Категория понятие
Определение термина "понятие" и его виды: абстрактное и конкретное. Понятие равнообъемности, дополнительности и пересечения, возникновение подчинения. Основные операции над понятиями: объединение, вычитание, симметрическая разность, дополнение и др.
Рубрика | Философия |
Вид | реферат |
Язык | русский |
Дата добавления | 10.05.2015 |
Размер файла | 971,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Федеральное государственное бюджетное образовательное учреждение высшего образования
«Российский государственный аграрный университет - МСха имени К.А. Тимирязева»
(ФГБОУ ВО ргау - МСХА имени К.А. Тимирязева)
Экономический факультет
РЕФЕРАТ
По дисциплине: «Логика»
На тему: «Категория понятие»
Выполнила: студентка 1 курса 103 группы
Беляшкина К. Р.
Проверила: Шиповская Л. П.
Москва, 2015
Оглавление
- Введение
- 1. Классификация понятий
- 2. Отношения между понятиями
- 3. Равнообъёмность
- 4. Подчинение
- 5. Пересечение
- 6. Дополнительность
- 7. Противоречие
- 8. Соподчинение
- 9. Операции над понятиями
- 10. Пересечение
- 11. Объединение
- 12. Вычитание
- 13. Симметрическая разность
- 14. Дополнение
- 15. Ограничение
- 16. Обобщение
- 17. Деление
- 18. Классификация
- Заключение
- Список литературы
Введение
Понямтие -- отображённое в мышлении единство существенных свойств, связей и отношений предметов или явлений; мысль или система мыслей, выделяющая и обобщающая предметы некоторого класса по определённым общим и в совокупности специфическим для них признакам.
Скорее всего, немногие люди задумываются над тем, что они мыслят и рассуждают с помощью понятий. Понятия подобны воздуху: мы их не замечаем, но при этом не можем без них размышлять. Каждый ребенок естественно научается думать с их помощью в семь-восемь лет, переходя от оперирования с конкретными предметами к оперированию с идеями. Тем не менее, это не означает, что каждый умеет правильно ими пользоваться, а ведь без этого умения путь к логичному рассуждению закрыт. Поэтому в своей работе я рассмотрю , что такое понятие, какие бывают виды понятий, как разные понятия соотносятся друг с другом и как с ними правильно обращаться.
Понятия суть «сокращения, в которых мы охватываем, сообразно их общим свойствам, множество различных чувственно воспринимаемых вещей» (Ф. Энгельс), а также нечувственных объектов, таких как другие понятия. Понятие не только выделяет общее, но и расчленяет предметы, их свойства и отношения, классифицируя последние в соответствии с их различиями. Так, понятие «человек» отражает и существенно общее (то, что свойственно всем людям), и отличие любого человека от всего прочего.
1. Классификация понятий
В быту, да и в науке, значение слова «понятие» может отличаться от его значения в философии или формальной логике.
Понятие считается составным, если оно опирается на другие понятия, и элементарным в противном случае (например: «Элементарные понятия статистики»)
Понятия можно разделить на абстрактные и конкретные, и, в каждом из них, на эмпирические и теоретические.
Понятие называется эмпирическим, если оно выработано на основе непосредственного сравнения общих свойств некоторого класса наличествующих (доступных для изучения) объектов или явлений, и теоретическим, если оно выработано на основе опосредованного анализа некоторого класса явлений (или объектов) при помощи ранее выработанных понятий, концепций и формализмов.
Понятие называется конкретным, если оно относится к определённому объекту окружающего мира, и абстрактным, если оно относится к свойствам широкого класса объектов.
Название любого материального предмета одновременно является конкретным эмпирическим понятием. К конкретным теоретическим понятиям следует отнести, в частности, государственные законы.
Абстрактные эмпирические понятия отражают принятый стиль мышления или суждений, например: «В контексте логотерапии понятие духовного не имеет религиозной окраски и относится к собственно человеческому измерению существования».
К абстрактным эмпирическим понятиям можно отнести, в частности, неписаный и порой довольно расплывчатый кодекс поведения какой-либо социальной группы (зачастую приблатнённой или даже уголовной), который в общих чертах определяет, какие действия считаются «правильными» или «неправильными»). Чтобы увидеть разницу между теоретическими и эмпирическими понятиями, сравните 2 фразы:
«Приговоры… выносились в соответствии с действовавшими в те времена законами»
«Приговоры… выносились в соответствии с действовавшими в те времена понятиями»
Абстрактные теоретические понятия приняты в физике, например: «Перейдем к изложению основных понятий классической механики. Для простоты, мы будем рассматривать только материальную точку, то есть тело, размером которого можно пренебречь…» (Википедия, Классическая механика).
В более специфических случаях понятие считается конкретным (хотя может оставаться вполне теоретическим), например: "Электрон -- стабильная элементарная частица с зарядом ?1.6021892(46)Ч10?19 Кл, массой 9.109554(906)Ч10?31 кг и спином 1/2. ".
2. Отношения между понятиями
Понятия не изолированы друг от друга, наоборот, они находятся во множестве связей с другими понятиями. Умение выявлять эти связи очень важно, так как оно позволяет выявить, когда наш собеседник или автор текста ошибается в употреблении понятий или даже осознанно ими манипулирует. Примерами такой манипуляции могут послужить использование понятий, объёмы которых не равны, как взаимозаменяемых, незаметный переход к понятию с меньшим объёмом для облегчения доказательства своей позиции и т.д.
Прежде чем выяснять, в каком отношении находятся два понятия, нужно определить, сравнимы ли они вообще или нет. Грубо говоря, понятие «собаки» и понятие «натуральные числа» ни в каком отношении находиться не могут, потому что они отсылают к разным универсумам рассмотрения: в первом случае животных, а втором - чисел. Хотя если, например, наш универсум рассмотрения - это вещи, которыми интересуются люди, то эти два понятия становятся сравнимы, так как люди интересуются и тем, и другим. Таким образом, прежде чем сравнивать понятия, нужно убедиться, что они, фигурально выражаясь, имеют один знаменатель - отсылают к одному универсуму.
Логики делят отношения между понятиями на фундаментальные и производные. Фундаментальные отношения первичны, с помощью их различных комбинаций можно задать все остальные отношения. Всего выделяют три фундаментальных отношения: совместимость, включение и исчерпывание.
Понятия совместимы, если пересечение их объёмов непусто. Соответственно, если пересечение их объёмов пусто, то понятия несовместимы.
Понятие А включается в понятие В, если каждый элемент объёма А также является элементом объёма В.
Понятия находятся в отношении исчерпывания, если и только если каждый предмет из универсума рассмотрения является элементом объема либо первого, либо второго понятия.
В результате комбинирования этих фундаментальных отношений можно задать пятнадцать производных отношений между понятиями. Мы расскажем только о тех из них, которые оперируют с непустыми и неуниверсальными понятиями. Их всего шесть.
3. Равнообъёмность
Равнообъёмность - это отношение, при котором объёмы двух понятий полностью совпадают.
При равнообъёмности понятия А и В живут в одном кружочке. Примером может служить пара понятий: «треугольник с равными сторонами» и «треугольник с равными углами». Оба этих понятия обозначают одну и ту же совокупность объектов.
4. Подчинение
Подчинение возникает тогда, когда объём одного понятия полностью входит в объём другого понятия.
Кружочек В полностью располагается в кружочке А, и при этом кружочек А больше чем В по объёму, то есть в А входят объекты, которые не входят в В. Иллюстрация подчинения - отношения между понятиями «цитрусовые фрукты» (А) и «апельсины» (В).
равнообъемность подчинение дополнительность пересечение
5. Пересечение
Пересечение - это отношение, при котором объёмы понятий пересекаются, но полностью не совпадают.
Пример пересечения - отношение между понятиями «женщины» и «руководители». Существуют люди, которые обладают и первой и второй характеристикой.
6. Дополнительность
Дополнительность - это такое отношение, когда два понятия пересекаются и при этом исчерпывают собой весь универсум рассмотрения.
Я специально изобразила понятия А и В разными цветами, чтобы было видно, что кружок в центре - это не отдельное понятие, а результат их пересечения. Отношение дополнительности существует, например, между понятиями «температура выше 0°С» и «температура ниже 30°С». Объёмы этих понятий пересекаются, и при этом объём их сложения равен объёму универсума рассмотрения.
7. Противоречие
Противоречие - это отношение, при котором объёмы понятий не пересекаются и исчерпывают весь универсум.
Если, к примеру, универсум рассмотрения - это люди, то А может быть понятием «работающие», а В - «безработные». Каждый человек может быть либо работающим, либо безработным, но не ими вместе и не чем-то третьим.
8. Соподчинение
Соподчинение возникает, когда объёмы понятий не пересекаются, но при этом не исчерпывают собой весь универсум рассмотрения.
Оба понятия находятся в отношении подчинения к какому-то третьему понятию - в данном случае всему универсуму рассмотрения. Предположим, что универсум рассмотрения - это животные. Тогда понятие А - «ящерицы», понятие В - «кошки». И ящерицы, и кошки - это животные. Объёмы этих понятий не пересекаются. При этом объём универсального понятия «животные» содержит множество не подпадающих под А и В элементов.
9. Операции над понятиями
Главная цель операций над понятиями - образование нового понятия, со своим собственным объёмом и содержанием, из имеющихся других или более понятий. Основные операции, совершаемые над понятиями, называются булевыми операциями. Такое наименование они получили в честь английского математика и логика Дж. Буля, который разработал своеобразную логическую математику. Правда, операции, совершаемые над понятиями, похожи на те операции, которые мы научились выполнять с числами в начальной школе. К ним относятся: пересечение, объединение, вычитание, симметрическая разность, дополнение.
10. Пересечение
Пересечение понятий - это операция, в ходе которой берутся два или более понятий и как бы накладываются друг на друга. В результате в месте пересечения их объёмов образуется новое понятие, элементами которого будут те предметы, которые одновременно обладают отличительными признаками всех пересечённых понятий.
Результат пересечения - заштрихованная область. Например, если мы возьмём понятие «полицейские» и понятие «коррупционеры» и произведём над ними операцию пересечения, то в заштрихованной области окажутся только те люди, которые одновременно являются и полицейскими и коррупционерами. Так мы образовали новое понятие «полицейские-коррупционеры». Как видно, операция пересечения базируется на отношении пересечения. Это означает, что, если два понятия находятся в отношении пересечения, то мы легко можем образовать с их помощью новое понятие.
11. Объединение
Объединение понятий подобно сложению: мы берём несколько понятий, соединяем их объёмы и тем самым образуем новое понятие, элементами которого будут те предметы, которые обладают хотя бы одним из отличительных признаков объединённых понятий.
Для иллюстрации мы можем взять понятия «курильщики» и «люди, употребляющие алкоголь» и посредством объединения образовать понятие «люди, которые курят или употребляют алкоголь». В данном случае под понятие будут подпадать не только те люди, которые одновременно и курят, и пьют, но все те, кто обладает хотя бы одной из этих вредных привычек. Поэтому мы заштриховали оба кружочка.
12. Вычитание
Вычитание понятий опять же очень похоже на математическое вычитание. При вычитании берётся два или более понятий и из объёма одного отнимаются объёмы оставшихся. Таким образом, образуется новое понятие, элементами объёма которого будут предметы, обладающие отличительным признаком первого понятия, но не обладающие отличительными признаками тех понятий, которые из него вычитались.
Предположим, что понятие А - это «люди, страдающие диабетом», понятие В - «люди, страдающие избыточным весом». Если мы вычитаем понятие В из понятия А, то мы получаем новое понятие «люди, страдающие диабетом, но не имеющие избыточного веса». Оно показано заштрихованной областью.
13. Симметрическая разность
Симметрическая разность - это операция, в некотором смысле обратная пересечению. Нужно точно также взять два или более понятий, наложить их друг на друга, но новое понятие, образованное в результате этого наложения, будет содержать только те элементы, которые обладают не более чем одним отличительным признаком изначальных понятий.
Заштрихованная область показывает это новое понятие. Предметы, подпадающие под это понятие должны обладать признаком А или В, но не ими вместе. Пусть А - это понятие «врач», В - «мужчина». Тогда получаем следующее понятие: «быть врачом, но не быть мужчиной, либо быть мужчиной, но не быть врачом».
14. Дополнение
Дополнение - это операция, в ходе которой берётся понятие, а затем его объём как бы вычитается из всего универсума рассмотрения. Так создаётся новое понятие, элементами которого будут только те предметы, которые не обладают отличительным признаком изначально взятого понятия.
Новое понятие А' - дополнение к понятию А. Если универсум нашего рассмотрения - это животные, понятие А - «млекопитающие», то А' - «животные, не являющиеся млекопитающими». Операцию дополнения не нужно путать с отношением дополнительности.
Помимо булевых операций над понятиями можно проводить ещё целый ряд операций: ограничение, обобщение, деление.
15. Ограничение
Ограничение - это операция, представляющая собой как бы сужение понятия. Ограничить понятие А означает перейти к понятию В, такому что его объём будет строго включаться в объём понятия А. Причём этот переход от А к В представляет собой переход от родового понятия к видовому.
Как видно из картинки, в результате ограничения кружочек, представляющий объём понятия, становится меньше. Мы ограничиваем понятие А до понятия В, а затем - понятие В до понятия С. Можно предположить, что понятие А - это «рыбы». Мы можем ограничить его до понятия В - «акулы». Объём понятия А шире, так как рыбы бывают разные, они включают много видов - не только акул. При этом объём понятия В полностью включается в объём понятия А, потому что все акулы - это рыбы. Понятие «акулы» можно ограничить до понятия С - «белые акулы». Опять же понятие «белые акулы» полностью входит в понятие «акулы», но меньше его по объёму. Пределом ограничения понятия выступает единичное понятие. На нашем рисунке оно представляло бы точку в центре, которую уже нельзя сузить.
Операция ограничения понятий нередко сопровождается ошибками. Чаще всего они связаны с тем, что ограничение понятий путают с членением предметов, то есть понятие ограничивают не на основании родовидовых признаков, а на основании тех частей, на которые разделяются элементы их объёмов. Например, возьмём понятие «автомобили». По родовидовым признакам мы можем ограничить его до понятий «автомобили с ручной коробкой передач» или «электромобили». И это правильное ограничение. Однако автомобиль состоит из множества компонентов: фары, колёса, руль, дворники, двигатель и т.д. Поэтому можно встретить такой вариант: понятие А - «автомобили» ограничивают до понятия В - «колёса». Хотя колёса - это часть автомобиля, такое ограничение неверно. Существует лёгкий способ избежать этой ошибки. При правильном ограничении понятия А до понятия В, должно быть верным высказывание «Все В есть А»: «Все акулы - это рыбы», «Все электромобили - это автомобили». Если мы применяем эту формулу к автомобилям и колёсами, получается: «Все колёса - это автомобили». Высказывание неверно, значит, операция ограничения была проведена неправильно.
16. Обобщение
Обобщение - это операция, обратная ограничению. На этот раз мы не сужаем, а расширяем понятие. Обобщить понятие В означает перейти к понятию А, так что объём понятия В будет строго включаться в объём понятия А. Здесь совершается переход от видового понятия к родовому.
Понятие С, представленное самым маленьким кружочком, мы обобщаем до понятия В, которое в свою очередь мы можем ещё обобщить до понятия А, причём С полностью включается в В, и В полностью включается в А. Пусть С - это понятие «золото», тогда мы можем обобщить его до понятия В - «металлы», а понятие В - до понятия А - «химические элементы». Предел обобщения - это универсальное понятие, то есть понятие, объём которого совпадает с универсумом рассмотрения. В нашем примере понятие «химические элементы» как раз может быть рассмотрено как универсальное.
Операция обобщения понятий может быть подвержена той же самой ошибке, что и ограничение: часто люди обобщают понятия на основании не родовидовых признаков, а составных частей. В частности, понятие «крылья» обобщают до понятия «птицы», что неверно. Способ проверки тот же самый: посмотреть правильным ли будет утверждение «Все В есть А». Очевидно, что утверждение «Все крылья - это птицы» некорректно.
17. Деление
Деление - это операция, состоящая в том, что берётся понятие, выделяется какая-то характеристика и на основе варьирования этой характеристики исходное понятие делится на несколько частей, в результате чего получается набор новых понятий. Исходное понятие называют делимым понятием. Те понятия, которые образуются после деления - членами деления. Характеристику, на основе которой осуществляется деление - основанием деления.
Весь кружочек - это объём понятия делимого понятия А. В, С, Dи Е - члены деления, то есть понятия, образованные в результате деления понятия А. Для иллюстрации предположим, что понятие А - это «месяцы». Основание деления - это принадлежность к времени года. Тогда новообразовавшиеся понятия В, С, D и Е - это «зимние месяцы», «весенние месяцы», «летние месяцы» и «осенние месяцы». Очевидно, что в результате деления может получаться разное количество понятий: всё зависит от делимого понятия и основания деления.
Существует два вида деления: дихотомическое деление и деление по видоизменению основания. Слово «дихотомический» дословно переводится с греческого как «деление надвое». При его осуществлении исходное понятие делится всего лишь на два новых понятия. Выбирается какое-либо основание деления, то есть признак, и в зависимости от наличия или отсутствия этого признака все элементы объёма разделяются на две части. Пусть делимым понятием будет понятие «люди», основанием деления - наличие высшего образования. В таком случае наше исходное понятие будет разделено на два: «люди, имеющее высшее образование» и «люди, не имеющие высшего образования». Другой пример: возьмём понятие «собаки», основание деления - породистость. В результате дихотомического деления получаем понятия: «породистые собаки», «беспородные собаки».
Второй вид деления - деление по видоизменению основания. В его результате мы можем получить более двух новых понятий. Здесь в качестве основания выбирается какая-либо предметно-функциональная характеристика элементов объёма исходного понятия. В нашем примере с месяцами такой характеристикой была принадлежность к времени года. Если наше делимое понятие - это «люди», то можно в качестве основания деления взять цвет глаз, цвет волос, национальность и т.п. Если делимое понятие - «стихотворения», то основанием деления может быть их жанровая принадлежность. Для иллюстрации возьмём понятие «игральные карты», а основанием деления сделаем масть:
18. Классификация
Классификация. Операция деления лежит в основе составления классификаций и типологий. Классификация осуществляется посредством последовательного деления понятия на его виды, видов - на подвиды и т.д. Классификация, прежде всего, важна в научном познании. Она может выступать как результатом изучения какой-то предметной области (всеобщая классификация растений и животных Карла Линнея), так и двигателем исследований (периодическая таблица химических элементов Менделеева). Кроме того, классификации очень важны в обучении: люди гораздо легче воспринимают информацию, если она разложена по полочкам. Часто даже сами того не замечая, мы пользуемся классификациями и в повседневной жизни: ранжирование сотрудников в офисе, организация одежды в шкафу, распределение товаров по отделам в магазине - вот только несколько примеров.
Правильно выполненная классификация подобна перевёрнутому дереву (на мой взгляд, скорее, перевёрнутому кусту). Вершина классификации - исходное делимое понятие - называется корнем. Линии, расходящиеся от неё, подобны веткам. Они ведут к членам деления, от которых в свою очередь также расходятся ветки к новым понятиям. Каждое понятие в классификации называют таксоном. Таксоны группируются по ярусам. На первом ярусе находится корень классификации А. На втором ярусе - таксоны В1-Вn, образованные с помощью первой операции деления. На третьем ярусе - таксоны С1-Сn, образованные в результате второй операции деления и т.д. Каждый ярус может содержать любое количество таксонов.
При построении классификаций используются оба вида деления: и дихотомическое, и по видоизменению основания. При этом они могут соседствовать даже в одной классификации. Дело в том, что внутри классификации каждая отдельная операция деления может производиться по своему собственному основанию. Приведём пример. Возьмём в качестве корня классификации понятие «писатели», основание деления - являлся ли писатель русским или нет. Соответственно, производим дихотомическое деление, в результате которого получаем на втором уровне два новых понятия: «русские писатели» и «зарубежные писатели». Затем мы можем разделить понятие «русские писатели» по видоизменению основания. В качестве основания возьмём характеристику: «в каком веке жил писатель?» Получаем новые понятия: «русские писатели XIвека», «русские писатели XIIвека» и так вплоть до «русских писателей XXIвека». Что касается понятия «зарубежные писатели», то его тоже можно разделить по видоизменению основания, но в качестве основания взять национальность писателей. Таким образом, получим: «испанские писатели», «французские писатели», «немецкие писатели» и т.д.
Знаком […] обозначены пропущенные члены деления. Дальше каждый таксон может быть разделён ещё по какому-то своему признаку. Главное в каждом отдельном делении соблюдать перечисленные выше правила.
Нужно отметить, что составление классификаций - не такая простая задача, как может показаться на первый взгляд. Не редки ситуации, когда сложно или невозможно определить, к какому именно таксону нужно относить тот или иной предмет. В нашем примере с писателями, в частности, возможны случаи, когда писатель родился и начал творить в одном веке, а умер уже в другом, как Чехов. Куда его нужно относить - в писатели XIXвека или XXвека? Иногда встречаются объекты, которые в принципе никуда не укладываются. Тогда для них создают отдельный таксон или помещают их в так называемый «отстойник». Он может обозначаться словами «всё прочее», и объекты, находящиеся в нём, не связаны ничем иным, кроме того, что их не удаётся никуда определить.
Заключение
В зависимости от количества существенных признаков предметов, фиксируемых в понятиях, их принято делить на простые и сложные. В пределе число элементов содержания понятия может быть равно единице (например, в понятии «существование»), но в понятии меньшей степени абстракции их всегда больше, и они составляют единое логическое целое, соответствующее единству признаков в предмете. (Понятие «вещество» будет включать такие элементы, как «твердое», «жидкое», «газообразное», «химическое», «биологическое», «легкое» и пр., пр.). Понятия, имеющие в своем содержании более одного элемента, различаются как более простые и менее простые (более сложные и менее сложные). Эти определения относительны, т.к. одно понятие может быть более простым по сравнению с другим и более сложным по сравнению с третьим. Так, понятие «человек» есть сложное по сравнению с понятиями «молодой человек» или «пожилой человек», или «мужчина» («женщина») и т.д. Более сложные понятия содержат больше информации по сравнению с менее сложными понятиями.
Содержание всякого сложного понятия представляет собой синтез элементов, их единство. Особенность этого единства характеризует структуру понятия, в которой существенным является различие между родовым признаком, который часто называют главной частью содержания понятия, и видовой разницей, которая называется обычно побочной частью содержания понятия. Главная часть отвечает на вопрос: «кто или что?», а побочная - на вопрос: «какой?». Например, в понятии «квадрат» главной частью является понятие «прямоугольник», а побочной - понятие «имеющий равные стороны». Побочная часть может быть ближайшей и отдаленной в зависимости от того, примыкают ли соответствующие признаки к главной части содержания понятия непосредственно или посредством других признаков. Например, в понятии «участник мирового чемпионата по футболу» ближайшая побочная часть содержания понятия выражена словом «чемпионата по футболу», а самая отдаленная - словом «мирового».
Список литературы
Войшвилло Е. К. Понятие. -- М.: Изд-во МГУ, 1967. -- 284 с.
Войшвилло Е. К. Понятие как форма мышления: логико-гносеологический анализ. -- М.: Изд-во МГУ, 1989. -- 239 с.
Власов Д. В. Логические и философские подходы к построению теоретической модели образования понятия // Электронный журнал «Знание. Понимание. Умение». -- 2009. -- № 1 - Философия. Политология.
http://4brain.ru/logika/ponyatie.php
Размещено на Allbest.ru
...Подобные документы
Основные формы абстрактного мышления. Характеристика понятия и операции над понятиями. Операции с понятием: сложение, умножение, вычитание, деление. Дихотомическое деление. Отношения между понятиями: отрицание, обобщение, ограничение, определение.
реферат [48,5 K], добавлен 27.10.2008Обобщение и ограничение понятия. Понятие как форма мышления. Правила построения определения. Структура логического деления. Простейшие логические операции, связанные в основном с изменением объема понятий: сложение, умножение, отрицание, вычитание.
контрольная работа [83,0 K], добавлен 20.02.2009Понятие как форма мышления, отражающая предметы в общих существенных признаках. Характеристика понятия и операций над ними. Логические операции с понятиями сложение, умножение, вычитание и деление. Обобщение и ограничение. Правила построения дефиниции.
контрольная работа [59,4 K], добавлен 05.04.2012Закон тождества, (не) противоречия, исключенного третьего, достаточного основания. Формы познания. Понятие как форма мышления. Структура и виды понятия. Логические отношения между сравнимыми понятиями. Логические операции с понятиями. Классификация.
реферат [16,7 K], добавлен 22.02.2009Сущность и общая характеристика понятия, основные логические приемы его формирования. Понятие и слово. Отношения между понятиями, их совместимость и несовместимость. Определение и содержание логической операции. Логическое деление и определение понятий.
реферат [211,4 K], добавлен 09.12.2011Методы изображения отношений между заданными понятиями. Особенности деления - логической операции, которая раскрывает объем понятия. Характеристика определения – логической операции раскрытия содержания понятия или значения термина. Логический квадрат.
контрольная работа [112,4 K], добавлен 26.10.2010Приведение примеров по раскрытию понятия "трудовые споры". Рассмотрение основных правил, которые учитываются при определении понятия рассматриваемого объекта. Логические операции с понятиями: ограничение, деление, сложение, умножение, вычитание.
контрольная работа [27,1 K], добавлен 30.10.2011Формальная логика: понятие, значение, законы. Зарождение и содержание диалектической логики. Главные особенности принципа рассмотрения предмета в его развитии, изменении. Сущность диалектического отрицания, восхождения от абстрактного к конкретному.
контрольная работа [34,1 K], добавлен 06.11.2013Совокупность существенных признаков. Переходы между понятиями с разными объемами. Операции обобщения и ограничения. Понятия, их взаимосвязь и структура их взаимоотношений. Круги Эйлера. Логическая характеристика понятий. Закон достаточного основания.
дипломная работа [27,0 K], добавлен 22.10.2008Понятие как форма мышления, отражающая предметы в их существенных признаках, его общая характеристика, логические приемы формирования, классификация и разновидности: совместимые и несовместимые. Отличительные особенности отношения между понятиями.
реферат [24,3 K], добавлен 29.01.2014Учение о человеке как центральный вопрос философии Д. Юма. Место агностицизма в философии. Понятие субстанции и сущность термина "вера". Понятие причины - основная категория науки и философии. Самосовершенствование человека - цель этики. Критика религии.
курсовая работа [28,6 K], добавлен 04.02.2015Логический анализ понятия. Основные виды отношений между понятиями. Логическая характеристика сложного суждения, простого категорического силлогизма. Перевод суждения из грамматической формы в логическую. Основные виды непосредственного умозаключения.
контрольная работа [18,1 K], добавлен 15.04.2013Сущность логической операции над понятиями. Проверка правильности деления понятий, в случае обнаружения ошибок указать и исправить их. Определение логических отношений между суждениями. Полный разбор силлогизма и определение его фигуры и модуса.
задача [163,3 K], добавлен 25.03.2014Предмет и цели изучения логики. Понятие и основные концепции истины. Решение задач с помощью "кругов Эйлера". Формализация сложного суждения и построение таблиц истинности. Определение пар суждений, находящихся в отношении противоречия и подчинения.
контрольная работа [116,4 K], добавлен 16.10.2016Определение видов отношений между понятиями и их графическое изображение с помощью круговых схем Эейлера. Определение правильности деления понятий. Определение вида сложного суждения, его составные части и логическая форма на языке логики высказываний.
контрольная работа [379,6 K], добавлен 14.05.2013Элементы полной структуры простого суждения. Виды простых суждений по характеру предиката. Объединенная классификация атрибутивных суждений по качеству и количеству. Отношения между понятиями, определение правильность определения и деления понятия.
контрольная работа [174,9 K], добавлен 21.10.2011Понятие виновности и невиновности, определение отношений между ними и графическое отображение с помощью круговых схем. Обобщение понятия "Москва", отграничение большого объема от маленького. Структурные элементы логической операции "определение понятия".
контрольная работа [89,6 K], добавлен 15.10.2009Простой категорический силлогизм, его структура и правила. Фигуры и модусы простого категорического силлогизма. Логические отношения. Операции деления и расчленения. Отношения между понятиями. Атрибутивные, релятивные, экзистенциальные суждения.
контрольная работа [21,3 K], добавлен 10.01.2009Сущность и роль понятия. Назначение и аспекты применения операций обобщения и ограничения, деления и их правила. Особенности взаимосвязи и правил использования понятий, специфика их ограничения и деления. Место классификации в философии и экономике.
презентация [228,7 K], добавлен 14.10.2013Предмет философии и эстетики. Идеализм и материализм. Философская антропология как школа. Процесс познания с точки зрения гносеологии. Сущность и формы бытия. Смысл понятия "материя". Абстрактное и конкретное мышление. Способности и свойства сознания.
шпаргалка [102,6 K], добавлен 02.05.2015