Методы поляриметрии

Поляризация света и связанные с ней явления. Поляризационные устройства и современные приборы поляризационно-оптических исследований. Двойное лучепреломление пучка света. Процесс интерференции поляризованных лучей в параллельном световом потоке.

Рубрика Философия
Вид реферат
Язык русский
Дата добавления 10.05.2015
Размер файла 639,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Реферат
По дисциплине «Физика».
На тему: ”Методы поляриметрии”

Студент Иванович Д.Н.

Группа АС-07-1

Приняла Грызова Л.Н.

Липецк 2009

Содержание

Введение

1. Поляризация света и связанные с ней явления

1.1 Поляризация света

1.2 Хроматическая поляризация света

1.3 Двойное лучепреломление

2. Поляризационные устройства и приборы

2.1 Простейшие поляризационные устройства

2.2 Приборы для поляризационно-оптических исследований

Заключение

Библиографический список

Введение

Оптически активные вещества, имеющие асимметричную молекулярную или кристаллическую структуру, поворачивают плоскость поляризации линейно поляризованного света на угол и угол вращения плоскости поляризации, который зависит от природы оптически активного вещества, концентрации (для растворов), длины волны света, температуры, природы растворителя. Величина, характеризующая зависимость угла поворота плоскости поляризации от длины волны d/dl , называется дисперсией оптического вращения. Величина пропорциональна толщине слоя вещества и концентрации раствора. Характеристика природы вещества учитывается удельным углом вращения D(20) . Угол поворота плоскости поляризации измеряют обычно при 20 0С и стандартной длине волны 589,3 нм (D-линия Na). Один из вариантов закона Био для растворов связывает все эти параметры уравнением

D20=(l), l

длина кюветы, (20) - плотность жидкости при 20 0С. Измерения, как правило, проводят на приборах, называемых поляриметрами.

Поляриметрия широко применяется для исследования строения оптически активных веществ и измерения их концентрации. Оптическая активность эффект второго порядка, получаемый при учёте различия фаз световой волны в разных точках молекулы, который возникает в результате электронных взаимодействий в молекуле. Она чрезвычайно чувствительна к любым изменениям строения вещества и к межмолекулярному взаимодействию, поэтому она может дать ценную информацию о природе заместителей в молекулах (как органических, так и комплексных неорганических соединений), об их конформациях, внутреннем вращении и т.д. На оптическую активность веществ влияют межмолекулярного взаимодействия, которые модно рассматривать в модели молекулы как системы анизотропно поляризующихся атомных групп, между которыми в поле световой волны возникает специфическое электростатическое взаимодействие, индуцирующее дополнительное диполь-дипольное взаимодействие.

Трудности теоретических оценок оптической активности химических соединений определяются неаддитивностью явления, не позволяющей вести расчёты на основе простой схемы, как, например, в случае молекулярной рефракции. Перспективными здесь являются методы поляриметрии, основанные на измерении поляризационных свойств прошедшего через тестируемое вещество квазимонохроматического излучения различных спектральных диапазонов.

1. Поляризация света и связанные с ней явления

1.1 Поляризация света

Поляризация света - одно из фундаментальных свойств оптического излучения, состоящее в неравноправии различных направлений в плоскости, перпендикулярной световому лучу (направлению распространения световой волны). Поляризацией света называются также геометрические характеристики, которые отражают особенности этого неравноправия [13].

Впервые понятие о поляризации света было введено в оптику И. Ньютоном в 1704 г., хотя явления, обусловленные ею, изучались и ранее (открытие двойного лучепреломления в кристаллах Э. Бартолином в 1669 г. и его теоретическое рассмотрение Х. Гюйгенсом в 1678-1690 гг.). Сам термин “поляризация света” предложен в 1808 Э. Малюсом. С его именем и с именами Ж. Био, О. Френеля, Д. Араго, Д. Брюстера и др. связано начало широкого исследования эффектов, в основе которых лежит поляризация света. Существенное значение для понимания поляризации света имело её проявление в эффекте интерференции света. Именно тот факт, что два световых луча, линейно поляризованных под прямым углом друг к другу, при простейшей постановке опыта не интерферируют, явился решающим доказательством поперечности световых волн (Френель, Араго, Т. Юнг, 1816--19). Поляризация света нашла естественное объяснение в электромагнитной теории света Дж. К. Максвелла (1865--73).

Поперечность световых волн выражается в том, что колеблющиеся в них векторы напряжённости электрического поля Е и напряжённости магнитного поля Н перпендикулярны направлению распространения волны. Векторы Е и Н выделяют определённые направления в пространстве, занятом волной. Кроме того, Е и Н почти всегда (об исключениях см. ниже) взаимно перпендикулярны, поэтому для полного описания состояния поляризации света требуется знать поведение лишь одного из них. Обычно для этой цели выбирают вектор Е.

Световая волна, испускаемая отдельно взятым элементарным излучателем (атом, молекула) в единичном акте излучения, всегда поляризована полностью. Но макроскопические источники света состоят из огромного числа элементарных излучателей, что приводит к хаотическому распределению ориентаций вектора E в пространстве. Подобное излучение называется неполяризованным (естественным) светом, а вектор Е, как и всякий вектор, всегда можно представить в виде суммы его проекций на 2 взаимно перпендикулярных направления (выбираемых в плоскости, поперечной направлению распространения света). В естественном свете разность фаз между такими проекциями непрерывно и хаотически меняется. В полностью поляризованном свете эта разность фаз строго постоянна, т. е. взаимно перпендикулярные компоненты Е когерентны. Создав определённые условия на пути распространения естественного света, можно выделить из него поляризованную (полностью или частично) составляющую. Кроме того, полная или частичная поляризация света возникает в ряде природных процессов испускания света и его взаимодействия с веществом.

Полную поляризацию монохроматического света характеризуют проекцией траектории конца вектора Е в каждой точке луча на плоскость, перпендикулярную лучу (рисунок 1.1). В общем случае т. н. эллиптической поляризации такая проекция - эллипс, что связано с постоянством частоты колебаний и разности фаз между взаимно перпендикулярными компонентами Е в монохроматической волне. Для полного описания эллиптической поляризации света необходимо знать направление вращения Е по эллипсу (правое или левое), ориентацию осей эллипса и его эксцентриситет (рис.).

Рисунок 1.1 Колебания проекций вектора Е световой волны в системе координат х, у, z, z - направление распространения волны (а); б и в - мгновенные изображения колебаний

и соответствующей огибающей концов вектора Е в разных точках волны для случая, когда колебания Ex на четверть периода (?) опережают колебания Ey

Рисунок 1.2 Возможные направления вращения вектора E и направления осей эллипса поляризации

Наибольший интерес представляют предельные случаи эллиптической поляризации света - линейная поляризация. В сложных неоднородных световых волнах (например, в металлах или при полном внутреннем отражении, рис) мгновенные направления векторов Е и Н уже не связаны простым соотношением ортогональности, и для полного описания поляризации света в таких волнах требуется знание поведения каждого из этих векторов по отдельности.

Если фазовое соотношение между компонентами Еx и Еу меняется за времена, много меньшие времени измерения поляризации света, нельзя говорить о полной поляризации света. Однако может случиться, что в составляющих пучок света монохроматических волнах Е меняется не совершенно хаотически, а между взаимно перпендикулярными компонентами Е существует некоторый преимущественный фазовый сдвиг (фазовая корреляция), сохраняющийся в течение достаточно длительного времени. Физически это означает, что в поле световой волны одна из компонент вектора Е всегда больше другой (ЕxЕу). Степень подобной фазовой корреляции в таком (частично поляризованном) свете описывают степенью поляризации света р:

где индексы 1 и 2 относятся к интенсивностям I света двух ортогональных поляризаций. Очевидно, что р может меняться от 0 до 100%, отражая все количественные градации состояния поляризации света. Однако следует иметь в виду, что свет, проявляющийся в одних опытах как неполяризованный, в других может оказаться полностью поляризованным - с поляризацией, меняющейся во времени, по сечению пучка или по спектру.

К частичной или полной поляризации света может приводить множество физических процессов. Это, например, отражение и преломление света, при которых поляризация света обусловлена различием оптических характеристик границы раздела двух сред для компонент светового пучка, поляризованных параллельно и перпендикулярно плоскости падения. Свет может поляризоваться при прохождении через среды, обладающие естественной или вызванной внешними воздействиями (индуцированной) оптической анизотропией (вследствие неодинаковости коэффициентов поглощения света при различных состояниях поляризации света, например при правой и левой круговых поляризациях т. н. круговой дихроизм, являющийся частным случаем плеохроизма; вследствие различия преломления показателей среды для лучей различных линейных поляризаций войного лучепреломления. Очень часто полностью поляризовано излучение лазеров; одной из основных причин поляризации света в лазерах является специфический характер вынужденного излучения, при котором поляризации испускаемого фотона и фотона, вызвавшего акт испускания, абсолютно тождественны; таким образом, при лавинообразном умножении числа испускаемых фотонов в лазерном импульсе их поляризации могут быть совершенно одинаковыми. Поляризация возникает при резонансном излучении в парах, жидкостях и твёрдых телах. Поляризация при рассеянии света столь характерна, что её исследование один из основных способов изучения как особенностей и условий самого рассеяния, так и свойств рассеивающих центров, в частности их структуры и взаимодействия между собой. В определённых условиях сильно поляризовано люминесцентное свечение, особенно при возбуждении его поляризованным светом. Поляризация весьма чувствительна к величине напряжённости и ориентации электрических и магнитных полей; в сильных полях компоненты, на которые расщепляются спектральные линии испускания, поглощения и люминесценции газообразных и конденсированных систем, оказываются поляризованными.

1.2 Хроматическая поляризация света

Одним из эффектов интерференции поляризованных лучей света является хроматическая поляризация света, связанная с зависимостью всех интерференционных явлений от длины волны излучения. Она проявляется, в частности, в окрашивании интерференционной картины, возникающей при интерференции белого света.

Обычная схема получения картины хроматической поляризации света в параллельных лучах приведена на рисунке 1.3.

Рисунок 1.3 Схема наблюдения интерференции поляризованных лучей в параллельном световом потоке (N1 поляризатор, N2 анализатор; К пластинка толщиной l, вырезанная из одноосного двулучепреломляющего кристалла параллельно его оптической оси)

В пластинке К, вырезанной из двулучепреломляющего одноосного кристалла параллельно его оптической оси ОО и установленной перпендикулярно пучку, плоскополяризованный луч разделяется на составляющую Ае с колебаниями электрического вектора, параллельными ОО (необыкновенный луч), и составляющую Ао, колебания электрического вектора которой перпендикулярны ОО (обыкновенный луч). Показатели преломления материала пластинки К для этих двух лучей (ne и no) различны, а следовательно, различны скорости их распространения в К, вследствие чего эти лучи, распространяясь по одному направлению, приобретают разность хода.

Поляризатор N1 пропускает лишь одну линейно поляризованную в направлении N1N1 составляющую исходного пучка, анализатор N2 пропускает из каждого луча только его слагающую с колебаниями, лежащими в плоскости его главного сечения N2N2. Если пластинка неоднородна по толщине или по показателю преломления, её участки, в которых эти параметры одинаковы, видны соответственно одинаково тёмными или светлыми либо одинаково окрашенными. Линии одинаковой цветности называют изохромами.

Схема для наблюдения хроматической поляризации света в сходящихся лучах показана на рисунке 1.4 Лучи разного наклона проходят в К разные пути, приобретая разности хода (различные для обыкновенного и необыкновенного лучей). По выходе из анализатора они интерферируют, давая характерные интерференционные картины, показанные на рисунке 1.5.

Рисунок 1.4 Схема наблюдения хроматической поляризации в сходящихся лучах (N1 поляризатор, N2 анализатор; К пластинка толщиной l, вырезанная из одноосного двулучепреломляющего кристалла параллельно его оптической оси; L1, L2 линзы)

Рисунок 1.5 Интерференционные картины хроматической поляризации в сходящихся лучах, когда оптические оси анализатора и поляризатора скрещены (N1N2, см. рисунок 1.4). Cрез кристаллической пластинки К перпендикулярен (а) и параллелен (б) её оптической оси

1.3 Двойное лучепреломление

поляризация свет лучепреломление интерференция

Двойное лучепреломление это явление расщепления пучка света в анизотропной среде на два слагающих, распространяющихся с разными скоростями и поляризованных в двух взаимно перпендикулярных плоскостях. Двойное лучепреломление впервые обнаружено и описано профессором Копенгагенского университета Э. Бартолином в 1669 г. в кристалле исландского шпата. Если световой пучок падает перпендикулярно к поверхности кристалла, то он распадается на два пучка, один из которых продолжает путь без преломления, как и в изотропной среде, другой же отклоняется в сторону, нарушая обычный закон преломления света (рисунок 1.6). Соответственно этому лучи первого пучка называются обыкновенными, второго необыкновенными. Угол, образуемый обыкновенным и необыкновенным лучами, называется углом двойного лучепреломления. Если в случае перпендикулярного падения пучка поворачивать кристалл вокруг пучка, то след обыкновенного луча остаётся на месте, в центре, а след необыкновенного луча вращается по кругу. Двойное лучепреломление можно наблюдать и при наклонном падении пучка света на поверхность кристалла. В исландском шпате и некоторых др. кристаллах существует только одно направление, вдоль которого не происходит двойное лучепреломление. Оно называется оптической осью кристалла, а такие кристаллы одноосными.

Рисунок 1.6 Двойное лучепреломление в одноосном кристалле при перпендикулярном падении пучка света на переднюю грань кристалла

Направление колебаний электрического вектора у необыкновенного луча лежит в плоскости главного сечения (проходящей через оптическую ось и световой луч), которая является плоскостью поляризации. Нарушение законов преломления в необыкновенном луче связано с тем, что скорость распространения необыкновенной волны, а, следовательно, и её показатель преломления nе зависят от направления. Для обыкновенной волны, поляризованной в плоскости, перпендикулярной главному сечению, показатель преломления nо одинаков для всех направлений. Если из точки О (рисунок 1.6) откладывать векторы, длины которых равны значениям nе и nо в различных направлениях, то геометрические места концов этих векторов образуют сферу для обыкновенной волны и эллипсоид для необыкновенной (поверхности показателей преломления).

В прозрачных кристаллах интенсивности обыкновенного и необыкновенного лучей практически одинаковы, если падающий свет был естественным. Выделив диафрагмой один из лучей, получившихся при двойном лучепреломлении, и пропустив его через второй кристалл, можно снова получить двойное лучепреломление. Однако интенсивности обыкновенного и необыкновенного лучей в этом случае будут различны, т. к. падающий луч поляризован. Отношение интенсивностей зависит от взаимной ориентации кристаллов от угла , образуемого плоскостями главных сечений того и другого кристалла (плоскости, проходящие через оптическую ось и световой луч). Если 0° или 180°, то остаётся только обыкновенный луч. При =90°, наоборот, остаётся только луч необыкновенный. При 45° интенсивность обоих лучей одинакова. В общем случае кристалл может иметь две оптических оси, т. е. два направления, вдоль которых двойное лучепреломление отсутствует. В двуосных кристаллах оба луча, появляющиеся при двойном лучепреломлении, ведут себя, как необыкновенные.

Двойное лучепреломление, характеризуемое величиной и знаком n, может быть положительным и отрицательным; в соответствии с этим различают положительные и отрицательные (одноосные) кристаллы

Таблица 1.1 Значения показателей преломления для различных кристаллов

Кристалл

no

neмакс

n=neмаксnо

Исландский шпат

1,65836

1,48639

-0,17197

Кварц

1,5442

1,5533

+0,0091

Каломель

1,9733

2,6559

+0,6826

Натриевая селитра

1,587

1,336

-0,251

Измерение n в тех случаях, когда двойное лучепреломление велико, может быть осуществлено непосредственным определением показателей преломления при помощи призм или специальных кристаллорефрактометров, позволяющих делать измерения n в разных направлениях. Во многих случаях (особенно для тонких слоев анизотропных тел), когда пространственное разделение двух лучей столь мало, что измерить nо и nе невозможно, измерения делаются на основании наблюдения характера поляризации света при прохождении его через слой анизотропного вещества.

Двойное лучепреломление объясняется особенностями распространения электромагнитных волн в анизотропных средах. Электрическое поле световой волны E, проникая в вещество, вызывает вынужденные колебания электронов в атомах и молекулах среды. Колеблющиеся электроны, в свою очередь, являются источником вторичного излучения света. Таким образом, прохождение световой волны через вещество результат последовательного переизлучения света электронами. В анизотропном веществе колебания электронов легче возбуждаются в некоторых определённых направлениях. Поэтому волны с различной поляризацией будут распространяться в анизотропном веществе с разными скоростями. Помимо кристаллов, двойное лучепреломление наблюдается в искусственно анизотропных средах (в стеклах, жидкостях и др.), помещенных в электрическое поле, в магнитное поле, под действием механических напряжений и т. п. В этих случаях среда становится оптически анизотропной, причём оптическая ось параллельна направлению электрического поля, магнитного поля и т. п.

2. Поляризационные устройства и приборы

На многих из перечисленных в разделе явлений основаны принципы действия разнообразных поляризационных приборов, с помощью которых не только анализируют состояние поляризации света, испускаемого внешними источниками, но и получают требуемую поляризацию и преобразуют одни её виды в другие.

2.1 Простейшие поляризационные устройства

В простейших поляризационных устройствах поляризаторах для получения полностью или частично поляризованного света используется одно из трёх физических явлений: поляризация при отражении света или преломлении света на границе раздела двух прозрачных сред; линейный дихроизм; двойное лучепреломление.

Свет, отражённый от поверхности, разделяющей две среды с разными показателями преломления n, всегда частично поляризован. Если же луч света падает на границу раздела под углом, тангенс которого равен отношению абсолютных показателей преломления второй и первой сред.

Их относительный показатель преломления

n=n2/n1

то отражённый луч поляризован полностью. Недостатки отражательных поляризаторов малость коэффициента отражения и сильная зависимость степени поляризации р от угла падения и длины светова. Преломленный луч также частично поляризован, причём его степени поляризации монотонно возрастает с увеличением угла падения. Пропуская свет последовательно через несколько прозрачных плоскопараллельных пластин, можно достичь того, что степень прошедшего света будет значительна.

Среды, обладающие оптической анизотропией, по-разному поглощают лучи различных поляризаций. Если толщина пластинки, вырезанной из анизотропного кристалла (с полосами поглощения в нужной области спектра) параллельно его оптической оси, достаточна, чтобы один из лучей поглотился практически нацело, то прошедший через пластинку свет будет полностью поляризован. Такие поляризаторы называют дихроичными. К ним относятся и поляроиды, поглощающее вещество которых может быть как кристаллическим, так и некристаллическим. Важные преимущества поляроидов компактность, большие рабочие апертуры (максимальные углы раствора сходящегося или расходящегося падающего пучка, при которых прошедший свет ещё поляризован полностью) и практически полное отсутствие ограничений в размере.

Пластинки из оптически анизотропных материалов, вносящие сдвиг фазы между двумя взаимно перпендикулярными компонентами электрического вектора Е проходящего через них излучения (соответствующими двум линейным поляризациям), называют фазовыми, или волновыми, пластинками и предназначены для изменения состояния поляризации излучения. Так, циркулярные или эллиптическимие поляризаторы обычно представляют собой совокупность линейного поляризатора и фазовой пластинки. Для получения света, поляризованного по кругу (циркулярно), применяют фазовые пластинки, вносящую сдвиг фазы в 90° (пластинка четверть длины волны). Двулучепреломляющие фазовые пластинки изготовляют как из материалов с естественной оптической анизотропией (например, кристаллов), так и из веществ, анизотропия которых индуцируется приложенным извне воздействием электрическим полем, механическим напряжением и пр. Применяются также отражательные фазовые пластинки, например ромб Френеля. Принцип их действия основан на изменении состояния поляризации света при его полном внутреннем отражении. Преимуществом отражательных фазовых пластинок перед двупреломляющими является почти полное отсутствие зависимости фазового сдвига от длины волны. В частности, в ромбе Френеля (рисунок 2.1) при близком к нормальному падении луча света, поляризованного линейно под углом 45° к плоскости падения, линейные составляющие луча, поляризованные параллельно и перпендикулярно этой плоскости, при каждом из двух полных внутренних отражений приобретают разность фаз в одну восьмую периода световой волны. Итоговая разность фаз в одну четвертую периода (90°) даёт луч, поляризованный по кругу.

Рисунок 2.1 Ромб Френеля из оптического стекла

Поляризаторы, действие которых основано на явлении двойного лучепреломления поляризационные призмы рассмотрены в разделе 2.2. Их апертуры меньше, чем у поляроидов, а габариты, вес и стоимость больше; однако они всё же незаменимы в ультрафиолетовой области спектра и при работе с мощными потоками оптического излучения.

Все поляризаторы (линейные, циркулярные, эллиптические) могут использоваться не и как поляризаторы, и как анализаторы. Анализ эллиптически поляризованного света производят с помощью компенсаторов разности хода, простейшим из которых является четвертьволновая фазовая пластинка.

Часто проблему деполяризации частично поляризованного излучения обычно решают не истинной деполяризацией (это сложная задача), а сводят её к созданию тонкой пространственной, спектральной или временной поляризационной структуры светового пучка.

2.2 Приборы для поляризационно-оптических исследований

В настоящее время существует множество приборов для поляризационно-оптических исследований, которые отличает чрезвычайное разнообразие как сфер применения, так и конструктивного оформления и принципов действия. Их используют для фотометрических и пирометрических измерений, кристаллооптических исследований, изучения механических напряжений в конструкциях, в микроскопии, в поляриметрии и сахариметрии, в скоростной фото- и киносъёмке, геодезических устройствах, в системах оптической локации и оптической связи, в схемах управления лазеров, для физических исследований электронной структуры атомов, молекул и твёрдых тел и др. Описанию многих из этих приборов посвящены отдельные работы. Мы дадим лишь краткий обзор некоторых основных классов подобных приборов.

Элементом большинства поляризационных приборов является схема, состоящая из последовательно расположенных на одной оси линейного поляризатора и анализатора. Если их плоскости поляризации взаимно перпендикулярны, схема не пропускает света (установка на гашение). Изменение угла между этими плоскостями приводит к изменению интенсивности проходящего через систему света по Малюса закону (пропорционально квадрату косинуса угла). Особое удобство этой схемы для сравнения и измерения интенсивностей световых потоков обусловило её преимущественное применение в фотометрических поляризационных приборов фотометрах и спектрофотометрах (как с визуальной, так и с фотоэлектрической регистрацией). Поляризационные приборы представляют собой основные элементы оборудования для кристаллооптических и иных исследований сред, обладающих оптической анизотропией естественной или наведённой. При таких исследованиях широко применяются поляризационные микроскопы, позволяющие на основе визуальных наблюдений делать выводы о характере и величине оптической анизотропии вещества. Для прецизионного анализа оптической анизотропии и её зависимости от длины волны излучения применяются автоматические приборы с фотоэлектрической регистрацией. Практически всегда при количественном анализе анизотропии требуется сопоставить оптические свойства среды для двух ортогональных поляризаций линейных, если измеряется линейный дихроизм или линейное двулучепреломление, и круговых при измерении дихроизма или вращения плоскости поляризации. Это сопоставление в электронной схеме прибора производится на достаточно высокой частоте, удобной для усиления сигнала и подавления шумов. Поэтому поляризационные приборы такого назначения часто включают поляризационный модулятор.

Поляризационные приборы служат для обнаружения и количественного определения степени поляризации частично поляризованного света. Простейшими из них являются полярископы -- двулучепреломляющие пластинки, в которых используется интерференция света в сходящихся поляризованных лучах (хроматическая поляризация). Типичный полярископ полярископ Савара, который состоит из двух склеенных пластинок кристаллического кварца одинаковой толщины d, вырезанных так, что их оптические оси составляют с осью полярископа углы в 45° (пластинка Савара), и жестко связанного с ней анализатора, плоскость поляризации которого направлена под углом 45° к главным сечениям этой пластинки.

Чрезвычайно существенную роль в химических и биофизических исследованиях играет обширный класс приборов, служащий для измерения вращения плоскости поляризации в средах с естественной или наведённой магнитным полем оптической активностью поляриметры?и дисперсии этого вращения спектрополяриметры). Относительно простыми, но практически очень важными являются сахариметры ?приборы для измерения содержания сахаров и некоторых других оптически активных веществ в растворах.

Самые точные из полярископов позволяют обнаружить примесь поляризованного света к естественному, составляющую доли процента.

В качестве примера рассмотрим один из простейших круговых поляриметров поляриметр СМ-3, который предназначен для определения угла поворота плоскости поляризации в жидких оптически активных веществах (его оптическая схема показана на рисунке 2.2).

Рисунок 2.2 Опическая схема поляриметра СМ-3

Осветитель 1 (лампа накаливания или натриевая лампа ДНаО140) устанавливается в фокальной плоскости оптической системы 8. В конструкции узла осветителя предусмотрены подвижки для установки нити накала лампы на оптической оси. При работе с лампой накаливания перед оптической системой 3 вводится желтый светофильтр 2. Параллельный монохроматический пучок лучей, выходящий из системы 3, проходит через поляризатор 4 (поляроид, заклеенный между двумя стеклами), кварцевую пластинку 5, создающую совместно с поляроидом полутеневую картину с тройным полем зрения, и кварцевую кювету 6 с исследуемым раствором. Обычно длина кюветы выбирается такой, чтобы концентрации 103 кг/см3 соответствовал угол поворота плоскости поляризации ?=1. После кюветы расположен анализатор 7, аналогичный поляризатору 4, и телескопическая система, состоящая из объектива 10 и окуляра 11, через который ведется наблюдение при уравнивании освещенностей частей поля зрения. Отсчет осуществляется по градусной шкале 8 неподвижного лимба (с оцифровкой от 0 до 360) с помощью двух диаметрально противоположных нониусов 9 (шкалы нониусов имеют по 20 делений; цена одного деления 0,05). Из показаний двух нониусов берут среднее значение (для учета эксцентриситета лимба). Отсчет снимается при наблюдении лимба и нониуса через лупы 12.

Достаточно просто устроен полярископ-поляриметр ПКС-56 (рисунок 2.10). Он состоит из источника света 1 (лампа накаливания), матового стекла 2, поляризатора 3 (поляроид, вклеенный между стеклами), четвертьволновой пластинки 5, анализатора 6 и светофильтра 7 (максимум пропускания при 0.54 мкм). Порядок измерения на приборе следующий: скрещивают поляризатор и анализатор (отсчет по лимбу анализатора 0, поле зрения темное); устанавливают образец 4 (если он обладает двойным лучепреломлением, то в поле зрения наблюдается просветление); поворачивают анализатор до максимального потемнения в середине образца; по лимбу отсчитывают угол поворота анализатора.

Рисунок 2.3 Опическая схема полярископа-поляриметра ПКС-56 (пояснения в тексте)

Определив , можно определить none из соотношения

(1.4)

где l -- толщина образца. При l=10 мм погрешность измерения none составляет 3107. С увеличением l погрешность уменьшается.

Несколько более сложную схему имеет малогабаритный поляриметр ИГ-86 (рисунок 2.4), предназначенный для визуального исследования напряженного состояния изделий с помощью оптически чувствительных покрытий. Он позволяет наблюдать интерференционную картину в условиях плоской и круговой поляризации и измерять оптическую разность хода как методом сопоставления цветов, так и компенсационным методом.

Рисунок 2.4 Оптическая схема малогабаритного поляриметра ИГ-86

Источник света 1 (лампа СЦ-61) размещен в фокусе объектива 3. Защитные стекла 2, 7 и 12 предохраняют прибор от попадания в него загрязнений. Параллельный пучок лучей проходит поляризационный светофильтр (поляризатор 4), полупрозрачное зеркало 8 и, отразившись от светоделительного слоя, падает на оптически чувствительное покрытие 6, нанесенное на исследуемый объект 5. После отражения от покрытия свет попадает в анализаторный узел прибора, проходит компенсатор 9, анализатор 10 и попадает в зрительную трубу (сменное увеличение 2 и 10) со шкалой в совмещенной фокальной плоскости объектива 11 и окуляра 13. Перед глазной линзой окуляра и выходным зрачком 15 устанавливается светофильтр 14. Такая оптическая схема получила наименование Т-образной схемы. Предел измерения оптической разности хода от 0 до 5 интерференционных порядков. Погрешность измерения 0.05 интерференционных порядков.

Схема типичного фотоэлектрического модуляционного поляриметра, позволяющего измерять меняющуюся во времени разность фаз о- и е-лучей, показана на рисунке 2.5.

Рисунок 2.5 Оптическая схема фотоэлектрического модуляционного поляриметра

Лучистый поток источника света 1 сверхвысокого давления проходит через иитерференционный светофильтр 2, поляризатор 3 и исследуемый объект 4, ориентированный так, что направления колебаний в о- и е-лучах составляют углы /4 с направлением колебаний в луче, вышедшем из поляризатора. Выходящий из объекта 4 эллиптически поляризованный свет попадает на пластину 5, изготовленную из одноосного кристалла (например, кристалла ADP дигидрофосфата аммония NH4H2PO4, вырезанную так, что ее плоскости перпендикулярны оптической оси) позволяющего реализовать эффект Поккельса и обеспечить модуляцию проходящего светового потока. При приложении к пластине 5 переменного электрического напряжения в направлении, параллельном оси лучистого потока и оптической оси кристалла, последний становится двухосным. Новые оптические оси образуют симметричные углы /4 с прежним направлением оси, а проходящий через нее свет претерпевает двойное лучепреломление. Возникающая при этом разность фаз пропорциональна напряжению электрического поля и не зависит от толщины пластины 5. В связи с возникающей переменной разностью фаз эллиптически поляризованный свет периодически меняет форму эллипса поляризации. В результате на выходе компенсатора 6 плоскость линейно поляризованного света колеблется относительно среднего положения. После анализатора 11 модулированный поток света попадает на фотодетектор 10, сигнал с которого с основной частотой, соответствующей первой гармонике, поступает в усилитель 8 и приводит в действие сервомотор 9, поворачивающий анализатор 1l до тех пор, пока первая гармоника присутствует в сигнале. Остановка соответствует положению анализатора, при котором на фотодетектор падает минимальный поток излучения. Регистрирующее устройство 7 (например, самописец) фиксирует углы поворота анализатора, причем измеряемая разность фаз равна удвоенному углу поворота анализатора.

Заключение

Поляриметрия широко применяется для исследования оптически активных веществ. Методами поляриметрии анализируются атмосфера и океаны, различные объекты окружающей среды, промышленные изделия и продукты переработки предприятий. Эффективно эти методы используется в электронной промышленности, в медицине, биологии, криминалистике и т.д. Большое значение они имеют в аналитическом контроле окружающей среды и решении экологических проблем.

В данной работе рассмотрены основные характеристики поляризованного излучения, методы поляриметрии и типовое оборудование. В то же время имеется ряд особенностей исследования оптической активности химических соединений, что связано с неаддитивностью явления, не позволяющей вести расчёты на основе простой схемы, как, например, в случае молекулярной рефракции. Перспективными здесь являются методы поляриметрии, основанные на измерении поляризационных свойств прошедшего через тестируемое вещество квазимонохроматического излучения различных спектральных диапазонов.

Библиографический список

Ландсберг Г. С. Оптика.- М.: Наука, 1976.- 928 с.

Шерклифф У. Поляризованный свет.- М.: Мир, 1965. 322 с.

Шишловский А. А., Прикладная физическая оптика.- М.: Наука, 1961.- 340 с.

Васильев Б. И. Оптика поляризационных приборов.- М.: Наука, 1969.- 364 с.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие и содержание научной картины мира; предъявляемые к ней требования, тенденции и направления изменений, современное состояние и перспективы. Переход научных исследований от менее высокого уровня к более высокому и связанные с этим тенденции.

    реферат [24,7 K], добавлен 26.06.2012

  • Общелогические методы как особые приемы мыслительной деятельности, которые распространяются на любой познавательный процесс. Сущность эмпирического уровня научного познания. Специфические особенности применения индукции в философских исследованиях.

    контрольная работа [71,4 K], добавлен 25.08.2017

  • Научная проблема: понятие, тема, критерии качества. Метод: сущность и понятие. Классификация методов исследований и их краткая характеристика. Требования, предъявляемые к научным методам. Преимущества маркетинговой информации и исследований в туризме.

    лекция [91,6 K], добавлен 02.10.2013

  • Светочувствительность. Эффект собственного лучеиспускания. Отражение света. Эйнштейн и его тождество между энергией и массой материи. Дилеммы "вещество и пустота-пространство" и "энергия и пустота-пространство". Математическая условность - ноль.

    реферат [32,7 K], добавлен 15.07.2008

  • Понятие атомизма. Механический атомизм. Предпосылки для создания более высокого уровня развития атомизма. Квантовая теория строения атома. Существенные особенности атомизма ХХ в. Корпускулярно-волновой дуализм света и вещества. Элементарные частицы.

    реферат [37,1 K], добавлен 21.12.2008

  • Сущностная черта отечественной ментальности - органическая целостность содержания духовной культуры. Реализм и интуитивизм русских философов. Познание, в трактовке Лосского, - процесс пребывания субъекта в потоке жизни. Причины возникновения позитивизма.

    статья [26,2 K], добавлен 29.06.2013

  • Принципы, лежащие в основании мировоззрения и являющиеся способами материального становления света, тверди и неба. Время как образ вечности. Пространство как образ предела. Структура как образ сочетания распределенных процессов в единстве творения.

    реферат [25,8 K], добавлен 02.06.2010

  • История развития научного познания. Общая классификация методов научных исследований. Структура и содержание исследовательского процесса. Применение логических законов и правил аргументирования. Оформление результатов научно-исследовательской работы.

    курс лекций [153,7 K], добавлен 16.02.2011

  • Качество и эффективность исследований, основные критерии его эффективности и рациональности: научной новизны, практической значимости, актуальности. Методы определения новизны результатов исследований: эталонного сравнения, информационный метод.

    реферат [17,5 K], добавлен 25.12.2011

  • Наука - динамическая система знаний, раскрывающая тенденции, закономерности и новые явления в обществе и природе с целью применения в практической деятельности. Средства научных исследований. Этапы инновации. Структура предмета изучения. Сущность знания.

    презентация [315,1 K], добавлен 02.10.2013

  • Основные определения парадигмы, процесс ее формирования и функционирования. Ознакомление со структурой и характерными чертами дисциплинарной матрицы Куна. Изучение проблем номинации и дефиниции. Интегральный подход в рассмотрении явления парадигмы.

    реферат [891,8 K], добавлен 19.02.2012

  • Субъективно-идеалистические направления сущности. Процесс познания сложных систем в природе. Основные характеристики системности как атрибута материи. Воззрения Маха и Авенариуса. Адекватные и неадекватные явления. Сущность инженерной деятельности.

    контрольная работа [40,4 K], добавлен 06.01.2014

  • Научный факт, отражение конкретного явления в человеческом сознании. Проблемы при осмыслении необъяснимых фактов. Научная гипотеза, идея, главные элементы теории. Процесс постижения закона, научное наблюдение. Развитие современного естествознания.

    реферат [19,1 K], добавлен 12.03.2011

  • Проблема пифагореизма в научной литературе XIX-XX вв. Сущность этого учения как комплексного явления, которое впитало в себя эллинское античное мировоззрение. Анализ шаманизма как религиозно-культурного явления, его роль в пифагорейских культах и учениях.

    дипломная работа [105,5 K], добавлен 29.10.2013

  • Философия как наука о всеобщем, проведение анализа явления до обнаружения исходного (всеобщего) свойства. Определение свободы с точки зрения философии. Основные элементы в структуре явления свободы. Сущность свободы человека с точки зрения диалектики.

    реферат [19,3 K], добавлен 23.09.2012

  • Синергетика как направление и научная программа исследований, изучающих процесс самоорганизации и становления упорядоченных структур в сложных динамических системах, закономерности и принципы; бифуркации и флуктуации, конструктивное переосмысление хаоса.

    реферат [46,3 K], добавлен 25.11.2010

  • Понятие рационализма как философского направления, его основные идеи и история развития. Место в становлении западноевропейского рационализма Декарта, формулировка основных правил дедуктивного метода исследований. Методы научного познания в гносеологии.

    контрольная работа [22,3 K], добавлен 27.08.2009

  • Критерии оценки осмысленности доводов, на которых базируется суждение. Пути отсева ложных доводов на основе оценки внутренних и внешних факторов. Проблема разрешимости, анализ влияния опыта субъекта на процесс достижения конечной разрешимости явления.

    реферат [23,9 K], добавлен 16.02.2011

  • Философия – знание об общих законах бытия и познания. Философские методы и соответствующие им концепции развития. Главные принципы и категории диалектики. Взаимосвязь сущности и явления. Сущность и положения метафизического и синергетического подходов.

    контрольная работа [26,4 K], добавлен 26.08.2011

  • Краткая биографическая справка из жизни Ф.В.Й. Шеллинга. Фундаментальные принципы и идеи натурфилософии. Принцип развития через поляризацию. Идея единства магнетизма, электричества и химических процессов. Идея развёртывания противоположных сил в природе.

    реферат [17,7 K], добавлен 13.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.