише після цього дається визначення. Це дає можливість дітям самостійно добути висновок під час практичних дій за комп'ютером. Надалі з рівня зовнішніх, матеріальних, ці дії поступово переводяться на вищий рівень і виконуються в розумі як внутрішні. Одночасно удосконалюються певні знання, поглиблюються й уточнюються.
Перелічимо основні можливості застосування комп'ютера фахівцями з дошкільної освіти щодо формування математичної компетентності дітей:
1. Пошук та добір навчального матеріалу в Internet: малюнки, практичні завдання, додаткові відомості про застосування математики в житті, цікаві факти з історії математики, фізкультхвилинки, вірші, загадки презентації та математичні ігри тощо.
2. Створення дидактичного матеріалу: таблиць, схем, асоціативних кущів, карток із завданнями, унаочнення матеріалу (за допомогою мультимедійної презентації).
3. Створення комп'ютерних ігрових вправ: (наприклад, підрахувати кількість фігур, виведених на екран, і натиснути відповідну цифрову клавішу, у записі арифметичних прикладів може бути пропущена одна з цифр, вимагається відновити запис та ін.);
4. Діагностика (пізнавальних можливостей, рівня розвитку, засвоєння матеріалу тощо).
5. Використання комплексу розвивальних, навчальних комп'ютерних і педагогічних програмних засобів [].
Використання комп'ютера у системі дошкільної освіти доцільно розглядати одночасно і як засіб інтенсифікації навчально-виховного процесу дошкільного навчального закладу, і як засіб удосконалення сфери управління дошкільними навчальними закладами, і як один з шляхів підвищення рівня інформаційно-комунікативної компетентності вихователів.
Усе частіше сучасні вихователі у професійній діяльності використовують текстовий та табличний процесори, мультимедійні презентації, різноманітні відеоряди (мультфільмів, фрагментів пізнавальних телепередач), аудіозаписи казок та оповідань та ін. Стрімкий розвиток мережі Інтернет призвів до появи технологій колективної взаємодії користувачів - соціальні сервіси Веб 2.0, що надають можливість організовувати спільну освітню діяльність, реалізовувати власні комунікативні вміння, зберігати в мережі власні електронні ресурси, використовуючи програмні можливості різноманітних веб-сервісів, не обтяжуючи користувачів дизайном та особливостями їх програмування. Найбільш популярними серед таких сервісів у педагогічному середовищі, зокрема й серед вихователів є освітні блоги. Тому мета нашої публікації проаналізувати основні можливості використання освітніх блогів у професійній діяльності вихователів ДНЗ [].
Блог (від англ. web log (blog) - мережний журнал) - це тип веб-сайту (до десяти сторінок), основний зміст якого - короткі записи (текст, зображення, посилання, мультимедіа), що додаються регулярно й мають назву «пости».
Пости на такому сайті публікуються у зворотному порядку. До основних переваг блогу відносять простоту використання, природне спілкування і взаємодія з читачем.
Блог для вихователів ДНЗ відкриває нові можливості комунікаційної взаємодії, його можна використовувати: як місце для організації педагогічних дискусій, поширення власних педагогічних ідей, розміщення цікавих тем для роздумів; як дошку оголошень; як місце для опису подій кожного дня, кожного заняття, кожного освітнього заходу, що відбулося в дитячій групі та ін., місце для створення групових публікацій (розмішуючи в блогах різні стінгазети; фото з екскурсій; виховних заходів); як ресурс для самоосвіти; як засіб для обміну інформацією та мережевої взаємодії зі своїми колегами. Як відомо, одним з професійних завдань вихователя є організація ефективної взаємодії з батьками. Створивши власний блог, вихователь зможе використовувати його як інструмент для: надання батькам психолого-педагогічні консультації з окремих питань виховання і навчання дітей, залучення їх до педагогічної самоосвіти, до спільної участі в навчально-виховному процесі малюків; проведення анкетування та опитування серед батьків; інформування батьків з результатами навчання дітей шляхом публікації робіт вихованців, розміщення відео з навчальних занять; забезпечення зворотного зв'язку з батьками [Вінницька Н.М. Можливості використання освітніх блогів. Технологія веб 2.0. / Н.М. Вінницька, С.А. Стельмащук // Інформатика в школі: Видавнича група «Основа». - 2012. - № 7 (43). - 80 с.].
Вихователі, співпрацюючи зі своїми колегами, можуть використовувати блоги для організації проектної діяльності, розміщення об'яв про різні конкурси та їх результати, новини в галузі дошкільної освіти, для розміщення гіперпосилань на інші блоги вихователів, для публікації власних методичних розробок; отримання методичних рекомендації з теми, що цікавить вихователів; проведення педагогічних або наукових дискусій.
Підсумовуючи, можна зробити висновок, що освітні блоги як один з потужних інформаційних інструментів нині є незамінним, оперативним і мало затратним додатковим комунікаційним засобом для професійної діяльності вихователя.
2.2 Аналіз логіко-математичного аспекту базової програми розвитку дитини дошкільного віку «Я у світі»
Базова програма розвитку дитини дошкільного віку «Я у Світі» передбачає створення сприятливих умов для особистісного становлення і творчої самореалізації кожної дитини та формування в неї життєвої компетентності.
Логіко-математичні завдання, визначені Базовою програмою розвитку дитини дошкільного віку «Я у світі», не є простим розширенням традиційної системи роботи з формування елементарних математичних уявлень. Вони побудовані на нових концептуальних положеннях, визначених Базовим компонентом дошкільної освіти в Україні.
1. Принциповою особливістю Базової програми є логізація математичного змісту відповідно до власного досвіду дитини, що створює основу для пізнання цілісної картини світу. У змісті завдань з логіко-математичного розвитку традиційний математичний аспект знань поєднаний з логічним. Якщо математичний аспект є традиційним і відпрацьованим в сучасній дошкільній теорії і практиці, то логічний - є новим і мало задіяним.
2. У Базовій програмі завдання логіко-математичного розвитку не виділено окремо, а розподілено в кожній сфері життєдіяльності: «Природа», «Культура», «Люди», «Я Сам». Такий підхід не означає применшення ролі даного напряму особистісного розвитку дошкільника ( в ньому не існує менш чи більш важливого - кожний аспект необхідний і незамінний), а задля збереження науково обґрунтованої схеми систематизації змісту дошкільної освіти в цілому та фіксації пріоритету цілого над частиною. Так, у сфері «Природ», у змістовій лінії «Природа планети Земля» визначаються такі показники:
- знає характерні ознаки пір року та їх послідовність, володіє інформацією, що кожна пора року складається з місяців, місяць - з тижнів, тиждень - з днів, день - з доби, доба з годин, години з хвилин, хвилини із секунд;
- вміє порівнювати та класифікувати об'єкти природи за якісними ознаками та чисельністю;
- вимірює відстань, довжину, масу, сипкі та рідкі природні речовини;
- знає співвідношення між одиницями часу та вміє визначати час за допомогою годинника.
У сфері життєдіяльності «Культура», у змістовій лінії «Предметний світ» передбачено:
- уміння дошкільника визначати форму предметів довкілля за допомогою геометричної фігури як еталона;
- здатність видозмінювати геометричні фігури, виділяти їхні основні ознаки, порівнювати між собою та класифікувати предмети за однією з ознак;
- уміння класифікувати за кількома ознаками та оперувати множинами: об'єднувати їхні елементи, сортувати, доповнювати, вилучати зайві, визначати відношення між ними у процесі класифікації;
- уміння здійснювати серіацію за величиною, масою, об'ємом; визначати місце окремого об'єкта в серіаційному ряді;
- уміння лічити предмети, та розрізняти їх у просторі та за віддаленістю.
Про розвиток пізнавальної активності особистості дитини, що носить математичний характер, йдеться й у сфері життєдіяльності «Я Сам»:
- усвідомлення старшими дошкільниками принципу збереження кількості незалежно від форми та величини предметів, відстані між ними та просторового розміщення;
- засвоєння цифр, знаків, усне здійснення найпростіших обчислень, розуміння суті і структури арифметичних задач;
- використання різних стандартів одиниці міри;
- прояв сприйнятливості, допитливості, спостережливість;
- здатність відрізняти головне від другорядного;
- володіння елементарними формами критичного мислення, творчої уяви, довільної пам'яті.
Логіко-математичні уміння дитини безпосередньо пов'язані зі сферою життєдіяльності «Люди». Дошкільник має володіти уміннями:
- диференціювати людей за ознаками віку, спорідненості;
- оперувати поняттями «людина», «країна», «людство»;
- знаходити в людському довкіллі спільне і відмінне, близьке і далеке;
- оперувати кількісними показниками, встановлювати причинно-наслідкові зв'язки (старший дошкільний вік).
При цьому важливі не стільки самі по собі логіко-математичні знання дошкільників, скільки здатність використовувати їх у різних життєвих ситуаціях, розсудливо поводитися, проявляти високу пізнавальну активність, кмітливість, гнучкість мислення, самостійність суджень, тобто, уміння поводитись компетентно, відповідно до своїх вікових можливостей, індивідуального життєвого досвіду та вимог життя.
3. Попередні програми здебільшого орієнтували педагогів на проведення колективних занять для засвоєння математичних знань. Частково ці знання закріплювалися в індивідуальній роботі та використовувалися в ігровій діяльності. Традиційна, роками відпрацьована система занять, як основна форми організації математичної діяльності дошкільників виявилась малоефективною щодо логіко-математичного розвитку кожної дитини. У ході таких занять дидактична мета, зміст і засоби навчання не достатньо диференціюються відповідно до можливостей дітей. Виховуючи компетентну особистість, ми радимо зосереджуватися не тільки на використанні тільки цієї форми організації виховного процесу. Як зазначає О.Кононко, педагоги не заперечують занять як однієї з можливих форм організації життєдіяльності дошкільника, проте не визнаємо його основною і, головне, - найпродуктивнішою для даного періоду життя малюка формою, бо чим менша дитина, тим більше значення в її житті мають гра, спілкування та продуктивна діяльність [О. Кононко. Коментар до Базового компонента дошкільної освіти в Україні. - К.: Дошк. вих. - 2003. - с. 41]. Отже, педагогам дошкільних навчальних закладів доцільно вийти на ширший життєвий простір, узявши за основу компетентнісну парадигму виховного процесу. В центрі уваги вихователя мають бути: процес життєдіяльності дошкільника, стиль поведінки, діяльності та продуктивність його життя вцілому.
4. Логіко-математичні завдання, визначені Базовою програмою, орієнтовані, насамперед, на забезпечення розвитку пізнавальних здібностей, вміння розмірковувати, встановлювати причинно-наслідкові зв'язки, робити прості умовисновки, використовуючи елементарні логічні прийоми. Ефективність виховного процесу з формування логіко-математичної компетентності оцінюється за якісними змінами в пізнавальній діяльності дитини. Бо головним є не обсяг набутих дитиною математичних знань, а поєднання їх з особистісними якостями, та з умінням трансформувати їх у практичну діяльність. Завдання дорослого полягає у створенні таких умов, де б дитина займала позицію активно діючого суб'єкта діяльності. Мова йде не тільки про послідовний процес пізнання від простого до складного, від близького - до більш далекого, а й про створення ситуацій, які б стимулювали пізнавально-пошукову та дослідницьку діяльність дітей, розвивали уміння розмірковувати, з'ясовувати суперечності, висловлювати передбачення, формулювати рішення, відстоювати свої твердження.
5. Навчально-виховна робота з логіко-математичної діяльності спирається на мисленнєву діяльність, яку необхідно розвивати з огляду на такі уміння як:
- уміння аналізувати, синтезувати, порівнювати;
- уміння узагальнювати, абстрагувати;
- уміння систематизувати, серіювати, класифікувати, знаходити принципи та закономірності, відшукувати логічні співвідношення між числами та предметами.
Такі уміння створюють сприятливі передумови для появи в них перших спроб обґрунтовувати свої думки, доводити їх істинність та сприяють розвитку важливої базової якості особистості дошкільника - розсудливості.
Окрім того, математичні символи і поняття допомагають дитині пізнавати оточуючий світ. Математика для малюків - це не тільки світ цифр і чисел. Це особливий світ пізнання і гармонії який існує об'єктивно. І хоча математичні знання формуються на певному матеріалі, ми не ототожнюємо їх з предметним світом. Адже число 5 може вказувати на кількість пелюсток у квітки, кількість пальців на руці, вартість проїзного квитка чи на вік дитини. Ці знаки і символи мають стати для дитини одним із шляхів пізнання оточуючого світу.
6. Питання логіко-математичної компетентності є принциповим для особистісно орієнтованої моделі освіти. Забезпечення цього процесу великою мірою залежить від позиції дорослого та створення ним доброзичливої атмосфери. Навчально-дисциплінарна модель, основні девізи якої «Роби, як я!», «Дій за зразком», не дає бажаного результату. Покірлива слухняність дитини, побоювання зробити помилку виключають можливість розмірковувати, доводити і відстоювати свою думку. За таких умов у дітей формуються такі якості, як адекватна реакція на свої помилки; самооцінка та впевненість у власних інтелектуальних силах; готовність до сумісного вирішення проблеми, толерантність і готовність сприйняти думку іншого.
7. Базова програма розвитку дитини дошкільного віку «Я у Світі» передбачає створення таких умов для формування логіко-математичної компетентності, за яких дорослий може допомогти дитині розкрити свій власний потенціал, навчити її самостійно пізнавати світ. При цьому не стільки важливий кінцевий результат діяльності дошкільника, скільки сам процес його досягнення. «Допоможи мені це зробити самому» - завжди було і є актуальним гасло педагогіки М. Монтессорі. Бо в життєдіяльності дошкільника і в логіко-математичній, зокрема, самостійне просування конкретного малюка власним шляхом розвитку є для нього реальною нормою. Вважаємо, що розумне дозування участі дорослого в логіко-математичній діяльності дитини та перевага опосередкованого впливу над безпосереднім буде запорукою не тільки формування логіко-математичної компетентності, але й сприятиме вихованню почуття власної гідності і незалежності, зростанню впевненості у своїх силах. Адже компетентність ми розглядаємо не як процес форсування інтелектуального розвитку, а як поєднання набутих дитиною знань з її особистісними якостями та вмінням застосовувати свої знання в житті. А центром педагогічної діяльності є дитина - компетентна, розсудлива, людяна, справедлива, спостережлива, відповідальна та творча.
2.3 Діагностика рівня математичного розвитку дошкільників
Відповідно до мети та завдань курсової роботи нами було організоване та проведене експериментальне дослідження, яке полягало у визначенні рівня математичного розвитку дошкільників у ході експериментальної роботи з ними. Наше дослідження було проведене на базі КЗО ДНЗ № 195 «Перлинка» міста Дніпра з дітьми старшої групи у кількості 22 дитини, з них 13 хлопчиків та 9 дівчаток.
Наше експериментальне дослідження проводилося протягом вересня-грудня 2016 року та складалося з трьох етапів, на кожному з яких проводилася відповідна робота:
1. констатувальний етап дослідження - визначення експериментальної групи, бесіди з вихователем групи, підбір діагностичної методики з визначення рівня математичного розвитку дошкільників та проведення самого визначення;
2. формувальний етап дослідження - проведення з дітьми спеціально розроблених занять з використанням комп'ютера з метою підвищення у них рівня математичного розвитку. Заняття проводилися двічі на тиждень. Усього було проведено 32 заняття;
3. контрольний етап дослідження - повторне проведення визначення рівня математичного розвитку дошкільників з метою порівняння з результатами констатувального етапу та визначення ефективності проведеної нами роботи.
Для діагностики рівня математичного розвитку дошкільників нами було обрано методику, запропоновану М. Машовець у посібнику «Математична скарбничка. Методичний посібник для вихователів дошкільних навчальних закладів» (2013 р.) []. Наводимо текст методики.
Дидактична гра «Уважно дивись, плескай у долоні, не помились».
Мета: вправляти дітей у створенні множини за запропонованим числом, учити узгоджувати свої дії з діями інших дітей, відчувати темп і ритм. Підтримувати позитивний настрій успіху.
Хід вправи
Запропонуйте дітям зібратися півколом і повідомте про цікаве дійство.
Діти, зараз ми пограємо в цікаву гру «Уважно дивись, плескай у долоні, не помились» і переконаємося, що всі ми кмітливі й уважні. Я показуватиму вам картку з числом, а ви будете стільки ж разів плескати в долоні. Головне, щоб усі плескали одночасно. Приготувалися? Почали!
Покажіть картки з числами в межах п'яти, змінюючи їх кілька разів.
Спираючись на показники успішного математичного розвитку на попередньому віковому етапі, для уточнення зібраних даних проведіть кілька занять з формування елементарних математичних уявлень з метою завершення діагностування рівнів математичної компетенції дітей своєї групи на початку навчального року. На нашу думку, доцільно провести два такі заняття у вересні.
Нагадаємо показники успішного логіко-математичного розвитку дітей до п'яти років:
- визначають кількісні відношення (більше, менше, стільки ж) між предметними множинами способом розміщення один під одним предметів з кожної множини (встановлення взаємно-однозначної відповідності між елементами двох множин);
- знають цифри в межах 5, співвідносять цифру з числом і навпаки; при перелічуванні предметів числа називають по порядку, починаючи з числа «один» без пропусків (при перелічуванні не можна пропускати предмет або називати один і той самий предмет двічі);
- розуміють, що останній числівник при лічбі позначає всю групу перелічуваних предметів - одна слива, дві, три, чотири, п'ять слив. Усього 5 слив;
- засвоїли різні способи перелічування предметів (перекладання предметів по одному зліва направо, торкання кожного предмета).
Проведену діагностування уможливить умовну диференціацію групи на три (чотири) підгрупи: - високий рівень; - середній рівень; - достатній рівень; - низький рівень математичного розвитку.
Для зручності спостереження за просуванням дітей в опануванні логіко-математичними уявленнями можна використати методику, що допомагає визначити рівень активного оволодіння певним програмовим змістом з позитивним настроєм. Для цього створіть таблицю, у якій зазначте всіх дітей групи та передбачте 5 стовбців справа від імен - це шкала, від 1до 5.
У шкалі від 1 до 5 визначаємо залученість у математичну діяльність дитини, за якою ведемо спостереження, і позначаємо межу, де кожна дитина має високу інтелектуальну активність і позитивний емоційний рівень.
Після спостережень умовно розділіть групу на підгрупи (за визначеним кольором):
- зелений колір - діти, які комфортно почуваються на занятті, активні, самостійні, у шкалі спостережень вони мають позначки 4-5;
- синій колір - діти, які потребують більшої уваги, самостійно активності не виявляють, у шкалі спостережень мають позначки 3 чи 4;
- оранжевий колір - діти, які потребують безпосередньої підтримки та заохочення, у шкалі спостережень вони мають позначки на рівні 3;
- червоний колір - діти, які не виявляють інтересу до занять математикою, у шкалі спостережень мають позначки 1 чи 2.
Аналіз результатів діагностування допоможе виявити дітей, яким потрібно створювати індивідуальні програми. Переваги такого спостереження виявляються ще й у тому, що допомагають вивчати дитячий колектив і визначати індивідуальні підходи до кожної дитини та її батьків. Проте хотілося б застерегти вас від легкості приклеїти дитині, яка має деякі труднощі, ярлик «проблемної». У жодному разі не можна ігнорувати щонайменші успіхи кожної дитини в опануванні елементарною математикою.
Результати діагностики за визначеною методикою представлено у таблиці 2.1.
Як видно з таблиці на констатувальному етапі дослідження 6 дітей (27 %) мають високий рівень математичного розвитку, 9 дітей (41 %) - середній рівень, 4 дитини (18 %) - достатній рівень та 3 дитини (14 %) - низький рівень. На контрольному етапі дослідження спостерігається покращення досліджуваного показнику: 7 дітей (32 %) мають високий рівень математичного розвитку, 13 дітей (59 %) - середній, 2 дитини (9 %) - достатній та жодна з дітей досліджуваної групи не має низького рівня математичного розвитку. Графічно отримані результати представлено на рис. 2.1.
Таблиця 2.1
Результати визначення рівня математичного розвитку дошкільників у ході проведення експериментального дослідження
Підгрупи за рівнем математичного розвитку |
Кількість дітей у підгрупі |
||
констатувальний етап |
контрольний етап |
||
Підгрупа червоного кольору (високий рівень математичного розвитку) |
3 |
0 |
|
Підгрупа оранжевого кольору (середній рівень математичного розвитку) |
4 |
2 |
|
Підгрупа синього кольору (достатній рівень математичного розвитку) |
9 |
13 |
|
Підгрупа зеленого кольору (низький рівень математичного розвитку) |
6 |
7 |
Рис. 2.1 Діаграма порівняння результатів визначення рівня математичного розвитку дошкільників у ході проведення експериментального дослідження
Отже, результати проведеного нами експериментального дослідження вказують на ефективність проведених нами з дітьми занять щодо використання комп'ютера для підвищення рівня математичного розвитку дошкільників. Такі заняття необхідно проводити регулярно з урахуванням програмних вимог та вікових особливостей дошкільників.
Висновки до другого розділу
Використання інформаційно-комунікаційних технологій у системі дошкільної освіти доцільно розглядати одночасно і як засіб інтенсифікації навчально-виховного процесу дошкільного навчального закладу, і як засіб удосконалення сфери управління дошкільними навчальними закладами, і як один з шляхів підвищення рівня інформаційно-комунікативної компетентності вихователів.
Нами було організоване та проведене експериментальне дослідження на базі КЗО ДНЗ № 195 «Перлинка» міста Дніпра з 22 дітьми старшої групи. Експериментальне дослідження було проведене у три етапи: констатувальний, формувальний та контрольний.
...Подобные документы
Аналіз психолого-педагогічної літератури з проблеми математичного виховання дошкільників. Основи концепції формування елементарних математичних уявлень. Особливості українського фольклору для розвитку елементарних математичних уявлень в дошкільному віку.
курсовая работа [52,3 K], добавлен 08.04.2011Розвиток мовлення молодших школярів як педагогічна проблема. Психолого-педагогічні аспекти використання комп’ютера для розвитку зв’язного мовлення. Опис прикладного програмного забезпечення для розробки дидактичних засобів для уроків розвитку мовлення.
курсовая работа [210,5 K], добавлен 17.06.2009Розвиток та характер мовленнєвої діяльності на уроках української мови в початковій школі. Методична система уроків та психолого-педагогічний аспект використання комп’ютера. Орієнтовні зразки уроків з розвитку зв’язного мовлення молодших школярів.
курсовая работа [251,8 K], добавлен 17.06.2009Фактори, що сприють більш активному і ефективному використанню нових інформаційних технологій у початковій школі. Проблема використання комп’ютера на уроках мистецтва у початковій школі. Система уроків з використанням комп’ютера на уроках малювання.
курсовая работа [126,5 K], добавлен 11.06.2009Поняття про програму, її запуск на виконання та завершення роботи. Основні прийоми керування об’єктами за допомогою миші. Робочий стіл комп’ютера. Введення тексту з клавіатури. Поняття "істинні та хибні висловлення". Розвиток у учнів логічного мислення.
курсовая работа [416,4 K], добавлен 20.06.2014Інтегроване навчання як засіб математичного розвитку дошкільників. Формування елементарних математичних навичок у дітей дошкільного віку з погляду логіко-математичних понять. Аналіз проведеного експерименту щодо ефективності нестандартних типів уроків.
курсовая работа [241,0 K], добавлен 30.11.2015Особливості проведення уроків української мови в початковій школі, їх зміст. Переваги та недоліки використання персонального комп’ютера, розробка дидактичних засобів на уроках української мови. Методика проведення уроків із застосуванням комп'ютера.
курсовая работа [470,5 K], добавлен 17.06.2009Комп’ютерні інформаційні технології як елементи системи дидактичних засобів. Ознайомлення студентів-педагогів з варіантами програмного забезпечення. Впровадження комп’ютера у навчально-виховний процес початкової школи. Використання табличної наочності.
статья [19,5 K], добавлен 15.07.2009Аналіз сучасних систем комп'ютерних математичних концепцій та їх можливостей. Особливість застосування їх в навчальному процесі та наукових дослідженнях. Сутність обчислювального режиму в Maple. Проведення навчання математиці школярів в програмі Derive.
статья [23,3 K], добавлен 18.08.2017Завдання курсу математики в початковій школі. Опис прикладного програмного забезпечення для розробки дидактичних засобів та психолого-педагогічний аспект його використання на уроках математики. Конспекти уроків, зроблені за допомогою комп'ютера.
курсовая работа [611,3 K], добавлен 17.06.2009Методика та психолого-педагогічні особливості проведення уроків читання в початкових класах з використанням комп’ютерів та засобів мультимедіа. Переваги і недоліки використання комп’ютера на уроках у початковій школі. Дидактичні засоби для уроків читання.
курсовая работа [38,2 K], добавлен 17.06.2009Особливості вивчення комп’ютерних дидактичних засобів для навчання грамоти на уроках української мови в початковій школі. Психолого-педагогічні аспекти використання комп’ютера. Урок читання і письма в добукварний, букварний та післябукварний періоди.
курсовая работа [360,7 K], добавлен 17.06.2009Характеристика наукових джерел. Суть і завдання розумового розвитку старших дошкільників. Роль і місце розвивального навчання в розумовому розвитку старших дошкільників.
курсовая работа [34,1 K], добавлен 09.06.2003Використання комп’ютера на уроках математики. Проведення тестування за допомогою спеціальних комп'ютерних програм. Впровадження презентацій у навчально-виховний процес. Методика використання презентацій на різних етапах уроку, технологія досвіду.
курсовая работа [1,9 M], добавлен 20.06.2012Аналіз підходів до визначення структури професійних компетентностей вчителя інформатики. Технологічні етапи переробки інформаційних потоків. Особливості формування предметної компетентності з архітектури комп’ютера та її критеріальні характеристики.
статья [112,5 K], добавлен 05.10.2017Теоретичні основи використання нових інформаційних технологій в початковій школі. Вплив комп’ютера на психічне і фізичне здоров’я дитини. Проблеми та шляхи їх вирішення. Методичні рекомендації щодо використання НІТ в роботі вчителя початкових класів.
курсовая работа [48,5 K], добавлен 17.06.2009Розвиток пізнавального інтересу учнів до навчання фізики у позакласній роботі з використанням дидактичних засобів у поєднанні з комп'ютерними технологіями. Можливості застосування графічних пакетів щодо електромагнітних коливань з фізики середньої школи.
курсовая работа [54,1 K], добавлен 29.10.2014Психолого-педагогічні дослідження проблем формування логіко-математичних уявлень у дітей дошкільного віку. Визначення рівня логіко-математичного розвитку дітей за допомогою спостережень у природі. Результати оцінювання вміння обчислення та вимірювання.
курсовая работа [501,4 K], добавлен 21.01.2014Переваги та недоліки різних форм позакласної роботи з фізики, проведення факультативних занять. Сучасні технології, які можна використовувати на позаурочних заняттях з фізики. Фізичні явища та процеси, які відбуваються при роботі пристроїв комп’ютера
магистерская работа [9,2 M], добавлен 04.08.2009Теоретичне обґрунтування використання інформаційних технологій в початковій школі. Освітні, виховні й розвивальні завдання навчання математики в початкових класах. Дидактичні можливості комп’ютера в навчально-пізнавальній діяльності молодших школярів.
курсовая работа [59,0 K], добавлен 06.10.2012