Особенности современной логики

История становления классической математической логики во второй половине XIX в. Основные виды и направления в развитии неклассической неформальной логики. Модальные понятия. Промежуточные степени истины. Истинные, ложные и возможные высказывания.

Рубрика Философия
Вид контрольная работа
Язык русский
Дата добавления 05.11.2013
Размер файла 20,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. История становления классической математической логики

Подлинную революцию в логических исследованиях вызвало создание во второй половине XIX в. математической логики, которая получила еще название символической и обозначила новый, современный этап в развитии логики.

Зачатки этой логики прослеживаются уже у Аристотеля, а также у его последователей, стоиков в виде элементов логики предикатов и теории модальных выводов, а также логики высказываний. Однако систематическая разработка ее проблем относится к гораздо более позднему времени.

Растущие успехи в развитии математики и проникновение математических методов в другие науки уже во второй половине XVII в. настоятельно выдвигали две фундаментальные проблемы. С одной стороны, это применение логики для разработки теоретических оснований математики, а с другой - математизация самой логики как науки. Наиболее глубокую и плодотворную попытку решить вставшие проблемы предпринял крупнейший немецкий философ и математик Г. Лейбниц (1646-1416) Тем самым он стал, по существу, зачинателем математической (символической) логики. Лейбниц мечтал о том времени, когда ученые будут заниматься не эмпирическими исследованиями, а исчислением с карандашом в руках. Он стремился изобрести для этого универсальный символический язык, посредством которого можно было бы рационализировать любую эмпирическую науку. Новое знание, по его мнению, будет результатом логической калькуляции - исчисления.

Идеи Лейбница получили некоторую разработку в XVIII в. и первой половине XIX в. Однако наиболее благоприятные условия для мощного развития символической логики сложились лишь со второй половины XIX в. К этому времени математизация наук достигла особенно значительного прогресса, а в самой математике возникли новые фундаментальные проблемы ее обоснования. Английский ученый, математик и логик Дж. Буль (1815-1864) в своих работах, прежде всего, применял математику к логике. Он дал математический анализ теории умозаключений, выработал логическое исчисление («Булева алгебра»). Немецкий логик и математик Г. Фреге (1848-1925) применил логику для исследования математики. Посредством расширенного исчисления предикатов он построил формализованную систему арифметики. Английский философ, логик и математик Б. Рассел (1872-1970) совместно с А. Уайтхедом (1861-1947) в трехтомном фундаментальном труде «Принципы математики» в целях ее логического обоснования попытался осуществить в систематической форме дедуктивно-аксиоматическое построение логики.

Так открылся новый, современный этап в развитии логических исследований. Пожалуй, наиболее важная отличительная особенность этого этапа состоит в разработке и использовании новых методов решения традиционных логических проблем. Это разработка и применение искусственного, так называемого формализованного языка - языка символов, т.е. буквенных и других знаков (отсюда и наиболее общее наименование современной логики - «символическая»).

Немецкий философ Г. Клаус (1912-1974) считал, что создание формализованного языка имело для техники логического вывода такое же значение, какое в сфере производства имел переход от ручного труда к машинному. Возникая на основе традиционной формальной логики, символическая логика, с одной стороны, уточняет, углубляет и обобщает прежние представления о логических законах и формах, особенно в теории выводов, а с другой - все более значительно расширяет и обогащает логическую проблематику. Современная логика - сложнейшая и высокоразвитая система знаний. Она включает в себя множество направлений, отдельных, относительно самостоятельных «логик», все более полно выражающих запросы практики и в конечном счете отражающих многообразие и сложность окружающего мира, единство и многообразие самого мышления об этом мире.

Символическая логика находит все более широкое применение в других науках - не только в математике, но и в физике, биологии, кибернетике, экономике, лингвистике. Она приводит к возникновению новых отраслей знаний (метаматематика). Особенно впечатляюща и наглядна роль современной логики в сфере производства. Открывая возможность как бы автоматизировать процесс рассуждений, она позволяет передать некоторые функции мышления техническим устройствам. Ее результаты находят все более широкое применение в технике: при создании релейно-контактных схем, вычислительных машин, информационно-логических систем и т.д. По образному выражению одного из ученых, современная логика - это не только «инструмент» точной мысли, но и «мысль» точного инструмента, электронного автомата. Специально отметим, что достижения современной логики используются и в правовой сфере. Так, в криминалистике на разных этапах исследования производится логико-математическая обработка собранной информации.

Растущие потребности научно-технического прогресса обусловливают дальнейшее интенсивное развитие современной логики.

Остается сказать, что в разработку систем символической логики внесли важный вклад русские ученые. Среди них особенно выделяется П. Порецкий (1846-1907). Так, он первым в России начал чтение лекций по математической логике. Его собственные труды в этой области не только были на уровне трудов современных ему западноевропейских ученых, но и в ряде случаев превосходили их.

В своем развитии логика прошла длительный период развития. Важнейшее обстоятельство, способствовавшее выделению логики в самостоятельную отрасль знания, носило ярко выраженный практический характер, поскольку логика в то время разрабатывалась в тесной связи с запросами ораторского искусства, то есть как часть практической риторики.

В настоящее время логика представляет собой весьма разветвленную и многоплановую науку, результаты и методы которой активно используются во многих областях теоретического познания, в том числе и непосредственно связанных с рядом современных направлений практической деятельности. Она находит применение в философии, математике, психологии, кибернетике, лингвистике и др. С самой общей точки зрения в современной логике, как мы уже говорили, выделяют три больших раздела: символическую («формальную») логику, логическую семиотику и методологию.

Математимческая ломгика (теоретическая логика, символическая логика) - раздел математики, изучающий доказательства и вопросы оснований математики. «Предмет современной математической логики разнообразен».

Это определение соответствует определению С.К. Клини: математическая логика - это «логика, развиваемая с помощью математических методов».

Математическая логика изучает логические связи и отношения, лежащие в основе логического (дедуктивного) вывода, с использованием языка математики.

Стоит отметить, что на практике множество элементарных логических операций является обязательной частью набора инструкций всех современных микропроцессоров и соответственно входит в языки программирования. Это является одним из важнейших практических приложений методов математической логики, изучаемых в современных учебниках информатики.

2. Основные виды и направления в развитии неклассической логики. Становление неформальной логики

Неклассические логики - это обобщенное название ряда направлений в развитии современной логики, основанных на том, что для отражения различных областей действительности здесь применяются иные аксиомы и принципы рассудочной деятельности, символы и методы других наук (этики, эстетики, права, лингвистики, психологии и др.)

Новые неклассические направления в развитии логики позволяют формулировать и решать многие научные проблемы нетрадиционными способами. К ним относятся проблемы управления, прогнозирования, реферирования, разработки информационно-поисковых систем и специальных языков для них, создания лингвистики для космических коммуникаций и т.д.

Разнообразные неклассические направления, возникшие позднее, составляют в совокупности то довольно неопределенное и разнородное целое, которое принято объединять под именем неклассической логики. Некоторые из этих направлений формировались в оппозиции к классической логике, другие - в полемике с нею. Но для всех она была образцом подхода к логическому анализу мышления, первой теорией, последовательно и полно реализовавшей программу математизации логики.

В дальнейшем будут рассмотрены некоторые неклассические разделы логики. Сопоставление основных идей, лежащих в фундаменте классической логики, с одной стороны, и разных ветвей неклассической логики - с другой, интересно с точки зрения понимания каждого из этих разделов логики. Такое сопоставление позволяет также яснее понять общие принципы подхода современной логики к описанию мышления.

Многозначная логика

Первые многозначные логики построили независимо друг от друга польский логик Я. Лукасевич в 1920 г. и американский логик Э. Пост в 1921 г. С тех пор построены и исследованы десятки и сотни таких «логик».

Я. Лукасевичем была предложена трехзначная логика, основанная на предположении, что высказывания бывают истинными, ложными и возможными, или неопределенными. К последним были отнесены высказывания наподобие: «Я буду в Москве в декабре будущего года». Событие, описываемое этим высказыванием, сейчас никак не предопределено ни позитивно, ни негативно. Значит, высказывание не является ни истинным, ни ложным, оно только возможно.

Все законы трехзначной логики Лукасевича оказались также законами и классической логики; обратное, однако, не имело места. Ряд классических законов отсутствовал в трехзначной логике. Среди них были закон противоречия, закон исключенного третьего, законы косвенного доказательства и др. То, что закона противоречия не оказалось в трехзначной логике, не означало, конечно, что она была в каком-то смысле противоречива или некорректно построена.

Э. Пост подходил к построению многозначных логик чисто формально. Пусть 1 означает истину, а 0 - ложь. Естественно допустить тогда, что числа между единицей и нулем обозначают какие-то уменьшающиеся к нулю степени истины.

Такой подход вполне правомерен на первом этапе. Но чтобы построение логической системы перестало быть чисто техническим упражнением, а сама система - сугубо формальной конструкцией, в дальнейшем необходимо, конечно, придать ее символам определенный логический смысл, содержательно ясную интерпретацию. Вопрос о такой интерпретации - это как раз самая сложная и спорная проблема многозначной логики. Как только между истиной и ложью допускается что-то промежуточное, встает вопрос: что, собственно, означают высказывания, не относящиеся ни к истинным, ни к ложным? Кроме того, введение промежуточных степеней истины изменяет обычный смысл самих понятий истины и лжи. Приходится поэтому не только придавать смысл промежуточным степеням, но и переистолковывать сами понятия истины и лжи.

Было много попыток содержательно обосновать многозначные логические системы. Однако до сих пор остается спорным, являются ли такие системы просто «интеллектуальным упражнением» или они все же говорят что-то о принципах нашего мышления.

Многозначная логика никоим образом не отрицает и не дискредитирует двузначную. Напротив, первая позволяет более ясно понять идеи, лежащие в основе второй, и является в определенном смысле ее обобщением.

Стремление обогатить язык логики и расширить ее выразительные возможности привело к возникновению модальной логики. Ее задача - анализ рассуждений, в которых встречаются модальные понятия, служащие для конкретизации устанавливаемых нами связей, их оценки с той или иной точки зрения.

Еще Аристотель начал изучение таких, наиболее часто встречающихся модальных понятий, как «необходимо», «возможно», «случайно». В средние века круг модальностей был существенно расширен, и в него вошли также «знает», «полагает», «было», «будет», «обязательно», «разрешено» и т.д.

Модальные понятия разных типов имеют общие формальные свойства. Так, независимо от того, к какой группе относятся эти понятия, они определяются друг через друга по одной и той же схеме. Нечто возможно, если противоположное не является необходимым; разрешено, если противоположное не обязательно; допускается, если нет убеждения в противоположном. Случайно то, что не является ни необходимым, ни невозможным. Безразлично то, что не обязательно и не запрещено. Неразрешимо то, что недоказуемо и неопровержимо и т.п.

Модальные понятия, относящиеся к разным группам, имеют разное содержание. При сопоставлении таких понятий (например, «необходимо», «доказуемо», «убежден», «обязательно», «хорошо», «всегда») складывается впечатление, что они не имеют ничего общего. Однако модальная логика показывает, что это не так. Модальные понятия разных групп выполняют одну и ту же функцию: они уточняют устанавливаемую в высказывании связь, конкретизируют ее. Правила их употребления определяются только этой функцией и не зависят от содержания высказываний. Поэтому данные правила являются едиными для всех групп понятий и имеют чисто формальный характер.

Неформальная логика - теория, которая изучает аргументы (доводы) в том виде, как они используются в обыденном языке, в отличие от представления аргументов в искусственном, формальном или техническом языке. Последним занимается формальная логика. Джонсон и Блэр (1987) определяют неформальную логику как «ответвление логики, задачей которой является разработка неформальных стандартов, критериев и процедур для анализа, интерпретации, оценки, критики и построение аргументации в повседневном дискурсе».

Попыток написания истории формальной логики достаточно много, и вместе с тем, нет, по-видимому, ни одной истории неформальной логики.

Щедровицкий Г.П. говоря о неформальной логике, называет направление неформальной логики - логикой, и более того - научной логикой потому, что по происхождению, по постановке и формулированию своих основных целей и задач все работы и исследования по неформальной логике целиком и полностью определялись, исходным материалом, который был создан первыми формами и схемами так называемой формальной логики.

Формальная логика, если брать ее в традиции Аристотеля, не может быть отделена от неформальной логики и не может быть выделена в особую и самостоятельную науку.

логика математический неформальный модальный

Заключение

Мышление человека подчиняется логическим законам и протекает в логических формах независимо от науки логики. Многие люди мыслят логично, не зная ее правил.

Задача логики в том, чтобы научить человека сознательно применять законы и формы мышления и на основе этого логичнее мыслить, правильно сознавать окружающий мир. Знание логики повышает культуру мышления, вырабатывает навык мыслить «грамотно», развивает критическое отношение к своим и чужим мыслям.

Мыслить логично - это значит мыслить точно и последовательно, не допускать противоречий в своих рассуждениях, уметь вскрывать логичес - кие ошибки. Эти качества мышления имеют большое значение в любой области.

Интенсивное развитие логики сопровождается расширением и обогащением ее аппарата, возникновением новых разделов и систем. Эта дифференциация не должна вместе с тем заслонять те идеи и связи, которые превращают непрерывно расширяющееся множество логических систем в единую науку.

Список литературы

1. Логика: Экзаменационные ответы. Серия «Сдаём экзамен». - Ростов н/ Д: «Феникс», 2002

2. Светлов В.А. Практическая логика Учеб. Пособ. Изд. 2-е, испр. И доп. Дизайн обл. А.С. Андреева. - СПб.: ИД «МиМ», 1997

3. Ивин А.А. Логика. - М.: Гардарики, 2003.

4. Анисомов А. Современная логика. - М., 2003.

Размещено на Allbest.ru

...

Подобные документы

  • Возникновение и этапы развития традиционной формальной логики. Аристотель как основатель логики. Создание символической логики, виды логических исчислений, алгебра логики. Метод формализации. Становление диалектической логики, работы И. Канта, Г. Гегеля.

    реферат [26,9 K], добавлен 19.01.2009

  • Причины возникновения и этапы становления традиционной логики. Вклад Аристотеля, Ф. Бэкона, Дж. Милля, Р. Декарта, М. Каринского в развитие логического знания. История создания и основные концепции символической (математической) и диалектической логики.

    реферат [32,8 K], добавлен 05.01.2013

  • История возникновения и дальнейшего развития логики как науки, а также анализ ее современного значения и содержания. Особенности становления и сравнительная характеристика символической (математической), индуктивной, диалектической и формальной логики.

    контрольная работа [33,4 K], добавлен 01.12.2010

  • Сущность логики, отражение закономерности движения мышления к истине. Понятие, суждение и умозаключение - основные типы логических форм. Отражение объективной реальности в законах логики. Отличительные признаки формальной и математической логики.

    контрольная работа [18,1 K], добавлен 29.09.2010

  • Исследование периодизации развития схоластической логики. Методы логики византийского богослова и философа И. Дамаскина. Характеристика суждения и категорического силлогизма в труде "Диалектика". Разделение родов на виды. Теория двойственной истины.

    презентация [1,7 M], добавлен 27.01.2015

  • Своеобразность логической теории, классическое и неклассическое в логике, история развития. Основные идеи интуиционизма, абсолютные и сравнительные модальности, особенности и виды логики. Возможность научной этики и главные законы логики оценок и норм.

    курсовая работа [46,7 K], добавлен 17.05.2010

  • Ощущение, восприятие и представление как формы чувственного познания. Особенности и законы абстрактного мышления, взаимосвязь его форм: понятия, суждения и умозаключения. Основные функции и состав языка, специфика языка логики. История логики как науки.

    контрольная работа [30,3 K], добавлен 14.05.2011

  • Логика как самостоятельная наука. Предмет и значение логики. Теоретические проблемы логики. Основные этапы развития логики. Логика и мышление. Предмет формальной логики и ее особенности. Мышление и язык. Основные правила научного исследования.

    курс лекций [29,4 K], добавлен 09.10.2008

  • Дискуссия о дисциплинарных границах логики в немецкой философии начала XIX в., конкурирующие проекты понимания логического знания. Место теории Гегеля о "науке логики", исторические контексты становления формальной логики в качестве отдельной дисциплины.

    статья [31,9 K], добавлен 30.07.2013

  • Сущность и содержание модальной логики, ее отличительные признаки от классической, история становления и развития, применение принципов на современном этапе. Система модальной силлогистики. Основные принципы и сферы применения вероятностной логики.

    реферат [16,6 K], добавлен 13.08.2010

  • Сущность и содержание логики как научного направления, предмет и методы ее исследования, основные этапы становления и развития в мире. Этапы создания символической логики и ее отличительные особенности, направления и сферы практического применения.

    реферат [12,3 K], добавлен 26.09.2011

  • Понятие и содержание логики как философской и математической дисциплины, особенности и направления ее развития в ХХ веке, открытия и достижения данного периода. Логические связи и отношения, которые находятся в основе логического (дедуктивного) вывода.

    реферат [32,0 K], добавлен 18.04.2014

  • Сущность мышления в системе познания, способы взаимопонимания, логика объяснения. Предмет и семантические категории традиционной формальной логики. Этапы становления логики как науки. Простое суждение и его логический анализ. Основы теории аргументации.

    курс лекций [138,4 K], добавлен 02.03.2011

  • Причины возникновения и этапы развития науки логики. Аристотель как основоположник формальной логики. Дедуктивный метод Декарта. Процедуры противопоставления предикату, противопоставления субъекту. Умозаключения, соответствующие 1 и 2 фигурам силлогизма.

    контрольная работа [88,7 K], добавлен 23.06.2017

  • Предмет и цели изучения логики. Понятие и основные концепции истины. Решение задач с помощью "кругов Эйлера". Формализация сложного суждения и построение таблиц истинности. Определение пар суждений, находящихся в отношении противоречия и подчинения.

    контрольная работа [116,4 K], добавлен 16.10.2016

  • Предмет и значение логики. Мышление как логическая ступень познания. Субъект и предикат - главные элементы мысли. Соотношение логики формальной и диалектической. Социальное назначение и функции логики. Логические формы и правила соединения наших мыслей.

    реферат [29,1 K], добавлен 31.10.2010

  • С чего началась наука логика. Формирование логики как самостоятельной науки. Внутренняя структура человеческого мышления. Законы и правила логики. Двухчленные и трехчленные суждения. Закон противоречия с логических позиций. Основные элементы силлогизма.

    контрольная работа [22,4 K], добавлен 26.03.2011

  • Анализ закона формальной логики о зависимости между изменениями объёма и содержания понятия. Сущность правила логической операции деления понятий и возможные ошибки. Суждения как форма мысли, устанавливающая логическую связь между двумя и более понятиями.

    контрольная работа [21,6 K], добавлен 24.03.2015

  • Значение логики, понятие как форма мышления. Основные логические приемы формирования понятий. Единичные и общие, конкретные и абстрактные, относительные и безотносительные, положительные и отрицательные понятия. Семантическая характеристика высказываний.

    контрольная работа [14,9 K], добавлен 13.05.2010

  • Аксиоматическое построение математической теории. Основная идея математической логики. Основные принципы операций: отрицание, конъюнкция, дизъюнкция, импликация и эквивалентность логических высказываний. Неформальный аксиоматический метод логики.

    реферат [32,9 K], добавлен 14.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.