Математика в философии
Греческая математика и её философия. Изучение взаимосвязи философии и математики от начала эпохи возрождения до конца XVII в. Воззрения материалистов: Дж. Толанда и Х. Вольфа. Анализ природы математического познания немецкой классической философии.
Рубрика | Философия |
Вид | реферат |
Язык | русский |
Дата добавления | 21.11.2014 |
Размер файла | 61,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Ж. Д' Аламбер (1717-1783) известен как выдающийся математик, сделавший ряд важных открытий. Его творчество представляет одну из наиболее ярких иллюстраций органической взаимосвязи философских и математических знаний. Разработка проекта новой системы математического образования и проблема обоснования математического анализа получили особенно яркую своеобразную трактовку в деятельности Даламбера.
Жозеф-Луи Лагранж (1736-1813) принадлежит к числу наиболее великих математиков XVIII столетия, уступая лишь Эйлеру по многогранности математического творчества и разнообразию решенных задач. Аналогом его математических и механических конструкций могут служить развитые в ту эпоху философские, философско-исторические и иные идеологические системы. Конечно, работам Лагранжа по аналитической механике, теории функций, алгебре, теории чисел свойственна более высокая степень абстрактности и общности, чем его предшественникам. Движение познания к более высоким уровням абстрагирования, прогрессирующая формализация вполне закономерны. Можно согласиться, что у этого ученого и его последователей имеет место некоторое увлечение вновь разработанными формальными построениями, в определенной мере даже абсолютизация их значимости при решении отдельных задач, но это не снимает того, что Лагранж является ярко выраженным представителем механистического материализма XVIII века. Лагранж не ограничивается только составлением предельно общих дифференциальных уравнений механики, но постоянно стремится довести решение задач этой науки до результатов, сравнимых с материалом наблюдений и экспериментов. Механика у Лагранжа стала общей наукой о движении материальных систем.
Подведем итоги проведенного анализа развития философии и математики в эпоху Просвещения.
Главным направлением математической деятельности в первые десятилетия XVIII было овладение приемами дифференциального и интегрального исчисления и широкое использование их для решения геометрических, механических, астрономических и оптических задач. Со стороны математиков наблюдается падение интереса к философии. Объясняется это, по-видимому, тем, что математика перешла на эволюционный этап развития, предшествующая метафизика исчерпала в значительной степени свои возможности по отношению к математике. По своему характеру математика является несколько более удаленной от философского знания, связь с философией становится опосредованной через фундаментальные принципы и понятия анализа, которые как бы насыщенны необходимыми философскими идеями. Математика и другие конкретные науки как бы "отлеживали себе самостоятельные области".
Нельзя сказать, что философский анализ полностью отсутствует на новом этапе развития математических знаний. Хотя он не носит характера создания обширного комплекса философских проблем, но в виде постановки отдельных вопросов встречается довольно часто. Однако возможности прежней метафизики в этом отношении были ограничены. Всё наиболее существенное, что она могла дать математике, было приспособлено для нужд этой науки в виде основополагающих понятий и принципов анализа. Философские проблемы, связанные с расширением практической применимости анализа и его более конкретными усовершенствованиями, в области умозрительной метафизики не могли быть решены. Прежняя метафизика в условиях XVII века в целом удовлетворяла запросы математики, в новых условиях она стала плоской.
Изменилось в начале XVIII века отношение философов к математике. В философских трактатах анализ природы математического познания если и имеет место, то в значительно меньших масштабах. За редким исключением, ничего существенно нового в разработку философских проблем математики внесено не было. Утрачивается единодушие в высокой оценке значимости математики в познании.
На примере Л. Эйлера, Ж. Д' Аламбера и Ж.Л. Лагранжа видно, что, по сравнению с первыми десятилетиями XVIII века, в среде математиков значительно расширяется философский анализ различных аспектов их наук. Этого требовали объективные условия развития математических знаний.
Математики в принципе имели возможность обратиться для удовлетворения своих потребностей к разным философским системам: материалистической философии Просвещения, субъективно-идеалистическому учению Юма, метафизике XVII века, на которой базировали свои исследования Ньютон и Лейбниц.
Не составляет особого труда установить несоответствие между юмовским пониманием природы математики и теми философскими принципами, которыми руководствовались математики XVIII века.
Математическая философия эпохи Просвещения по сравнению с другими существовавшими философскими учениями создавала наиболее благоприятные условия для прогресса математики и оказала на нее многообразное воздействие. Она ломала косность мышления, устаревшие традиции, стремилась рационально объяснить основные аспекты жизни общества и тем самым создавала творческую атмосферу для усовершенствования математических знаний.
Мыслители Просвещения провели разработку многих важных философских проблем математики: они проделали значительную работу по раскрытию механизма абстрагирования, изучения чувственной стороны математического познания позволило выявить ряд интересных свойств математических понятий, им принадлежит попытка объяснить теоретико-познавательные особенности математики исходя из природы ее предмета, они указали на важное значение производственной деятельности для развития математических знаний, анализируя тенденции исторического развития математики, они пытались использовать как качественный, так и количественный подход; они убедительно показали отрицательное воздействие религии на прогресс науки, исследовали механизм использовали математики в других науках, разработали основные принципы системы математического образования, провели критику идеалистических воззрений на предмет и метод математики. В свою очередь, математика была действенным союзником в идеологической борьбе передовых французских мыслителей против прежней метафизики, против сил реакции.
Указывая на плодотворность взаимодействия между философией эпохи Просвещения и математикой, следует иметь в виду ограниченность масштабов этого процесса, некоторые отрицательные моменты, которыми он сопровождался. По сравнению с философскими трактатами XVII века в сочинениях философов рассматриваемой эпохи математический материал используется в значительно меньшей мере. Анализ природы математического познания носит фрагментарный характер, использование математики нередко проводится некритически.
Определенные стороны математического познания вызывали неудовлетворенность у философов эпохи Просвещения. Тесная связь некоторых теоретических построений математики с предшествующей метафизикой, против которой выступала философия времен Просвещения, иногда служила основанием для распространения критики на математику. Для представителей математического познания отчасти были неприемлемыми узкий практицизм и эмпиризм, проявлявшиеся во взглядах отдельных философов эпохи Просвещения, они не могли согласиться и с недооценкой последними перспектив развития их науки. Однако, в целом, отмеченные разногласия не снимают того факта, что именно материализм служил философской основой тех замечательных успехов, которых добились математики в XVIII столетии, а математика играла существенную роль в борьбе материализма против идеализма и религии.
4. Анализ природы математического познания немецкой классической философии
Политической революции во Франции сопутствовала философская революция в Германии. Кант начал ее тем, что ниспроверг устарелую систему лейбницевской метафизики, которая к концу прошлого столетия принята была во всех европейских университетах. Фихте и Шеллинг начали перестройку философии, а Гегель завершил новую систему.
Немецкая классическая философия представляет одно из наиболее грандиозных созданий человеческого разума. Ее непреходящее историческое значение состоит в том, что в ней, хотя и в ложной, идеалистической форме, осуществлялась систематическая разработка диалектики.
Научную деятельность Канта в соответствии с эволюцией его философских воззрений, обычно делят на два периода - "до критический" (до 1770 года) и последующий "критический", получивший свое наименование от названия основной работы этого периода - "Критики чистого разума".
Само по себе стремление последовательно проследить в области математического познания проявления общих философских принципов и логических следствий из них, пронизывающее работы Канта, заслуживает положительной оценки, и великая заслуга Канта состоит в том, что после Аристотеля ему удалось создать наиболее обширную, логически развернутую систему философии математики. Но если философские принципы не совсем соответствуют природе математики, а их догматически пытаются внедрить в нее, то идейное содержание данной науки деформируется. Подобного рода негативные моменты воздействия философии на математику находят проявления в творчестве Канта. Так, обнаружив несоответствие некоторого философского положения с фактом математического познания, он критически подходит к выяснению того, что же в таком случае требует изменения - философское положение или трактовка математических законов.
Согласно Канту, понятие геометрии и арифметики не являются отражением структуры космоса, как думали пифагорейцы, и не извлечены посредством абстракций из опыта, но представляют собой отражение чистого или априорного созерцания, присущего человеку наряду с созерцанием эмпирическим. Геометрия по Канту не что иное, как выраженная в понятиях чистая интуиция пространства, арифметика находится в таком же отношении к чистому представлению времени. Математика, таким образом, может быть определена как система синтетических суждений, выражающая структуры априорных форм чувствительности. Как система выводов и доказательств математика должна быть полностью интуитивно ясна: по Канту, все математические доказательства "постоянно следуют за чистым созерцанием на основании всегда очевидного синтеза".
Исходя из современных представлений, не составляет особого труда указать на несостоятельность кантовских взглядов на математику, но не следует забывать, что современная позиция есть результат длительного исторического развития как философской, так и конкретно научной мысли. Это развитие привело к критической переработке кантовского учения о математике, причем критика не сводилась к отбрасыванию его утверждений. Качественно новые воззрения возникли путем удержания всего того ценного, что сумел открыть этот выдающийся мыслитель.
Философское наследие Фихте не содержит столь же богатого материала для изучения проблемы взаимосвязи философии и математики, как это имеет место в сочинениях Канта, но, тем не менее, ряд рассуждений затрагивает некоторые её интересные аспекты.
Целью Фихте было укрепить основания философского знания, упрочить тот фундамент, на котором строил философию Кант. На усовершенствованном основании, по его мнению, философия должна строиться с математической достоверностью. Кроме рассуждений о процессе взаимосвязи философии и математики в работах Фихте имеются и некоторые более конкретные замечания по отдельным философским проблемам математики, в частности, несколько видоизмененные изложения кантовской концепции пространства. Фихте, считает, что "протяжённость в пространстве есть не что иное, как самосозерцание свой способности быть бесконечным в созерцающим". Можно отметить некоторые отдельные идеи Фихте, воспринятые в последующем развитии научного познания (идею цикличности при обоснованном построении научной системы, положение об относительной самостоятельности обоснования математики по отношению к философии и в то же время утверждение о необходимости философского анализа исходных принципов математики), но в целом этот мыслитель не внёс каких-то существенных изменений в кантовскую философию математики, которую он взял за основу своих изысканий, его деятельность не повлияла ощутимым образом на процесс взаимодействия философии и математики.
Примерно тот же вывод можно сделать относительно Шеллинга. В сочинениях этого мыслителя встречаются отдельные натурфилософские размышления о природе математики и её основных объектов: о пространстве и времени, соотношении бесконечного и конечного и т.д. Единство и различие философии и математических наук он связывает с различным пониманием соотношения конечного и бесконечного.
Обращение к анализу математического познания у Гегеля, судя по его первому крупному произведению - "Феноменология духа", обусловлена мотивами, подобными тем, которыми руководствовался Кант. У обоих мыслителей интерес к математике направлялся стремлением к достижению единой цели: Кант пытался построить метафизику как систему достоверного знания, Гегель заявил, что его намереньем "было - способствовать приближению философии к форме науки - к той цели, достигнув, которой она могла бы отказаться от своего имени "любви к знанию" и быть "действительным знанием"". Если Кант считал, что философское и математическое знания по достоверности в идеале могут быть однородными, то Гегель убежден, что природа математических истин "отличается от природы философских истин". Математика, как пишет Гегель, считается наукой, прежде всего потому, что она доказательна. Только доказанное положение считается правомерным элементом системы, в математике "полное выведение результатов есть ход и средства познавания". Является ли такой путь познания идеальным? Нет, отвечает Гегель.
Союз между философией и математикой может быть действительным, если он основан на взаимном интересе. Гегель в принципе считал необходимым обращение математиков к философии. Что касается обращения философов к математике, то по этому вопросу он занял иную позицию, не способствовавшую укреплению союза данных наук. "Поскольку очевидность в математике "покоится лишь на бедности ее цели и несовершенстве ее материала", то она неприемлема в философии". Сам Гегель, если учесть, что он не был специалистом математики, для своего времени был очень хорошо знаком, как с историей математики, так и с ее новыми достижениями на уровне распространенных учебных пособий высшей школы.
Гегель знал математику на столько, что никто из его учеников не был в состоянии издать оставшиеся от него многочисленные математические рукописи.
Но мнение Гегеля по вопросу о необходимости философам обращаться к математике было противоположно тому, что он сам делал. С его точки зрения математика не может "что-то определить для метода и содержания философской науки".
Большинство исследователей акцентируют внимание на негативизм Гегеля к математике и недостаточно уделяют внимание тем интересным, оригинальным идеям, которые требуют осмысления и дальнейшего развития. Кроме того, при оценке гегелевской позиции, она не рассматривается в соотношении с реальным процессом развития математических знаний того времени. Чтобы устранить последний недостаток дадим краткую характеристику наиболее выдающихся достижений математической мысли конца XVIII- первых десятилетий XIX столетия и проследим, какое влияние на её развитие оказали взгляды Гегеля и других представителей немецкой классической философии.
В рассматриваемый период протекала деятельность таких выдающихся математиков, как Г. Монж (1746-1818), К.Ф. Гаусс (1777-1855), О.Л. Коши (1789-1857), Н.И. Лобачевский (1792-1856), Э. Галуа (1811-1832). Ими были получены многие первостепенные результаты, среди которых, прежде всего, следует упомянуть преобразование, совершённые в фундаменте трёх главных дисциплин: математического анализа (Коши), геометрии (Лобачевский, Гаусс, Больаи), алгебры (Галуа, Абель). Учёные, совершившие их, принадлежат к разным математическим школам. Так, Коши представляет математику Франции, Лобачевский - русскую математическую школу, Гаусс - математику Германии. Анализ мировоззрения данных учёных с целью выяснить влияние на ни них немецкой классической философии даст представление не только о силе такого влияния, но и о "географии" его распространения.
Французские математики в рассматриваемый период преимущественно группировались вокруг знаменитой Политехнической школы. Последняя была открыта 1794 году и очень скоро достигла исключительных успехов. Фактически почти все, что был сделано во Франции в первые десятилетия XIX века в области математики, физики и химии, идет из Политехнической школы, пишет Ф. Клейн. Преподавателями или воспитанниками школы были такие выдающиеся исследователи, как Монж, Пуассон, Фурье, Коши, Понселе, Кориолис и другие.
Детище революции - Политехническая школа - как бы стремилась распространить пламя революции на область технического и научного творчества.
Одним из фундаментов и фактически руководителем Политехнической школы до последних дней школы был Гаспар Монж. Творчество этого математика сможет служить яркой иллюстрацией того влияния, которое общественные идеалы прогрессивных французских мыслителей XVIII века оказывали на развитие математических знаний. Важную роль ученый отводил созданному им новому разделу геометрической науки - начертательной геометрии. Как преподаватель военной школы в Мезьере, а затем в Политехнической школе Монж методически проработал и передал многочисленной аудитории курс начертательной геометрии, стимулируя дальнейшее развитие математических знаний, непосредственно связанных с конкретными практическими задачами. Многие его ученики восприняли у Монжа не только математические знания, но и мировоззренческие установки учителя.
Одним из учеников Монжа был Л.Н. Карно, которого часто называют "генералом революции" и "генералом математики". Эти почетные титулы он получил заслуженно. В области математической деятельности он известен как автор работ по прикладной механике. Общие мировоззренческие и методологические установки Карно в целом находятся в русле основных идей материалистической философии французского просвещения. Оба соображения лежавшие в основе Концепции Карно (неопределенность дифференциалов и компенсация погрешностей) не имеют убедительного обоснования. Внутренняя его позиция двойственно противоречива. Но при этих недостатках работа Карно "Размышление о метафизике исчисления бесконечно малых", была важным, интересным исследованием. Она отличается от предшествующих сочинений на данную тему четности поставленной проблемы ясность ее определения, здесь предпринимаются попытки строго дедуктивного, систематического изложения основных понятий и принципов анализа. Карно как бы подводит итог исследования по обоснованию анализа и отчасти подготавливает почву для той реформы анализа, которую в XIX веке осуществил Коши.
Строгое обоснование дифференциального и интегрального исчисления Коши развивает в лекциях и сочинениях в 20-е годы XIX века. Осуществляя построение анализа на базе теории пределов, Коши не только стремится завоевать признание бесконечно малых и оправдать их применение. Он дает научное истолкование алгоритму их использования. В мировоззрении этого выдающегося математика не религиозные выравнивания составляли основу научного творчества. Такой основой были стихийно-материалистические принципы, закрепленные под влиянием Монжа. Однако они сочетались с религиозной убежденностью, выработанной под воздействием той среды, в которой воспитывался и жил Коши.
В конечном итоге под давлением объективных потребностей математического познания идея актуальной бесконечности со временем, завоевала признание. Она получила четкую формулировку в работах современника Коши - талантливого чешского ученого Больцано. Он был знаком с гегелевской трактовкой и выступил с ее критикой "Я не допускаю только того, что бы философу был известен какой-либо предмет, которому он был бы в праве приписать свою бесконечность, как качество, не обнаружив раньше в этом предмете в каком-либо отношении бесконечной величины или бесконечного количества", - писал Больцано.
На примере критических замечаний Больцано видно, что у математиков вызывали отрицательное отношение резкие гегелевские суждения об их науки, они выступили с осуждением обособления математически выразимого количества от качества, которое действительно имеет место у Гегеля. Вместе с тем у Больцано имеет место и определенное недопонимание истинного смысла гегелевской трактовки понятия бесконечного, поскольку призыв великого философа не ограничивался выявленным количественным аспектом бесконечного, был актуальным, важным для развития математики.
Известно, что неевклидова геометрия была почти одновременно открыта несколькими учеными. Это были Н.И. Лобачевский, К.Ф. Гаусс и Иоанн Больаи. Однако Н.И. Лобачевский по праву заслужил славу творца неевклидовой геометрии.
Создание новой геометрии относится к числу тех открытий, значение которых выходит за пределы математики. В сложном процессе формирования этого научного результата, необходимо отметить только один аспект: ту мировоззренческую основу, исходя из которой такие математики, как Гаусс и Лобачевский пришли к его открытию.
Творчество Гаусса знаменует переход к новому этапу развития математических знаний. Мировоззрение этого математика противоречиво. Оно включает такие принципы как убежденность в объективном существовании действительности, признание практической ценности науки. Вместе с тем в понимании некоторых вопросов математического познания, Гаусс находился под влиянием кантовских воззрений. Гаусс в принципе мог опубликовать ряд основоположений новой геометрии раньше Н.И. Лобачевского, но он этого не сделал. Открытие неевклидовой геометрии явно противоречило официально принятым и все более широко распространявшимся в то время в ученом мире Германии мировоззренческим и методологическим установкам Канта. Кроме того, данное противоречие имело место и в пределах мировоззрения самого ученого. Для него разработка неевклидовой геометрии - это разрыв с усвоенными ранее фундаментальными представлениями о природе математике. Не удивительно, что она сопровождалась сомнениями, неуверенностью, а подчас и нежеланием выступить с пропагандой новых идей.
Н.И. Лобачевский подошел к открытию неевклидовой геометрии существенно иных философских позиций по сравнению с Гауссом. Ряд исследований специально посвященных изучению мировоззрения Лобачевского, показывают, что этот великий математик был ярким представителем материализма в науке. Важно подчеркнуть, что его материалистическое мировоззрение не является каким-то эпизодическим явлением, а продолжением и развитием материалистических традиций в русской математике, естественным следствием той идейной борьбы, которую русские математики проводили против различных форм идеализма, в частности кантианства.
Если у Гаусса мировоззренческие и методологические установки были тормозом на пути развертывания исследований по неевклидовой геометрии, то мировоззрение и методология Н.И. Лобачевского открывали для них широкий простор. Можно сделать вывод, что философской основой деятельности математиков был материализм. Именно на этой основе были получены наиболее выдающиеся открытия. Конечно, степень развития и осознанности материалистических принципов существенно видоизменялись. Признание объективного существования в действительности, первичность материального бытия по отношению к сознанию сочетаются с религиозностью, с определенными уступками идеализма. Особенно в среде немецких математиков все более широкое признание получает кантианство, что нашло отчетливое выражение в деятельности Гаусса. Таким образом, если в развитии математики в первые десятилетия ХIХ века и прослеживается влияние немецкой философии, то оно исходило не от Гегеля, а именно от Канта.
Чем объяснить, что Кант, а не кто-то из последующих представителей немецкой классической философии, стал наиболее популярным среди математиков?
Философия математики Канта выглядела более приемлемой для математиков того времени. Она позволяла отстоять правомерность математики как системы всеобщих и необходимых истин, что было весьма актуальной проблемой в связи с разрушительной деятельностью Юма. Кант не доводит свою философию математики до таких конкретных выводов, которые бы резко расходились с общепринятыми математическими положениями. Если у Гегеля выяснение различий между философией и математикой служит скорее разъединению этих наук, то кантовский анализ способствовал их сближению. Раскрывая специфику философского знания, Кант постоянно указывает на возможность или невозможность применения в математике выделенных особенностей философии.
В целом философия математики Канта, если её рассматривать не в соотношении с концепцией Гегеля, а применительно к реальному историческому процессу развития математических знаний, имело двойственный характер. С одной стороны как порождение критической философии она понесла ощутимый удар по догматическим воззрениям на природу математики, способствовало повышению уровня строгости математических исследований, обратила внимание на необходимость развивать геометрическое направление с другой стороны, априоризм сдерживал творческое развитие математики, в чём можно было убедиться на примере деятельности Гаусса, отрицательное влияние на её прогресс оказывали идеалистические установки кантовской системы, в связи с чем актуальной задачей была критическая переработка этой системы. В связи с тем, что кантовская философия математики выступает логическим следствием его философской системы, критика не могла ограничиваться только областью философских проблем математики, а должна была охватить исходные философские принципы. Ни Фихте, ни Шеллинг, ни Гегель не справились с этой задачей, поскольку их критические замечания не затрагивали идеалистических устоев учения Канта.
5. Развитие математики во второй половине х iх столетия
"Завершением новейшей философии является философия Гегеля. Поэтому историческая необходимость и оправдание новой философии по преимуществу связано с критикой Гегеля". Эти слова принадлежат Людвигу Фейербаху, который не только сумел правильно осмыслить основное направление последующего развития философской мысли, но и внес в него весомый вклад.
Материалистические принципы Фейербах наиболее полно раскрывает при анализе вопросов теории познания, религии, этики. Что касается философских проблем математики, то он ими не занимался. В его сочинениях лишь изредка встречаются отдельные высказывания, относящиеся к данной проблеме. Указывая на взаимную связь созерцания и мышления, Фейербах непосредственно с опытом связанным наукам отдавал предпочтение перед абстрактными теориями, и в этом отношении естествознание вызывало у него больше симпатий, чем математика. В целом фейербаховская критика очень слабо, лишь в опосредованной форме затрагивала идеалистические воззрения на природу математики, действенного влияния на процесс взаимосвязи философских и математических знаний она не оказала.
С учетом новых достижений математики и естествознания, К. Маркс и Ф. Энгельс с принципиально новых философских позиций осмыслили процесс взаимосвязи философии и математики, разработали качественно своеобразную систему философских проблем математики.
Диалектико-материалистическое решение вопроса о соотношении объективной и субъективной диалектики, выражающееся в наличии двух рядов взаимосвязанных законом позволило Энгельсу вскрыть объективную причину эффективного применения математики в самых различных областях человеческой деятельности и уточнить сам механизм этого применения.
В историческом процессе было создано не мало концепций философии математики, отличающихся между собой как по заложенным в их основу философским принципам, так и по содержанию тех математических знаний, которые в них используются. Определяющим компонентом философии математики выступает ее философская основа, в силу этого классификация данных концепций может быть по тому же критерию, по которому классифицируют философские системы. К. Маркс и Ф. Энгельс сумели четко определить такого рода критерий и сформулировали его как вопрос об отношении мышления к бытию, сознания к материи, назвав его основным вопросам философии. При философском анализе математического познания основной вопрос философии может быть сформулирован как вопрос об отношении математического познания к действительности.
Материалистическое решение данного вопроса у Энгельса приводит к характеристике математики как абстрактной науки, "занимающейся умственными построениями, хотя бы и являющимися отражениями реальности". Тот факт, что эти умственные построения (числа, фигуры, величины) или тот материал, с которым математика непосредственно имеет дело, принимает "чрезвычайно абстрактную форму, может лишь слабо затушевать его происхождение из внешнего мира".
Подчеркивая, что свойства и отношения материального мира первичны по отношению к объектам математики, что данные объекты органически связаны с ними, Энгельс тем самым на новой основе возрождает материалистическую позицию мыслителей ХVII- ХVIII веков.
Сохранив положения об опосредованности объектов математики мыслительной деятельностью, Энгельс называет их умственными построениями, но, в противоположность Гегелю, эти объекты понимаются не как формы выражения каких-то аспектов абсолютной идеи, а как отражения материального мира.
В силу этих вышеизложенных соображений Энгельс приходит к совершенно справедливому и логически обоснованному выводу о том, что математика является необходимым фрагментом общей естественнонаучной картины мира. Без нее эта картина мира была бы, очевидно, неполной. Именно философский синтез, объединяя, позволяет создать, общее, целостное, диалектическое представление о природе.
Философия К. Маркса и Ф. Энгельса утверждает необходимость творческого союза философии и других наук, в том числе и математики. Данный союз основывается на объективных потребностях использовать философские знания развитии математики и, в свою очередь, учитывать результаты математического познания в философских исследованиях.К. Маркс и Ф. Энгельс особенно много внимания уделяли анализу процесса взаимосвязи философии и естествознания. Учитывая родственность теоретического познания и математики, большинство высказанных ими положений непосредственно относится и к проблеме взаимосвязи философии и математики.
Ф. Энгельс указывает, что многие исследователи высказывают нигилизм по отношению к философии, но в силу того, что последняя объективно необходима для развития конкретной науки, "те, кто больше всех ругает философию, являются рабами как раз наихудших вульгаризированных остатков наихудших философских учений". "Какую бы позу не принимали естествоиспытатели, над ними властвует философия. Вопрос лишь в том, желают ли они, чтобы над ними властвовала какая-нибудь скверная модная философия, или же они желают руководствоваться такой формой теоретического мышления, которая основывается на знакомстве с историей мышления и ее достижений". Синтезируя многообразие форм воздействия философии на математику можно сказать, что философия является основой мировоззрения и наиболее общей методологией теоретической и практической деятельности, причем мировоззренческая и методологическая функции философии органически переплетаются. Изучение философии необходимо для развития теоретического мышления, что особенно актуально для математики. Более конкретно влияние философии на математику осуществляется через разработку философских проблем математики, которые как бы преломляют функции философии применительно к отдельным математическим исследованиям.
Философский анализ конкретных наук, согласно Ф. Энгельсу, не ограничивается выдвижением абстрактных идей и принципов. В отдельных случаях он приводит к таким результатам, которые сопоставимы с открытиями, сделанными представителями отдельных наук. В качестве примеров "естественнонаучных успехов философии", которые предвосхитили открытие естествоиспытателей "даже в их собственной области", Ф. Энгельс указывает следующие: "Лейбниц - основатель математики бесконечного … Кант - теории происхождения мира до Лапласса; Окен - первый принявший в Германии теорию развития".
В свою очередь математика оказывает существенное влияние на философскую мысль. Ее развитие подтверждает на конкретном материале истинность положений диалектико-материалистической философии. Энгельс находил в этой науке "диалектические вспомогательные средства и обороты", К. Маркс в "Математических рукописях" на основе анализа математического познания выявил ряд общих закономерностей познавательной деятельности, в частности идею об оборачиваемости метода познания. Содержание ряда математических понятий в обобщенном виде может быть использовано для обогащения соответствующих философских категорий. Математический аппарат широко используется классиками марксизма как вспомогательное средство в философских работах.
Выработанная классиками марксизма концепция математического познания в ХIХ веке не была единственной. Параллельно существуют другие философские течения, которыми тоже занимались в математике.
Одной из самых распространенных и влиятельных философских теорий в начале второй половины ХIХ столетия в Германии было волюнтаристское, и рационалистическое учение А. Шопенгауэра (1788 - 1860).
Исходя из принципов и волюнтаризма, Шопенгауэр негативно относился к исследованиям по обоснованию математики, к повышению логической строгости математических доказательств. С его точки зрения высшую степень достоверности дает непосредственное созерцание связи между элементами доказываемого положения.
"Пригодность математики - лишь косвенное: именно, ею следует пользоваться для тех целей, которые достижимы только посредством нее; сама же по себе математика оставляет ум на той же ступени, где она его нашла, и не только не способствует его дальнейшей культуре и развитию, но даже прямо задерживает их".
Шопенгауэр был "властелином дум" определенной части немецкой интеллигенции в атмосфере разочарования политической и духовной подавленности после революции 1848 г. Когда в конце 60-х - начале 70-х годов историческая обстановка изменилась, интерес к шопенгауэровской философии угасает. Популярными становятся те его последователи, которые, сохраняя принципы иррационализма и волюнтаризма, сумели придать им более приемлемую, не столь скудно обоснованную и менее пессимистическую форму. К ним, прежде всего, следует отнести Э. Гартмана (1842-1906).
Гартман принимает кантовское положение, но считает "за лучшее место оснований Канта предложить для его положения другие доказательства".
В то время математики интенсивно занимались уточнением основ своей науки, совершенствовали аксиоматику и механизм дедуцирования. Гартман как будто бы поддерживает их усилия. Он оказывает, что через математику "проходят два метода: дедуктивный или дискурсивный и интуитивный". Однако он стремился подорвать доверие к дедуктивному методу и на его место поставить метод интуитивный.
В 50-х годах ХIХ века оформляется в относительно самостоятельное течение так называемый вульгарный материализм. Основные представители этого течения - К. Фохт (1817-1895), Я. Молешотт (1822-1893), Л. Бюхнер (1824-1899). Математика анализируется данными исследователями очень слабо. При рассмотрении отдельных философских проблем математики они явно склоняются на позиции узкого эмпиризма. Позитивным у них является утверждение о существовании объективного аналога математических знаний: зиждется исключительно на объективных отношениях, пишет Л. Бюхнер, - без которых не были бы возможны также и математические законы; вот почему математику следует причислять к естественным, а не к философским и спекулятивным наукам. Но это утверждение сочетается с отрицанием объективного содержания математических понятий вне чувственно наглядных образов, с умалением роли абстрактных теоретических построений. "Понятия пространства, величины, протяжения, высоты, ширины, глубины получены лишь из чувственного опыта и не существовали бы без него. Таким образом, общий принцип всей математики добыт эмпирическим путем".
Линия отрыва конкретной науки от философии, которую проводили вульгарные материалисты, характерна и для последователей О. Канта, представителей так называемой позитивной философии, у которых как отмечал К. Маркс, "нет ровно ничего позитивного кроме их высокомерия". Позитивисты выступили с критикой некоторых ортодоксальных утверждений О. Канта. Они сделали некоторые разделы его философии более соответствующими духу времени, внесли некоторые дополнения и в разработку философских проблем математики.
Вместе с тем, в ряде моментов рассуждения позитивистов представляются менее содержательными, чем воззрение Канта. Согласно одного из позитивистов - Л. Хорда - математика "будет вполне поглощена другими науками и не будет более занимать отдельного места или положения в научной иерархии. Так называемая чистая или абстрактная математика не имеет реального существования сама по себе".
Наиболее благожелательное отношение к математике по сравнению с рассмотренными идеалистическими школами обнаруживается у неокантианцев. Самый старый и значительный из неокантианцев Ф. Ланге истолковывает кантовский априоризм как психофизиологическую теорию. Ланге придал своей философии социально-политическую ориентацию и каких-то новых идей относительно природы математики не высказал.
В 70-х годах неокантианство как бы расслаивается на два главных направления - Баденскую и Марбургскую школы. Видным представителем первой были В. Виндельбанд (1848-1915) и Г. Риккерт, второй - Г. Коген (1842-1912) и П. Наторп (1854-1924).
Представители баденской школы положительно оценивали использование математики естествознания, но были против использования ее при изучении социальных явлений.
В пределах марбургской школы особенно много внимания анализу математического познания уделял Г. Коген. Абсолютизируя роль математической абстракции познания, Коген считает, что задача философии исследовать строго трансцендентальные объекты, которые носят рассудочный характер. Он объявляет, что "факты науки" формируются фактически исключительно творческой силой мышления. Ценностью представляется только путь познаний, а не та цель, к достижению которой оно стремится. Способ обоснования математических положений через установление их взаимосогласованности логической связи с исходными понятиями переносится Когеном на весь познавательный процесс в качестве универсального средства установления личности.
Проведенный анализ различных направлений идеалистической философии с точки зрения разработки в ней философских проблем математики дает общее представление о том, какой хотели видеть математику приверженцы этой философии. Чтобы иметь представление, какой она была в действительности дадим краткую характеристику ее развития во второй половине ХIХ столетия.
По объему накопленных знаний, по глубине открытий, по уровню их абстрактности и эффективности применений пять-шесть десятилетий развития математики, в ХIХ веке сравнимы со столетиями предшествующей истории.
В ХIХ веке как бы продолжая традиции предшествующих столетий, математизация охватывает новые области науки. К астрономии, механике, оптике, требовавшим обширных математических знаний, присоединяются термодинамика, теория магнетизма, электродинамика. Быстро растут математические запросы техники. Основным математическим аппаратом новых областей механики и математической физики выступают теория дифференциальных уровней с частными производными, теория потенциалов и другие. Все более ощутимые запросы к математике начинают предъявлять изыскания в области социальных явлений.
Наряду с развитием прикладных областей мощное развертывание получает чистая математика. В чистой математике создаются разделы, объекты которых формируются не только путем непосредственного абстрагирования от созерцаемых в окружающей действительности количественных отношений и пространственных форм, но очень бурно возникают абстракции от абстракций, абстракции второго порядка.
Предметом сознательного и повышенного интереса математиков становятся вопросы формирования теоретических объектов, вопросы логики и методологии математического познания.
Математика все настоятельнее требовала таких ученых, которые бы сочетали в себе теоретика, практика и организатора.
Если дать анализ мировоззрения Б. Римана, М. Кантора, П.Л. Чебышева, С.А. Ковалевской и других великих математиков ХIХ века, можно убедиться, что философскую основу их продуктивной деятельности составляли материалистические принципы, которые не редко сочетались с элементами диалектики, хотя их материализм не был последовательным.
Сопоставляя реальный процесс развития математики с развитием философской мысли во второй половине ХIХ века, можно сделать заключение, что наиболее глубокой и всеобъемлющей философской концепцией математического познания является система взглядов К. Маркса и Ф. Энгельса. Они применили диалектико-материалистический метод к истории развития математики и ее новым достижениям. Они сумели дать ответ на наиболее важные мировоззренческие и методологические проблемы, поставленные на повестку дня прогрессом математики ХIХ века.
К. Маркс и Ф. Энгельс убедительно показали не способность идеализма и метафизики служить общей методологией математического познания. Реальный процесс развития этой науки актуализировал необходимость перехода на позиции диалектического материализма, и в среде математиков началось стихийное движение в этом направлении. Но этот переход в рассматриваемый период осуществлен не был. Разработанная К. Марксом и Ф. Энгельсом система взглядов на природу математического познания была тем идеалом, к достижению которого шло развитие математических знаний во второй половине ХIХ века.
Заключение
Таким образом, мы рассмотрели взаимодействие философии и математики на различных этапах исторического развития. Эти науки находятся постоянно в неразрывной связи. Уже на самых ранних этапах развития человеческой мысли они идут рядом, дополняя друг друга и друг на друга воздействуя. Причем характер этого взаимодействия находится, как и непосредственное развитие каждой из наук в отдельности, в строгой зависимости от развития производительных сил и нужд производства. Это видно хотя бы на примере того, что структура этого взаимодействия усложняется по мере развития производительных сил и стоит на мертвой точке в период средневековья.
Характер взаимодействия философии на математику выражается смелостью и гибкостью математических теорий в рассматриваемый период времени. “Несмотря на особенность математического знания, методов его построения и использования в естествознании, не смотря на все, казалось бы загадочные эффекты, в основе математической мощи лежит природное начало - единство ее структур и проявлений. ” Характер воздействия математики на философию имеет многостороннее выражение, но следует отметить влияние математики на соотношение сил в непримиримой борьбе между материализмом и идеализмом. “В философской традиции обращение к рассмотрению математических знаний всегда играло очень важную роль. Математика выступала как образец достоверного и неопровержимого знания." Знание математики, строгость и четкость ее методов помогают философам вырабатывать необходимую, более соответствующую духу времени, позицию. В то же время философия влияет на такие определяющие понятия математики, как предмет, задачи, метод.
В современных условиях, в связи с усиливающимся прогрессом, развитием наук, диалектический и исторический материализм стали достоянием подавляющего большинства математиков, что имеет свое влияние как на философские проблемы математики, так и на всю математику в целом. Взаимодействие между философией и математикой приобрело новые характерные черты. Это связано с тем, что в связи с требованиями цивилизации в математике появилось и развилось множество направлений. Кроме того, не потеряла свою актуальность борьба между материализмом и идеализмом, что выразилось в развитии множества разновидностей философии. Это оказывает непосредственное влияние на обоснование математики, ее развитие.
Таким образом, взаимосвязь философии и математики не утрачена, она еще более укрепилась. Эти две науки будут идти рядом пока существовать будет человеческое знание.
Размещено на Allbest.ru
...Подобные документы
Основные положения философии Иммануила Канта, их влияние на дальнейшее развитие немецкой классической философии. Философские воззрения французских материалистов XVIII века. Сравнение понимания познания в философии Канта и французских материалистов.
реферат [33,6 K], добавлен 17.07.2013Особенности возникновения, становления и расцвета немецкой классической философии. Разработки в области диалектики познания. Человек и общество в зеркале немецкой классической философии. Классические философские концепции с точки зрения современности.
реферат [34,0 K], добавлен 16.04.2013Основания для классификации философского знания. Особенности формирования философии Средневековья, эпохи Возрождения и Нового времени. Понятия классической немецкой и восточнославянской философии. Марксистско-ленинская и неклассическая философия.
курсовая работа [111,4 K], добавлен 21.01.2011Философия учения о человеке в античной философии, средневековой, эпохи Возрождения, в Новое время, в классической немецкой философии, а так же в марксисткой философии. Концепции личности как члена человеческого рода и носителя человеческой общности.
реферат [47,5 K], добавлен 11.08.2014Изучение антропоцентрической телеологии философии эпохи Возрождения. Значение термина "гуманизм". Развитие пантеизма и философии неоплатонизма. Исследование магико-алхимического понимания и величия природы, пантеистической натурфилософии Джордано Бруно.
контрольная работа [33,4 K], добавлен 20.01.2015Принципы немецкой классической философии, предпосылки ее возникновения. Проблемное поле немецкой классической философии с точки зрения современности. Человек и общество в зеркале философии. Диалектика познания в трудах немецких философов-классиков.
курсовая работа [39,4 K], добавлен 25.10.2013Создание единого научного метода. Математика как главное средство познания природы. Мир Декарта. Нематериальная субстанция. Процедуры, пути и результаты сомнения. Основные правила научного метода. Единство философии, математики и физики в учении Декарта.
курсовая работа [30,0 K], добавлен 23.11.2008Общая характеристика культурного аспекта в немецкой классической философии. Критическая философия И. Канта. Абсолютный идеализм Гегеля и материализм Л. Фейербаха. Завершающий этап развития немецкой философии - идеи и работы К. Маркса и Ф. Энгельса.
контрольная работа [27,7 K], добавлен 18.01.2015Исторические предпосылки философии Возрождения. Современные оценки роли гуманизма в философии эпохи Возрождения. Гуманистическая мысль Ренессанса. Развитие науки и философии в эпоху Возрождения. Религиозная мысль и социальные теории эпохи Возрождения.
курсовая работа [45,0 K], добавлен 12.01.2008Понятие и сущность немецкой классической философии, ее особенности и характерные черты, история становления и развития. Выдающиеся представители немецкой классической философии, их вклад в ее развитие. Место немецкой философии в мировой философской мысли.
контрольная работа [12,6 K], добавлен 24.02.2009Философия Возрождения - направление в европейской философии XV-XVI вв. Принцип антропоцентризма. Натурфилософы Возрождения. Гуманизм. Этика эпохи Возрождения. Детерминизм - взаимообусловленность. Пантеизм. Концепция человека в философии эпохи Возрождения.
реферат [29,2 K], добавлен 16.11.2016Предмет, структура и функции философии. Основные этапы развития философии: ранний эллинизм, Средневековье, эпоха Возрождения и Новое время. Характеристика немецкой классической философии. Онтология, гносеология, социальная философия, учение о развитии.
презентация [133,1 K], добавлен 24.09.2012Особенность философского знания и способы его изучения. Характеристика и представители античной философии. Философия классической эпохи, стоицизм. Развитие науки в средние века и эпоху Возрождения. Британский эмпиризм XVII-XVIII вв. и философия ХХ в.
учебное пособие [3,8 M], добавлен 22.01.2011Общая характеристика философии эпохи Возрождения. Рассмотрение основных ее проблем и центральных вопросов. Особенности националистического и натуралистического подходов к концепции человека в философии гуманизма. Решение проблемы природы личности.
реферат [29,7 K], добавлен 30.10.2014Изучение социально-философского содержания философии эпохи Возрождения и определение её гуманистической направленности. Исследование основных положений натурфилософии эпохи. Общий сравнительный анализ идей античной философии с идеями эпохи Ренессанса.
контрольная работа [39,0 K], добавлен 27.04.2013И. Кант как основоположник классического немецкого идеализма, активность субъекта познания и постулаты практического разума в его философии. Система и диалектический метод философии Г. Гегеля. Сущность антропологического материализма Л. Фейербаха.
реферат [32,6 K], добавлен 16.12.2011Интеллектуализм, религия и возникновение философии. Философия эпохи Возрождения, от Декарта до Канта (XVII-XVIII вв.), от Гегеля до Ницше (XIX в.). Феноменология, герменевтика и аналитическая философия. Постмодернизм против философии Нового времени.
реферат [53,5 K], добавлен 11.01.2010Понятие философии, ее функции и роль в обществе. Специфика философского знания. Древнегреческая философия. Милетская школа, пифагоризм. Философия Платона и Аристотеля. Бог, человек и мир в средневековой христианской философии. Философия эпохи Возрождения.
курс лекций [87,0 K], добавлен 31.05.2010Истоки философии эпохи Возрождения, ее взаимосвязь с развитием современного ей естествознания. Человек - важнейший объект философского рассмотрения. Особенности этапов развития философии эпохи Возрождения, их основные представители и достижения.
презентация [220,6 K], добавлен 15.11.2012Хронологическая периодизация философии: Античности, Средневековья, Возрождения, Просвещения, немецкой классической философии, нового времени, западной, русской, китайской. Основные представители: Платон, Пётр Дамиани, Мишель Монтень, Гоббс, Вивекананда.
реферат [44,6 K], добавлен 30.12.2014