Сложные суждения
Рассмотрение суждения как формы мышления, в которой утверждается или отрицается связь между предметом или его признаком. Описание сложных суждений, логических связок между ними. Логический квадрат. Таблицы истинности этих суждений и их применение.
Рубрика | Философия |
Вид | реферат |
Язык | русский |
Дата добавления | 08.10.2013 |
Размер файла | 21,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Введение
Познавая объективный мир, человек раскрывает связи между предметами и их признаками, устанавливает отношения между предметами, утверждает или отрицает факт существования предмета. Эти связи и отношения отражаются в мышлении в форме суждений, представляющих собой связь понятий.
Связи и отношения выражаются в суждении посредством утверждения или отрицания. Всякое суждение может быть либо истинным, либо ложным, т.е. соответствовать действительности либо не соответствовать ей. Если в суждении утверждается связь, существующая в действительности, или отрицается связь, которая в действительности отсутствует, то такое суждение будет истинным. Существуют суждения, истинность или ложность которых очевидна или может быть легко установлена. Истинность или ложность таких суждений должна быть подтверждена другими суждениями, истинность которых установлена.
Итак, суждение - это форма мышления, в которой утверждаются или отрицается связь между предметом или его признаком, отношения между предметами или факт существования предмета и которая может быть либо истинной, либо ложной.
Цель данной работы: описать сложные суждения, логические связки между ними и показать таблицы истинности этих суждений.
1. Понятие сложного суждения
суждение мышление логический истинность
Сложное суждение - суждение, образованное из простых посредством логических союзов конъюнкции, дизъюнкции, импликации, эквивалентности.
Логический союз - это способ соединения простых суждений в сложное, при котором логическое значение последнего устанавливается в соответствии с логическими значениями составляющих его простых суждений.
Особенность сложных суждений заключается в том, что их логическое значение (истинность или ложность) определяется не смысловой связью простых суждений, составляющих сложное, но двумя параметрами:
1) логическим значением простых суждений, входящих в сложное;
2) характером логической связки, соединяющей простые суждения.
Современная формальная логика отвлекается от содержательной связи между простыми суждениями и анализирует такие высказывания, в которых эта связь может отсутствовать. Например, «Если квадрат гипотенузы равен сумме квадратов катетов, то на Солнце существуют высшие растения».
Логическое значение сложного суждения устанавливается при помощи таблиц истинности. Таблицы истинности строятся следующим образом: на входе выписываются все возможные комбинации логических значений простых суждений, из которых состоит сложное суждение. Число этих комбинаций можно высчитать по формуле: 2n, где n - число простых суждений, составляющих сложное. На выходе выписывается значение сложного суждения.
2. Сравнимость суждений
Помимо всего прочего, суждения делятся на сравнимые, имеющие общий субъект или предикат и несравнимые, не имеющие между собой ничего общего. В свою очередь, сравнимые делятся на совместимые, полностью или частично выражающие одну и ту же мысль и, несовместимые, если из истинности одного из них необходимо следует ложность другого (при сопоставлении таких суждений нарушается закон непротиворечия). Отношение по истинности между суждениями, сравнимыми через субъекты отображается логическим квадратом.
Логический квадрат лежит в основе всех умозаключений и представляет собой сочетание символов A, I, E, O означающих определенный тип категорических высказываний.
A - Общеутвердительные: Все S являются P.
I - Частноутвердительные: По крайней мере, некоторые S являются P.
E - Общеотрицательные: Все (ни одни) S не являются P.
O - Частноотрицательные: По крайней мере, некоторые S не являются P.
Из них общеутвердительные и общеотрицательные являются подчиняющими, а частноутвердительные и частноотрицательные - подчиненными.
Суждения A и E противопоставлены друг другу;
Суждения I и O противоположны;
Суждения, расположенные по диагонали - противоречивы.
Противоречивые и противопоставленные суждения ни в коем случае не могут быть одновременно истинными. Противоположные суждения могут быть или не быть одновременно истинными, но, по крайней мере, истинным должно быть одно из них.
Закон транзитивности обобщает логический квадрат, становясь основой всех непосредственных умозаключений и, определяет что, из истинности подчиняющих суждений логически следует истинность суждений им подчиненных и ложность противоположных подчиненных суждений.
3. Логические связки
Конъюнктивное суждение.
Конъюнктивное суждение - суждение, которое является истинным тогда и только тогда, когда истинны все входящие в него суждения.
Образуется посредством логического союза конъюнкции, выражающегося грамматическими союзами «и», «да», «но», «однако». Например, «Светит, да не греет».
Символически обозначается следующим образом: А?В, где А, В - переменные, обозначающие простые суждения, ?- символическое выражение логического союза конъюнкции.
Определению конъюнкции соответствует таблица истинности:
А |
В |
А?В |
|
И |
И |
И |
|
И |
Л |
Л |
|
Л |
И |
Л |
|
Л |
Л |
Л |
Дизъюнктивные суждения.
Имеется два вида дизъюнктивных суждений: строгая (исключающая) дизъюнкция и нестрогая (неисключающая) дизъюнкция.
Строгая (исключающая) дизъюнкция - сложное суждение, принимающее логическое значение истины тогда и только тогда, когда истинно только одно из входящих в него суждений или «которое ложно тогда, когда оба высказывания ложны». Например, «Данное число либо кратно, либо не кратно пяти».
Логический союз дизъюнкция выражается посредством грамматического союза «либо…либо».
Символически записывается А?В.
Логическое значение строгой дизъюнкции соответствует таблице истинности:
А |
В |
А?В |
|
И |
И |
Л |
|
И |
Л |
И |
|
Л |
И |
И |
|
Л |
Л |
Л |
Нестрогая (неисключающая) дизъюнкция - сложное суждение, принимающее логическое значение истины тогда и только тогда, когда истинным является, по крайней мере, одно (но может быть и больше) из простых суждений, входящих в сложное. Например, «Писатели могут быть или поэтами, или прозаиками (или тем и другим одновременно)».
Нестрогая дизъюнкция выражается посредством грамматического союза «или…или» в разделительно-соединительном значении.
Символически записывается А?В. Нестрогой дизъюнкции соответствует таблица истинности:
А |
В |
А?В |
|
И |
И |
И |
|
И |
Л |
И |
|
Л |
И |
И |
|
Л |
Л |
Л |
Импликативные (условные) суждения.
Импликация - сложное суждение, принимающее логическое значение ложности тогда и только тогда, когда предшествующее суждение (антецедент) истинно, а последующее (консеквент) ложно.
В естественном языке импликация выражается союзом «если..., то» в смысле «наверно, что А и не В». Например, «Если число делится на 9, то оно делится и на 3».
Символически импликация записывается А> В (если А, то В).
Логическое значение представлено в таблице истинности:
А |
В |
А> В |
|
И |
И |
И |
|
И |
Л |
Л |
|
Л |
И |
И |
|
Л |
Л |
И |
Анализ свойств импликации показывает, что истинность антецедента является достаточным условием истинности консеквента, но не наоборот. Достаточным для некоторого явления считается такое условие, наличие которого непременно вызывает это явление. Например, «быть березой» достаточное условие, чтобы включить ее в класс деревьев, так как все березы - деревья и ни одна не береза не является деревом.
В то же время истинность консеквента является необходимым условием истинности антецедента, но недостаточным. Необходимым для явления считается такое условие, без которого оно (явление) не имеет место. Например, класс берез включен в класс деревьев, но не равен ему. Есть деревья, которые не являются березами. Однако условие «быть деревом» для березы является обязательным, так как все березы - деревья.
Парадоксы материальной импликации.
Так обозначается смысловое расхождение операции материальной импликации с ее символической формулой: А>В. Согласно материальной импликации истинность А, для истинности формулы А>В, необходимо, чтобы и В было истинно. В этом случае речь идет о содержательном понимании ложности и истинности высказывания. Однако формула А>В истинна не только в указанном случае, но и тогда, когда А - ложно, а В - истинно и тогда, когда они оба ложны. Из данного факта вытекает парадокс материальной импликации: из ложного высказывания следует любое высказывание, все что угодно и истинное высказывание следует из любого высказывания.
Суждения эквивалентности.
Эквивалентность - сложное суждение, которое принимает логическое значение истины тогда и только тогда, когда входящие в него суждения обладают одинаковым логически значением, т. е. одновременно либо истинны, либо ложны.
Логический союз эквивалентности выражается грамматическими союзами «тогда и только тогда, когда», «если и только если». Например, «Если и только если треугольник равносторонний, то он и равноугольный».
Символически эквивалентность записывается АВ или АВ («если и только если А, то В»).
Логическое значение эквивалентности соответствует таблице истинности:
А |
В |
АВ |
|
И |
И |
И |
|
И |
Л |
Л |
|
Л |
И |
Л |
|
Л |
Л |
И |
Эквивалентное суждение со связанными по содержанию членами выражает одновременно условие достаточное и необходимое: (А> В)?(В> А).
Равносильность выражений (АВ) и (А> В)?(В>А) может быть доказана с помощью таблицы истинности.
Отрицание.
Отрицание - это логическая операция, с помощью которой из одного высказывания получают новое, при этом простое суждение P превращается в сложное, и если исходное простое суждение истинно, то новое сложное суждение ложно - «неверно, что P» или «высказывание А ложно тогда, когда высказывание АЇ истинно».
А |
АЇ |
|
И |
Л |
|
Л |
И |
Двойное отрицание - это операция по отрицанию отрицательного суждения. Повторное отрицание ведет к утверждению или, иначе, отрицание отрицания равносильно утверждению: А> А?- «если А, то неверно, что не-А», или А?А - «неверно, что не-А, если и только если верно, что А».
А |
АЇ |
|
И |
И |
|
Л |
Л |
Выражение одних логических связок посредством других.
Рассмотренные выше логические союзы взаимозаменяемы и выразимы через другие. Например:
А> В = А?В - импликация через дизъюнкцию;
А> В = В> А - импликация через импликацию;
А> B = А? В - импликация через конъюнкцию;
А?В = А? В - конъюнкция через дизъюнкцию;
А?В = А? В - дизъюнкция через конъюнкцию;
А?В = А? В - конъюнкция через дизъюнкцию.
4. Таблицы истинности
Таблица истинности - это таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую функцию, и значениями функции.
А |
В |
АЇ |
ВЇ |
А?В |
А?В |
А>В |
АВ |
|
И |
И |
Л |
Л |
И |
И |
И |
И |
|
И |
Л |
Л |
И |
Л |
И |
Л |
Л |
|
Л |
И |
И |
Л |
Л |
И |
И |
Л |
|
Л |
Л |
И |
И |
И |
Л |
И |
И |
Таблицы истинности находят широкое применение для:
· Вычисления истинности сложных высказываний;
· Установления эквивалентности высказываний;
· Определения тавтологий.
Равносильные формулы логики высказывания - это выказывания, которые принимают одинаковое значение истинности при одних и тех же значениях элементарных высказываний, входящих в эти формы. Например, А>В, ВЇ?АЇ.
Тождественно-истинная формула (тавтология) - это формула, которая принимает значения истины при всех значениях, входящих в нее элементарных высказываний.
Тождественно-ложная формула (противоречие) - формула, которая при всех значениях, входящих в нее элементарных высказываний, принимает значение лжи.
А |
АЇ |
В |
АЇ? В |
А?В |
(АЇ? В)>(А?В) |
|
И |
Л |
И |
И |
И |
И |
|
И |
Л |
Л |
Л |
Л |
И |
|
Л |
И |
И |
И |
Л |
Л |
|
Л |
И |
Л |
И |
Л |
Л |
Список использованной литературы:
1. Гладкий А.В. «Введение в современную логику». - М.: МЦМНО, 2008.
2. Купарашвили М.Д., Нехаев А.В., Разумов В.И., Черняк Н.А. «Логика. Учебное пособие». - М.: Омск, 2005.
3. Челпанов Г.И. «Учебник логики». - М.: Москва, 2007.
4. www.otherreferats.allbest.ru
5. www.studentbank.ru
Размещено на Allbest.ru
...Подобные документы
Характеристика логического определения суждений. Изучение логических связей между суждениями. Истинностное значение сложных суждений. Особенности логических связок, которыми связываются отдельные суждения. Условный (гипотетический) силлогизм и дилеммы.
реферат [30,7 K], добавлен 13.08.2010Суждение — форма мышления, в которой что-либо утверждается или отрицается о предмете, его свойствах или отношениях между ними. Виды, классификация и логическая структура суждений; терминология, типы преобразований, противоречие; модальные высказывания.
контрольная работа [274,1 K], добавлен 01.03.2013Логическая сущность простого суждения. Рассмотрение основ построения связи между предметом и его признаком. Характеристика атрибутивных с отношениями и суждений существования. Распределение субъекта и предиката. Отношения между простыми суждениями.
реферат [336,3 K], добавлен 08.11.2015Сущность и значение суждения, его отличительные признаки и структура. Связь между предложениями и суждениями. Значение логического смысла предложений и языковые формы одного суждения. Классификация простых и сложных суждений по характеру предиката.
презентация [344,1 K], добавлен 14.10.2013Суждения со сложным субъектом и сложным предикатом, понятие их истинности или ложности. Соединительные и разделительные суждения. Построение логического квадрата. Антецедент и консеквент условных и эквивалентных суждений и их символическая запись.
контрольная работа [18,8 K], добавлен 23.09.2011Понятие простого и сложного суждения. Логические связки, конъюнктивное суждение. Импликативные (условные) суждения. Парадоксы материальной импликации. Основные суждения эквивалентности. Особенности выражения одних логических связок посредством других.
реферат [24,7 K], добавлен 07.05.2010Понятие суждения как формы мышления, отображающей действительно существующие существенные связи и отношения между предметами. Классификация суждений по элементам его структуры: содержанию предиката, качеству связки, объему субъекта и модальности.
контрольная работа [33,9 K], добавлен 06.02.2011Суждение как отображение действительно существующих существенных связей и отношений между предметами. Общая характеристика суждения, субъект атрибутивного суждения. Причины бессмысленности суждений. Понятие "квантор существования" в современной логике.
реферат [13,5 K], добавлен 11.03.2012Объединенная классификация суждений, их схемы и принятые в логике обозначения. Составление таблицы истинности, разбор силлогизма. Логический вывод сложной деструктивной дилеммы. Формально-логический закон и его нарушение. Логическая схема умозаключения.
контрольная работа [36,2 K], добавлен 04.08.2013Отношения между понятиями и их распределение кругами Эйлера. Ошибки в определении понятий. Приведение суждений к стандартной логической форме. Логическая форма сложного суждения. Превращения, обращение и противопоставление предикату некоторых суждений.
контрольная работа [69,5 K], добавлен 24.07.2009Суть и разновидности суждений, различение по степени сложности. Качество и количество — важнейшие его логические характеристики. Единство суждения и предложения. Характеристика утвердительных суждений. Виды модальности. Познавательная ценность суждений.
реферат [27,7 K], добавлен 10.02.2009Логическая характеристика некоторых понятий. Круговые схемы логических отношений между понятиями. Объединенная классификация суждений, анализ их истинности при помощи "логического квадрата". Проверка правильности простого категорического силлогизма.
контрольная работа [103,9 K], добавлен 29.11.2010Элементы полной структуры простого суждения. Виды простых суждений по характеру предиката. Объединенная классификация атрибутивных суждений по качеству и количеству. Отношения между понятиями, определение правильность определения и деления понятия.
контрольная работа [174,9 K], добавлен 21.10.2011Логическая характеристика понятий. Отношения между понятиями. Состав и виды простых суждений. Определение истинности по логическому квадрату. Умозаключения из суждений с отношениями. Методы установления причинных связей; доказательство и опровержение.
контрольная работа [134,8 K], добавлен 30.10.2015Общая характеристика суждения. Атрибутивные суждения, их виды. Отношение субъекта и предиката в общеотрицательных суждениях. Вид частноотрицательного суждения. Выделяющие, исключающие и определенно-частные суждения. Основные виды логической связи.
реферат [44,6 K], добавлен 02.01.2011Классификация суждений, их схем и принятых в логике обозначений. Распределение терминов и изображение их соотношения с помощью круговых схем Эйлера. Установление вида и символическая схема сложного суждения. Формально-логический закон и его нарушение.
контрольная работа [21,9 K], добавлен 20.08.2011Требования формально-логических законов. Логическая характеристика понятий: "Диктатура", "Следователь", "Бескорыстие". Виды деления понятий. Объединенная классификация суждений. Вид сложного суждения. Разбор силлогизма. Дедуктивная форма обоснования.
контрольная работа [18,6 K], добавлен 14.12.2008Логическая форма и законы мышления. Содержание и форма мысли. Виды понятий по содержанию. Таблицы истинности тождества и отрицания. Непосредственные умозаключения из сложных суждений. Прямые и косвенные доказательства.
контрольная работа [27,6 K], добавлен 26.01.2007Суждение как форма мышления. Структура простого категорического суждения в логике. Суждение как логическая форма мышления. Суждение и вопрос. Требование истинности предпосылок при постановке вопроса, логические ошибки. Принципы классификации суждений.
реферат [22,8 K], добавлен 23.09.2010Логика как раздел философии и наука о мышлении. Высказывание как форма мышления, понятие, структура и виды сложных высказываний. Логические значения сложных высказываний. Предложения, являющиеся сложными высказываниями, их логическая характеристика.
контрольная работа [42,6 K], добавлен 18.02.2013