Основы логики
Ознакомление с особенностями логики Аристотеля. Определение сущности абстрактных терминов, которые служат для обозначения качеств или свойств, состояний и действия вещей. Рассмотрение различий между формальным и индуктивным направлением в логике.
Рубрика | Философия |
Вид | реферат |
Язык | русский |
Дата добавления | 18.02.2015 |
Размер файла | 55,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
«Институт государственного и муниципального управления»
РЕФЕРАТ
По дисциплине «Логика»
На тему: ОСНОВЫ ЛОГИКИ
Работу выполнил студент:
Фатеев Федор Викторович
Дата рождения: 20.01.1992г.
Курс:4
Форма обучения:ДО-4
Москва 2014
История логики и главное её направление.
Творцом логики как науки следует считать Аристотеля (384--322). Логика Аристотеля имела господствующее значение не только в древности, но также и в средние века, в эпоху так называемой схоластической философии. Заслуживает упоминания сочинение последователей философа Декарта (1596--1650), которое называлось: La logique ou lart de penser (1662). Эта логика, которая называется логикой Port, которая, принадлежит к так называемому формальному направлению. В Англии Бэкон (1561--1626) считается основателем особого направления в логике, которое называется индуктивным, наилучшими выразителями которого в современной логике являются Д.С. Милль (1806--1873) и Л. Бэн (1818--1903).
Для того, чтобы понять, в чем заключается различие между формальным и индуктивным направлением в логике, заметим, что называется материальной и формальной истинностью. Мы считаем какое-либо положение истинным материально, когда оно соответствует действительности или вещам. Мы считаем то или другое заключение истинным формально в том случае, когда оно выводится с достоверностью из тех или иных положений, т.е., когда верен способ соединения мыслей, самое же заключение может совсем не соответствовать действительности. Для объяснения различия между формальной и материальной истинностью возьмём примеры, нам даются два положения:
Все вулканы суть горы
Все гейзеры суть вулканы
Из этих двух положений с необходимостью следует, что «все гейзеры суть горы». Это заключение формально истинно, потому что оно с необходимостью следует из двух данных положений, но материально оно ложно, потому что оно не соответствует действительности; гейзеры не суть горы. Таким Образом, умозаключение истинное формально может быть ложным материально.
Но возьмём следующий пример:
Все богачи тщеславны
Некоторые люди не суть богачи
След., некоторые люди не суть тщеславны.
Это заключение истинно материально, потому что действительно «некоторые люди не суть тщеславны», но оно формально ложно, потому что не вытекает из данных положений. В самом деле, если бы было сказано, что только богачи тщеславны, тогда о всяком не-богаче мы сказали бы, что он не тщеславен. Но у нас в первом положении утверждается: «все богачи тщеславны»; этим не исключается, что и другие люди могут быть тщеславными. В таком случае можно быть небогатым и в то же время быть тщеславным; из того, что кто-нибудь не есть богач, не следует, что он не может быть тщеславным. Из этого ясно, что указанное заключение не вытекает из данных положений необходимо.
Те правила, которые указывают, когда получаются заключения истинные формально, мы можем назвать формальными критериями истинности; те правила, которые определяют материальную истинность, мы можем назвать материальными критериями истинности.
Формальная логика по преимуществу изучает те отделы логики, в которых может быть применяем формальный критерий истинности. Индуктивная логика, в противоположность формальной логике, по преимуществу разрабатывает те отделы, в которых применяется материальный критерий.
Понятия и термины логики.
Мы предполагаем начать с рассмотрения различных классов понятий. В сочинениях по логике у английских философов изложение логики обыкновенно начинается с рассмотрения терминов, имён или названий. Они исходят из того, что в логике мы должны трактовать не просто о понятиях, которые представляют известные умственные построения, но мы должны о них трактовать постольку, поскольку они получают выражение в языке, в речи; а так как понятия мы выражаем при помощи слов, названий и т. п., то, по их мнению, гораздо целесообразнее в логике говорить не о понятиях, а о названиях, именах или терминах.
Таким образом, мы можем рассматривать или понятия в том виде, как они нами мыслятся, или их выражение при помощи слов.
Но на самом деле между этими двумя рассмотрениями нет существенной разницы. Каждое понятие у нас в мышлении фиксируется, приобретает устойчивость, определённость благодаря тому или другому слову, названию, термину. Когда мы в логике, оперируем с понятием, то мы всегда имеем в виду понятие, которое связывается с известным словом. Слово является заместителем понятий. Мы можем оперировать только с теми понятиями, которые получили своё выражение в речи. Таким образом, ясно, что всё равно, будем ли мы говорить о названиях и терминах, как это делается в английской логике, или же будем говорить о понятиях просто.
Понятия индивидуальные и общие. Понятия разделяются прежде всего на индивидуальные, или единичные, и общие. Индивидуальными понятиями мы будем называть те понятия, которые относятся к предметам единичным, индивидуальным (в данном случае индивидуальные понятия совпадают с представлениями о единичных вещах), например: «британский посланник во Франции», «высочайшая гора в Америке», «автор «Мёртвых душ», «эта книга». К числу единичных понятий относятся также и собственные имена, например: «Казбек», «Ньютон», «Рим». Понятия, которые относятся к группе или классу предметов или явлений, имеющих известное сходство между собой, называются общими понятиями или классовыми понятиями. Например, понятия «растение», «животное», «газ», «двигатель», «поступок», «движение», «красота», «гнев», «чувство» и т. п. суть понятия классовые или общие.
Общие, собирательные и разделительные термины. Единичные и общие понятия иногда могут употребляться в особенном смысле, и именно в так называемом собирательном. Если я произнесу предложение: «лес служит для сохранения влаги», то в этом предложении «лес» есть один из множества однородных предметов; в этом предложении понятие «лес» употреблено в общем смысле. Но «лес» может представляться как одно целое, состоящее из однородных единиц. В таком случае понятие «лес», или термин «лес», делается коллектив-н ы м, или собирательным.
Собирательный термин обозначает одно целое, группу, состоящую из однородных единиц. Например, термины «полк», «толпа», «библиотека», «лес», «парламент», «созвездие», «соцветие», «класс» представляют собой собирательные термины, если мы имеем в виду, что они служат для обозначения целого, составленного из однородных единиц.
Но эти же самые термины делаются общими, когда мы их мыслим отдельными представителями известного класса. Например, «полк», «толпа» есть общий термин, когда речь идёт о «полках», о «толпах»; в этом случае вещи, обозначенные этими терминами, рассматриваются как известные единицы, входящие в состав известного класса сходных вещей. Если я употребляю термины «Пушкинская библиотека», «английский парламент», то я употребляю термины собирательные, потому что они выражают известное целое, составленное из однородных единиц. Если же я скажу «европейские библиотеки, парламенты, университеты» и т. д., то это суть общие термины, потому что я говорю о библиотеках, парламентах, университетах как известном классе сходных предметов.
Как это видно из приведённых примеров, собирательные понятия представляют собой особую форму индивидуальных понятий.
Так как весьма часто общие понятия можно смешать с собирательными, то следует обратить внимание на следующее различие между ними. То, что мы утверждаем относительно понятия собирательного, относится к известному целому, составленному из единичных предметов, но это утверждение может быть неприложимо к предметам, входящим в это целое и взятым в отдельности. Наоборот, то, что мы утверждаем относительно общего понятия, может быть приложено к каждому предмету, к которому относится это понятие. Собирательное понятие мыслится как одно целое, состоящее из однородных единиц; общее понятие мыслится как класс, который состоит из сходных предметов. Если мы говорим «парламент издал закон о всеобщей воинской повинности», то мы этим хотим сказать, что известное целое, составленное из известных единиц, издало известный закон, но этого нельзя сказать относительно каждого члена парламента, потому что отдельные члены парламента могут высказаться за сохранение прежнего порядка отбывания воинской повинности. В этом случае понятие «парламент» употреблено в собирательном смысле. Но я могу употребить выражение «парламенту принадлежит законодательная функция»; в этом случае термин «парламент» употреблён в общем смысле, потому что указанное выражение справедливо относительно всех парламентов.
Иногда мы можем употреблять те или иные понятия таким образом, что наши утверждения будут справедливы относительно каждой отдельной единицы, входящей в ту или другую группу предметов. Такое употребление терминов, или понятий, мы будем называть употреблением в разделительном смысле. Когда мы употребляем какое-нибудь понятие в собирательном смысле, то мы наше утверждение относим к группе, рассматриваемой в целом; если же мы употребляем его в смысле разделительном, то мы утверждаем что-либо о каждом члене группы раздельно. Если мы, например, говорим: «весь флот погиб во время бури», то мы употребляем понятие «весь» в собирательном смысле, потому что мы говорим о флоте, взятом в целом. Отдельные корабли могут не погибнуть, но флот как известное целое перестаёт существовать. Если мы употребляем выражение «все рабочие утомились», то в нём слово «все» употребляется в разделительном смысле, потому что мы имеем в виду утомление каждого рабочего в отдельности.
Абстрактные и конкретные термины. Абстрактные термины -- это такие термины, которые служат для обозначения качеств или свойств, состояний, действия вещей. Они обозначают качества, которые рассматриваются сами по себе, без вещей. Когда мы употребляем абстрактные термины, то мы совсем не имеем в виду обозначить, что соответствующие этим терминам качества или свойства, состояния вещей существуют где-нибудь в определённом пространстве или в определённый момент времени, а, наоборот, они мыслятся нами без вещей, а потому и без определённого пространства и времени. Примером абстрактных терминов могут служить такие термины, как «тяжесть», «объём», «форма», «цвет», «интенсивность», «твёрдость», «приятность», «вес», «гуманность». В самом деле, «тяжесть» не есть что-нибудь такое, что имеет существование в данный момент времени: она существует не только в каком-нибудь определённом месте, но и везде, где только есть тяжёлые вещи. Абстрактными эти термины называются потому, что свойства или качества, обозначаемые ими, могут мыслиться без тех вещей, к которым они принадлежат: мы можем абстрагироваться, отвлекаться (abstrahere) от тех или иных вещей.
Абстрактными, в отличном от этого смысле, иногда называются также и понятия таких вещей, которые не могут восприниматься нами как известная определённая вещь, например «вселенная», «звёздная система», «тысячеугольник», «человечество» и т. п.
Конкретными являются понятия вещей, предметов, лиц, фактов, событий, состояний, сознания, если мы рассматриваем их имеющими определённое существование, например «квадрат», «пламя», «дом», «сражение», «страх» (1) и т. п. Отношение между абстрактными понятиями и конкретными следующее. Абстрактное .понятие получается из конкретного; мы путём анализа выделяем какое-нибудь качество, или свойство, вещи, например белизну из мела. С другой стороны, на конкретное понятие можно смотреть как на синтез абстрактно мыслимых качеств. Например, понятие «камень» представляет собой синтез качеств «тяжесть», «шероховатость», «твёрдость» и т. п.
Надо заметить, что прилагательные всегда являются терминами конкретными, а не абстрактными; употребляя прилагательное «белый», мы всегда мыслим вещь; свойство же или качество мы мыслим в том случае, когда мы употребляем существительное «белизна».
В языке иногда абстрактные и конкретные термины употребляются попарно. Например, конкретному термину «белый» соответствует абстрактное понятие «белизна», конкретному термину «строгий» соответствует абстрактное понятие «строгость», термину «квадрат» -- «квадратность», «человек» -- «человечность».
Термины положительные и отрицательные. Положительные термины характеризуются тем, что они служат для обозначения наличности того или другого качества. Например, употребляя термины «красивый», «делимый», «конечный», мы хотим указать, что в предметах имеются налицо качества, обозначаемые этими словами; соответствующие же им отрицательные термины «некрасивый», «неделимый», «бесконечный» будут означать, что указанные качества отсутствуют в предметах. Другие примеры отрицательных терминов: «вневременный», «сверхчувственный», «ненормальный», «беспечный», «бессмысленный».
Относительные и абсолютные термины. Есть, наконец, термины относительные и абсолютные. Что значит вообще абсолютный?. Под абсолютным мы понимаем то, что не находится в связи с чем-либо другим, что не зависит от чего-либо другого; под относительным мы понимаем то, что приводится в связь с чем-нибудь
О чувстве страха можно сказать, что оно имеет известное качество, например известную силу, или интенсивность, что оно обладает свойством парализовать умственную деятельность и т. д. Словом, оно может быть рассматриваемо как нечто, состоящее из совокупности свойств, или качеств.
Абсолютный термин - это такой термин, который в своём значении не содержит никакого отношения к чему-либо другому, он не принуждает нас мыслить о каких-либо других вещах, кроме тех, которые он обозначает. Например, термин «дом» есть термин абсолютный. Мысля о доме, мы можем не думать ни о чём другом. Относительный же термин -- это такой термин, который кроме того предмета, который он означает, предполагает существование также и другого предмета. Например, термин «родители» необходимо предполагает существование детей: нельзя мыслить о родителях без того, чтобы в то же время не мыслить о детях. Если мы говорим о каком-либо человеке, что он строгий, то мы наше внимание можем ограничить только этим человеком; но если мы говорим о нём, как о друге, то мы должны подумать ещё об одном лице, которое стоит к нему в отношении дружбы. Другие примеры: «компаньон», «партнёр», «сходный», «равный», «близкий», «король--подданные», «причина -- действие», «северный -- южный». Каждый из такой пары терминов называется соотносительным другому термину.
Логические категории и отношения между понятиями
Категории. Ни один предмет не представляет собой чего-либо совершенно отличного от всех других предметов; Он похож на них в каком-либо отношении: его всегда можно отнести в какой-либо общий класс с другими предметами; все вообще предметы могут быть относимы в общие с другими предметами классы. Есть классы, которые обнимают небольшое количество предметов, но есть классы, которые обнимают большое количество предметов, и именно потому, что это суть предметы с самыми общими сходствами. Эти классы вещей в нашем мышлении получают выражение в виде известных понятий. Такие понятия, которые служат для обозначения самых общих сходств между предметам и Аристотель назвал категориями. Слово «категория» происходит от греческого слова xatnyopew что значит высказывать, быть сказуемым. Категории для Аристотеля суть возможные предикаты какого-либо единичного предмета, т. е. такие понятия, которые можно высказать относительно того или иного единичного предмета или класса предметов.
Вот эти категории:
1. Субстанция (substantia).
2. Количество (quantitas),
3. Качество (qualitas).,
4. Отношение (relatio).
5. Место (ubi).
6. Время (quando).
7. Положение (situs);
8. Обладание (habitus);
9. Действие (actio).
10. Страдание (passio).
Под эти десять категорий, по мнению Аристотеля, подходит всё то, что можно мыслить. Если мы желаем высказать о тех или других вещах что-либо самое общее, то мы не можем о них высказать ничего другого? кроме того, что они суть или субстанции, или что они обозначают качество, отношение, место и т. п. Других точек зрения, кроме тех, которые содержатся в категориях, не существует. Таким образом, можно сказать, что категории представляют собой наиболее общие классы всего мыслимого.
В новейшей философии в качестве наиболее общих классов мыслимого философы различают вещь, свойство, отношение. Всё, о чём мы можем мыслить, есть или вещь (субстанция), или это есть свойство (атрибут), или, наконец, это есть отношение.
Под вещами мы понимаем то, что обладает большим или меньшим постоянством формы. Например, таким постоянством обладают камень, дерево, жидкость в сосуде и т. п. Кусок камня сегодня обладает той же формой, какой он обладал вчера: нам представляется, что такое постоянство будет ему присуще и впоследствии.
Вещи мы представляем или имеющими известные свойства или качества, или совершающими известные действия, или находящимися в известном состоянии. Например, то, что кусок железа имеет известную тяжесть, есть его свойство, или качество. Если кусок железа накалён, то это есть его состояние: если кусок железа плавится или движется, то это есть известный процесс, состояние. Свойства, действия, состояния мы представляем принадлежащими известной вещи как известной носительнице их. Но в то же время мы их мыслим как элементы, из которых состоит вещь: мы мыслим железо как нечто, имеющее известную тяжесть, твёрдость, способность накаляться, приходить в движение и т. п. Качество, действие, состояние мы будем называть одним общим именем -- свойства вещи.
Одна вещь может мыслиться нами находящейся в различных отношениях к другой вещи. Одна вещь может быть больше, чем другая (пространственное отношение); одна вещь может быть причиной другой вещи (причинное отношение); одна вещь может возникнуть раньше, чем другая (временное отношение), и т. п.
Всё, что мы можем мыслить, мы должны мыслить под одной из этих категорий, т. е. всё, что мы мыслим, мы должны мыслить или как вещь, или как свойство вещи, или как отношение. Эти три наиболее общих понятия мы и считаем категориями.
Этим исчерпывается вопрос о категориях.
Отношения между понятиями. Рассмотрим логические отношения, существующие между понятиями.
1. Подчинение понятий (subordinatio notionurn) мы имеем в том случае, когда одно понятие относится к другому, как вид к своему роду, когда одно понятие входит в объём другого как часть его объема. Для примера возьмём понятие «дерево» А и понятие «берёза» В. Последнее понятие входит в объём первого. Другие примеры: «духовная деятельность», «ощущение вкуса», «человек», «математик».
2. Соподчинение понятий (coordinatio notionum) мы имеем в том случае, если а объём одного и того же более широкого понятия входят два иди несколько одинаково подчинённых ему низших понятий. Эти низшие понятия называются соподчинёнными (координированными). Например, «мужество» В, «умеренность» С, «добродетель» А. Оба первых понятия входят в объём последнего.
3. Понятия равнозначащие (notiones aequipollentes). Для разъяснения этого отношения возьмём два понятия: «английский народ» и «первые мореплаватели в мире». Когда мы произносим слова «английский народ» и при этом имеем в уме понятие «английский народ», мы думаем об англичанах. Когда мы произносим слова «первые мореплаватели», мы также думаем об англичанах; следовательно, объём этих двух понятий один и тот же. Раскроем теперь содержание этих понятий. В понятии «английский народ» мы мыслим известное политическое устройство, известную территорию, известную культуру и т. д., в понятии же «первые мореплаватели» -- известное искусство в постройке кораблей и управлении ими, известное развитие морской торговли, многочисленность флота и т. д.; следовательно, содержание этих понятий различно. Если у нас есть два понятия с различным содержанием, но одинаковым объёмом, то такие понятия называются равнозначащими. Другие примеры: «христианин -- крещёный», «органический -- смертный», «величайший писатель--автор «Войны и мира». Равнозначащие понятия можно символизировать при помощи двух кругов, сливающихся в один, подобно тому как сливаются объёмы указанных понятий; различие же содержания символизируется двумя различными буквами, стоящими в этом круге.
4. Противные и противоречащие понятия. На эти два различных класса понятий, очень сходных по своим внешним свойствам, но в то же время совершенно различных по существу, следует обратить особенное внимание и хорошенько продумать их различие, .так как при оперировании с ними легко впасть в ошибку.
Если мы возьмём объём какого-нибудь понятия и будем распределять по степени сходства виды, входящие в него, таким образом, что после каждого вида мы будем брать следующий, наименее от него отличный, то в конце концов из этих понятий-видов получится ряд, в котором первый и последний члены очень сильно отличаются друг от друга. Эти-то два понятия, первое и последнее, во взятом нами ряде видов находятся в отношении противности или противоположности. Будем, например, указанным способом распределять виды понятия «цвет». В его объём входят различные оттенки всевозможных цветов: красного, зелёного, чёрного, белого, серого и т. п. Если мы указанным выше способом будем размещать виды в ряд по мере сходства их, то можем получить приблизительно следующий ряд: белый, беловатый, светло-серый, серый, темно-серый, черноватый, чёрный.
Как видно из этого, наибольшее различие здесь между понятиями «белый» и «чёрный»; они-то и суть противоположные или противные понятия. Итак, понятия, входящие в один и тот же объём, но очень отличающиеся друг от Друга, называются противными (contrariae). Схема: в круге, символизирующем объём какого-нибудь понятия, двумя линиями отделены два крайних отрезка, один против другого. Другие примеры: «добрый», «злой»; «высокий», «низкий»; «красивый», «уродливый»; «громкий», «тихий»; «глубокий», «мелкий». Надо заметить, что не все понятия имеют противные им понятия. Например, понятие «голубой» не имеет противного ему понятия.
Если мы имеем какое-нибудь понятие А и другое понятие В, относительно которого известно только то, что оно не есть А, то такие понятия называются противоречащими (contradictoriae). Например, понятия «белый» и «небелый» суть понятия противоречащие. Итак, два термина, из которых один получен путём прибавления отрицательной частицы «не» к другому, относятся между собой, как противоречащие. Символически отношение между противоречащими понятиями выражается следующим образом. Кругом символизируется какое-нибудь одно понятие А, и вне его ставится другое понятие В, которое есть не-А, причём это понятие В может быть поставлено где угодно, лишь бы не внутри круга, не в его объёме; это второе понятие по своим свойствам называется понятием отрицательным или нёопредёленным (notio negativa seu indefinita).
Если мы возьмём для сравнения два понятия противоположные и два противоречащие:
«белый» -- «чёрный» (противоположные), «белый» - «небелый» (противоречащие),
то мы можем наглядно убедиться, что разница между этими двумя логическими отношениями огромная: тогда как второй член первой пары (чёрный) имеет вполне определённое содержание, которое можно представить, второй член второй пары (небелый) такого определённого содержания не имеет. Его содержание отличается неопределённостью, т. е., употребляя слово «небелый», мы можем под ним понимать и красный, и зелёный, и синий, и даже большой, красивый, добрый и т. п.
5. Скрещивающиеся понятия (notiones inter se convenientes). Если мы имеем два понятия, содержание которых различно, но объёмы некоторыми своими частями совпадают, то такие два понятия называются скрещивающимися. Возьмём два понятия, например А -- «писатели» и В -- «учёные». В объёме понятия «писатели» заключается часть объёма понятия «учёные», ибо некоторые писатели суть учёные, и, с другой стороны, в объёме понятия «учёные» заключается некоторая часть объёма понятия «писатели», ибо некоторые из учёных суть писатели. Это мы могли бы изобразить при помощи схемы на рисунке.
Так как та часть объёма понятия «писатели», которая состоит из учёных, и та часть объёма понятия «учёные», которая состоит из писателей, логически между собой равны, то символически их можно представить равными частями двух кругов, которые при наложении могли бы совпасть. Поэтому схемой скрещивающихся понятий могут служить два скрещивающихся круга, причём круги символизируют объёмы данных понятий, а место их скрещивания -- совпадающие, логически равные части этих объёмов. Другой пример -- прямоугольные фигуры и параллелограммы, ибо некоторые прямоугольные фигуры суть параллелограммы и некоторые параллелограммы суть прямоугольные фигуры.
6. Понятия несравнимые (notiones disparatae). Возьмём два понятия: «душа» и «треугольник». Для этих двух понятий нет общего ближайшего родового понятия, в объём которого они могли бы оба войти как координированные. Между ними нет ничего такого общего, что могло бы для них явиться посредствующим, связывающим элементом, на основании которого их можно было бы сравнить. Такие два понятия находятся в логическом отношении несравнимости. Для того чтобы можно было сравнить два понятия, необходимо нечто третье, что объединяло бы эти понятия, -- это именно ближайшее общее понятие, в объём которого они входили бы. Это третье понятие называется tertium comparationis.
Сюда же относятся понятия, которые вообще получены неотрицательным путём, например «бесконечный», «бесспорный» и т. п., если эти понятия могут быть символизированы только что указанным способом.
Следует заметить, что речь идёт об отсутствии ближайшего родового понятия. Если мы возьмём, например, два таких понятия, как «корабль» и «чернильница», то при всём различии их они имеют нечто общее (и то и другое есть вещь), но нет ближайшего родового понятия, в объём которого они входили бы.
Определение и задачи логики.
Определение логики. Для того чтобы определить, что такое логика, мы должны предварительно выяснить, в чём заключается цель человеческого познания. Цель познания заключается в достижении истины при помощи мышления, цель познания есть истина. Логика же есть наука, которая показывает, как должно совершаться мышление, чтобы была достигнута истина; каким правилам мышление должно подчиняться для того, чтобы была достигнута истина. При помощи мышления истина иногда достигается, а иногда не достигается. То мышление, при помощи которого достигается истина, должно быть названо правильным мышлением. Таким образом, логика может быть определена как наука о законах правильного мышления, или наука о законах, которым подчиняется правильное мышление.
Из этого определения видно, что логика исследует законы мышления. Но так как исследование законов мышления как известного класса психических процессов является также предметом психологии, то предмет логики выяснится лучше в том случае, если мы рассмотрим отличие логики от психологии в исследовании законов мышления.
Психология и логика. На мышление мы можем смотреть с двух точек зрения. Мы можем на него смотреть прежде всего как на известный процесс, законы которого мы исследуем. Это будет точка зрения психологическая. Психология изучает, как совершается процесс мышления. С другой стороны, мы можем смотреть на мышление, как на средство достижения истины. Логика исследует, каким законам должно подчиняться мышление, чтобы оно могло привести к истине.
Итак, разница между психологией и логикой в отношении к процессу мышления может быть выражена следующим образом. Психология рассматривает безразлично всевозможные роды мыслительной деятельности: рассуждение гения, бред больного, мыслительный процесс ребёнка, животного -- для психологии представляют одинаковый интерес, потому что она рассматривает только, как осуществляется процесс мышления; логика же рассматривает условия, при которых Мысль может быть правильной. В этом отношении логика сближается с грамматикой. Подобно тому, как грамматика указывает правила, которым должна подчиняться речь, чтобы быть правильной, так логика указывает нам законы, которым должно подчиняться наше мышление для того, чтобы быть правильным.
Для того чтобы понять утверждение, что существуют известные правила, которым должно подчиняться мышление, рассмотрим, в чём заключается задача логики. логика аристотель абстрактный
Задача логики. Есть положения или факты, истинность которых усматривается непосредственно, и есть положения или факты, истинность которых усматривается посредственно, именно через посредство других положений или фактов. Если я скажу: «я голоден», «я слышу звук», «я ощущаю тяжесть», «я вижу, что этот предмет большой», «я вижу, что этот предмет движется» и т. п., то я выражу факты, которые должны считаться непосредственно познаваемыми. Такого рода факты мы можем назвать также непосредственно очевидными, потому что они не нуждаются ни в каком доказательстве: их истинность очевидна без доказательств. В самом деле, разве я нуждаюсь в доказательстве, что передо мной находится предмет, имеющий зелёный цвет? Неужели, если бы кто-нибудь стал доказывать, что этот предмет не зелёный, а чёрный, я поверил бы ему? Этот факт для меня непосредственно очевиден. К числу непосредственно очевидных положений относятся, прежде всего, те положения, которые являются результатом чувственного восприятия.
Все те факты, которые совершаются в нашем отсутствии (например, прошедшие явления, а также и будущие), могут быть познаваемы только посредственно. Я вижу, что дождь идёт, -- это факт непосредственного познания; что ночью шёл дождь, есть факт посредственного познания, потому что я об этом узнаю через посредство другого факта, именно того факта, что почва мокрая. Факты посредственного познания или просто посредственное познание является результатом умозаключения, вывода. По развалинам я умозаключаю, что здесь был город. Если бы я был на этом месте тысячу лет назад, то я непосредственно воспринял бы этот город. По следам я заключаю, что здесь проехал всадник. Если бы я был здесь час назад, то я непосредственно воспринял бы самого всадника.
Посредственное знание доказывается, делается убедительным, очевидным при помощи знаний непосредственных. Этот последний процесс называется доказательством.
Таким образом, есть положения, которые не нуждаются в доказательствах, и есть положения, которые нуждаются в доказательствах и очевидность которых усматривается посредственно, косвенно.
Если есть положения, которые нуждаются в доказательствах, то в чём же заключается доказательство? Доказательство заключается в том, что мы положения неочевидные стараемся свести к положениям или фактам непосредственно очевидным или вообще очевидным. Такого рода сведение положений неочевидных к положениям очевидным лучше всего можно видеть на доказательствах математических; Если возьмём, например, теорему Пифагора, то она на первый взгляд совсем не очевидна.
Но если мы станем её доказывать, то, переходя от одного положения к другому, мы придём в конце концов к аксиомам и определениям, которые имеют непосредственно очевидный характер. Тогда и самая теорема сделается для нас очевидной. Таким образом, познание посредственное нуждается в доказательствах; познание непосредственное в доказательствах не нуждается и служит основой для доказательства познаний посредственных. Заметив такое отношение между положениями посредственно очевидными и положениями непосредственно очевидными, мы можем понять задачи логики. Когда мы доказываем что-либо, т. е. когда мы сводим неочевидные положения к непосредственно очевидным, то в этом процессе сведения мы можем сделать ошибку: наше умозаключение может быть ошибочным. Но существуют определённые правила, которые показывают, как отличать умозаключения правильные от умозаключений ошибочных. Эти правила указывает логика. Задача логики поэтому заключается в том, чтобы показать, каким правилам должно следовать умозаключение, чтобы быть верным. Если мы эти правила знаем, то мы можем определить, соблюдены ли они в том или другом процессе умозаключения. Из такого определения задач логики можно понять значение логики. Значение и польза логики. Для выяснения значения логики обыкновенно принято исходить из определения её. Мы видели, что логика определяется как наука о законах правильного мышления. Из этого определения логики, невидимому, следует, что стоит изучить законы правильного мышления и применять их в процессе мышления, чтобы можно было мыслить вполне правильно. Многим даже кажется, что логика может указывать средства для открытия истины в различных областях знания.
Но в действительности это неверно. Логика не поставляет своею целью открытие истин, а ставит своею целью доказательство уже открытых истин. Логика указывает правила, при помощи которых могут быть открыты ошибки. Вследствие этого, благодаря логике можно избежать ошибок. Поэтому становится понятным утверждение английского философа Д.С. Милля, что польза логики главным образом отрицательная. Её задача заключается в том, чтобы предостеречь от возможных ошибок. Вследствие этого практическая важность логики чрезвычайно велика. «Когда я принимаю в соображение, -- говорит Д. С. Милль, -- как проста теория умозаключения, какого небольшого времени достаточно для приобретения полного знания её принципов и правил и даже значительной опытности в их применении, я не нахожу никакого извинения для тех, кто, желая заниматься с успехом каким-нибудь умственным трудом, упускает это изучение. Логика есть великий преследователь тёмного и запутанного мышления; она рассеивает туман, скрывающий от нас наше невежество и заставляющий нас думать, что мы пони понимаем предмет, в то время когда мы его не понимаем. Я убеждён, что в современном воспитании ничто не приносит большей пользы для выработки точных мыслителей, остающихся верными смыслу слов и предложений и находящихся постоянно настороже против терминов неопределённых и двусмысленных, как логика».
Многие часто ссылаются на так называемый здравый смысл и говорят: «Да ведь ошибки можно находить без помощи логики, посредством лишь одного здравого смысла». Это, конечно, справедливо, но часто бывает недостаточно найти ошибку, нужно ещё объяснить её, уметь точно охарактеризовать и даже обозначить её. Иной знает, что в том или другом умозаключении есть ошибка, но он не в состоянии сказать, почему это умозаключение нужно считать ошибочным. Это часто возможно сделать только благодаря знанию правил логики.
Логика имеет также значение для определения взаимного отношения между науками. Различие между науками, например математическими, физическими и историческими, может стать ясным только в том случае, если мы рассмотрим различие методов познания с логической точки зрения.
История логики и главное направление её. Творцом логики как науки следует считать Аристотеля (384--322). Логика Аристотеля имела господствующее значение не только в древности, но также и в средние века, в эпоху так называемой схоластической философии. Заслуживает упоминания сочинение последователей философа Декарта (1596--1650), которое называлось: La logique ou lart de penser (1662). Эта логика, которая называется логикой Port, которая, принадлежит к так называемому формальному направлению. В Англии Бэкон (1561--1626) считается основателем особого направления в логике, которое называется индуктивным, наилучшими выразителями которого в современной логике являются Д.С. Милль (1806--1873) и Л. Бэн (1818--1903).
Для того, чтобы понять, в чем заключается различие между формальным и индуктивным направлением в логике, заметим, что называется материальной и формальной истинностью. Мы считаем какое-либо положение истинным материально, когда оно соответствует действительности или вещам. Мы считаем то или другое заключение истинным формально в том случае, когда оно выводится с достоверностью из тех или иных положений, т.е., когда верен способ соединения мыслей, самое же заключение может совсем не соответствовать действительности. Для объяснения различия между формальной и материальной истинностью возьмём примеры, нам даются два положения:
Все вулканы суть горы
Все гейзеры суть вулканы
Из этих двух положений с необходимостью следует, что «все гейзеры суть горы». Это заключение формально истинно, потому что оно с необходимостью следует из двух данных положений, но материально оно ложно, потому что оно не соответствует действительности; гейзеры не суть горы. Таким Образом, умозаключение истинное формально может быть ложным материально.
Но возьмём следующий пример:
Все богачи тщеславны
Некоторые люди не суть богачи
След., некоторые люди не суть тщеславны.
Это заключение истинно материально, потому что действительно «некоторые люди не суть тщеславны», но оно формально ложно, потому что не вытекает из данных положений. В самом деле, если бы было сказано, что только богачи тщеславны, тогда о всяком не-богаче мы сказали бы, что он не тщеславен. Но у нас в первом положении утверждается: «все богачи тщеславны»; этим не исключается, что и другие люди могут быть тщеславными. В таком случае можно быть небогатым и в то же время быть тщеславным; из того, что кто-нибудь не есть богач, не следует, что он не может быть тщеславным. Из этого ясно, что указанное заключение не вытекает из данных положений необходимо. Те правила, которые указывают, когда получаются заключения истинные формально, мы можем назвать формальными критериями истинности; те правила, которые определяют материальную истинность, мы можем назвать материальными критериями истинности. Формальная логика по преимуществу изучает те отделы логики, в которых может быть применяем формальный критерий истинности. Индуктивная логика, в противоположность формальной логике, по преимуществу разрабатывает те отделы, в которых применяется материальный критерий.
Размещено на Allbest.ru
...Подобные документы
Исследование понятия логики, как особой науки о мышлении. Определение сущности правильного умозаключения, схема которого представляет собой закон логики. Характеристика места дескриптивизма и прескриптивизма в логике. Изучение и анализ взглядов Платона.
реферат [28,4 K], добавлен 11.08.2017Возникновение и этапы развития традиционной формальной логики. Аристотель как основатель логики. Создание символической логики, виды логических исчислений, алгебра логики. Метод формализации. Становление диалектической логики, работы И. Канта, Г. Гегеля.
реферат [26,9 K], добавлен 19.01.2009Своеобразность логической теории, классическое и неклассическое в логике, история развития. Основные идеи интуиционизма, абсолютные и сравнительные модальности, особенности и виды логики. Возможность научной этики и главные законы логики оценок и норм.
курсовая работа [46,7 K], добавлен 17.05.2010Операции определения, деления, обобщения, ограничения. Объединенная классификация суждений, их схемы и принятые в логике обозначения. Распределение терминов и их соотношение с помощью круговых схем Эйлера. Вид сложного суждения, его составные части.
контрольная работа [51,5 K], добавлен 13.10.2011Логическая характеристика понятий, отношения между ними, выражение с помощью круговых схем. Распределённость терминов при переходе от одного термина к другому. Основные законы логики. Непосредственные умозаключения и дедуктивные выводы из посылок.
контрольная работа [50,6 K], добавлен 01.07.2009Причины возникновения и этапы становления традиционной логики. Вклад Аристотеля, Ф. Бэкона, Дж. Милля, Р. Декарта, М. Каринского в развитие логического знания. История создания и основные концепции символической (математической) и диалектической логики.
реферат [32,8 K], добавлен 05.01.2013С чего началась наука логика. Формирование логики как самостоятельной науки. Внутренняя структура человеческого мышления. Законы и правила логики. Двухчленные и трехчленные суждения. Закон противоречия с логических позиций. Основные элементы силлогизма.
контрольная работа [22,4 K], добавлен 26.03.2011Теоретические и методологические аспекты логики - науки о доказательствах, истинных и ложных умозаключениях. Особенности логики Аристотеля, которую можно назвать онтологической, так как он выделяет четыре причины бытия: сущность, материя, движение, цель.
контрольная работа [24,8 K], добавлен 22.01.2010Сущность мышления в системе познания, способы взаимопонимания, логика объяснения. Предмет и семантические категории традиционной формальной логики. Этапы становления логики как науки. Простое суждение и его логический анализ. Основы теории аргументации.
курс лекций [138,4 K], добавлен 02.03.2011Анализ закона формальной логики о зависимости между изменениями объёма и содержания понятия. Сущность правила логической операции деления понятий и возможные ошибки. Суждения как форма мысли, устанавливающая логическую связь между двумя и более понятиями.
контрольная работа [21,6 K], добавлен 24.03.2015Логика как самостоятельная наука. Предмет и значение логики. Теоретические проблемы логики. Основные этапы развития логики. Логика и мышление. Предмет формальной логики и ее особенности. Мышление и язык. Основные правила научного исследования.
курс лекций [29,4 K], добавлен 09.10.2008Предмет и значение логики. Четыре закона логики. Для чего журналисту нужна логика. Логическая форма, которая определяет круг объектов по схожим. Обобщение и ограничение понятий. Отношения между субъектом и предикатом в суждении. Индуктивное умозаключение.
контрольная работа [28,5 K], добавлен 28.03.2009Сущность конкретных и пустых, абстрактных и общих понятий, отношения между ними. Субъект и предикат, постройка рассуждения по модусу разделительно-категорического умозаключения. Логическая форма суждений, способы аргументации и формы обоснования.
контрольная работа [36,5 K], добавлен 24.01.2010Мышление и язык. Естественные и искусственные языки. Логика формальная и диалектическая. Истинность мышления и формальная правильность рассуждения. Символика для обозначения структуры мысли: постоянные, переменные, логические связки (союзы).
контрольная работа [43,7 K], добавлен 15.12.2007Логика европейских и арабских государств Средневековья. Ее отражение в учениях средневековых логиков. Периодизация развития схоластической логики. Основные научные положения Аристотеля в изложении византийского богослова и философа И. Дамаскина.
презентация [1,7 M], добавлен 19.01.2013Логика как "сознание духа в своей чистой сущности". Мышление, диалектика логики. "Стороны" диалектической логики. Аспекты сферы "логического". Три "момента" логического мышления по Гегелю. Гегелевская концепция мышления, критика диалектической логики.
контрольная работа [21,8 K], добавлен 18.10.2011Сущность логики, отражение закономерности движения мышления к истине. Понятие, суждение и умозаключение - основные типы логических форм. Отражение объективной реальности в законах логики. Отличительные признаки формальной и математической логики.
контрольная работа [18,1 K], добавлен 29.09.2010Дискуссия о дисциплинарных границах логики в немецкой философии начала XIX в., конкурирующие проекты понимания логического знания. Место теории Гегеля о "науке логики", исторические контексты становления формальной логики в качестве отдельной дисциплины.
статья [31,9 K], добавлен 30.07.2013Сущность логики как научного направления, место и значение в ее становлении великого ученого Аристотеля. Классификация суждений по Аристотелю: по качеству, объему охватываемых в суждении понятий, модальности. Развитие ученым принципов диалектики.
реферат [24,0 K], добавлен 01.11.2010Предмет и значение логики. Мышление как логическая ступень познания. Субъект и предикат - главные элементы мысли. Соотношение логики формальной и диалектической. Социальное назначение и функции логики. Логические формы и правила соединения наших мыслей.
реферат [29,1 K], добавлен 31.10.2010