Форма научного познания

Основные способы организации содержания и результатов познавательной деятельности. Теоретический уровень научного исследования. Закон как форма существования научного знания, в которую трансформируются гипотезы. Главные компоненты научной теории.

Рубрика Философия
Вид реферат
Язык русский
Дата добавления 05.11.2015
Размер файла 182,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Формы научного познания

научное познание гипотеза теория

Форма научного познания - это способ организации содержания и результатов познавательной деятельности. Для эмпирического исследования такой формой является факт, а для теоретического - гипотеза и теория. Научный факт - это результат наблюдений и экспериментов, который устанавливает количественные и качественные характеристики объектов. Работой у тех, кто занимается познавательной деятельностью, на 80% является наблюдении над объектом исследования с целью установления его устойчивых, повторяющихся характеристик. Когда исследователь убедится в том, что при соответствующих условиях объект всегда выглядит строго определенным образом, он подкрепляет этот результат с помощью эксперимента и, в случае подтверждения, формулирует научный факт. Например: тело, если оно тяжелее воздуха, будучи подброшенным вверх, обязательно упадет вниз.

Теоретический уровень научного исследования начинается с выдвижения гипотез. С греческого гипотеза переводится как предположение. В качестве формы теоретического знания гипотезу определяют как предположительное знание. Гипотеза выдвигается для решения конкретной научной проблемы и должна удовлетворять определенным требованиям. К числу таких требований относятся проверяемость, совместимость с существующим научным знанием, наличие объяснительных и предсказательных возможностей и простота. Проверяемость гипотезы предполагает возможность сопоставления её результатов с данными наблюдений и экспериментов. Совместимость гипотез с существующим научным знанием означает, что она не должна противоречить установленным фактам и теории. Предсказательная сила гипотезы заключается в количестве событий, вероятность которых она в состоянии предугадать. Критерий простоты гипотезы относятся к ситуациям, когда конкурирующие научные гипотезы удовлетворяют всем вышеуказанным требованиям и, тем не менее, нужно делать выбор в пользу одной из них. Выдвижение новых гипотез и их обоснование представляют очень сложный творческий процесс, в котором решающую роль играют интуиция и научная квалификация ученого. Какого-то определенного алгоритма в этом деле не существует. Общеизвестно, что большая часть научного существует в форме гипотез.

Закон - следующая форма существования научного знания, в которую трансформируются гипотезы в результате всестороннего обоснования и подтверждения. В законах науки отражаются устойчивые, повторяющиеся, существенные связи между явлениями и процессами реального мира. В соответствие с принятой двухступенчатой структурой научного познания выделяют эмпирические и теоретические законы. На эмпирической стадии развития науки устанавливаются законы, в которых фиксируются связи между чувственно воспринимаемыми свойствами объектов. Такие законы называются феноменологическими. Примерами таких законов могут служить законы Архимеда, Бойля-Мариотта, Гей-Люссака и другие, в которых выражаются функциональные связи между различными свойствами жидкостей и газов. Но такие законы многое не объясняют. Подобное объяснение достигается с помощью теоретических законов, которые раскрывают глубокие внутренние связи процессов, механизм их протекания. Эмпирические законы можно назвать количественными, а теоретические - качественными законами.

С точки зрения точности предсказаний различают статистические и динамические законы. Динамические законы имеют большую предсказательную силу, поскольку абстрагируются от второстепенных и случайных факторов. Предсказания статистических законов носят вероятностный характер. Это законы демографии, статистики населения, экономики и другие, которые имеют дело с множеством случайных и субъективных факторов. Вероятностно-статистический характер имеют и некоторые природные законы, в первую очередь - законы микромира, описываемые в квантовой механике.

Теоретические законы составляют ядро научной теории - высшей формы организации научного знания. Теория представляет собой систему базовых, исходных понятий, принципов и законов, из которых по определенным правилам могут быть выведены понятия и законы меньшей степени общности. Она появляется в результате длительного поиска научных фактов, выдвижения гипотез, формулирования вначале простейших эмпирических, а затем - фундаментальных теоретических законов.

В структуре научной теории выделяют следующие компоненты:

1. Исходный эмпирический базис, включающий множество зафиксированных в данной области знания фактов, подтвержденных в ходе экспериментов и требующих теоретического объяснения.

2. Исходную теоретическую основу, включающую множество первичных допущений, постулатов, аксиом и общих законов.

3. Множество правил логического вывода и доказательства, образующих в своей совокупности логику теории.

4. Основной массив теоретического знания в виде совокупности выведенных в теории утверждений с их доказательствами.

Основу любой теории составляет идеализированный объект, представляющий собой теоретическую модель наиболее существенных связей реальности, представленных с помощью определенных гипотетических допущений. Примером идеализированного объекта может служить идеальный газ, под которым понимают теоретическую модель газа, не принимающую во внимание взаимодействие между частицами газа.

2. Специфика и системность живого

Под биологической (живой) системой понимается совокупность взаимодействующих элементов, которые образует целостный объект; эта совокупность имеет новые качества, не свойственные входящим в систему элементам.

Живой целостной системе свойственны:

множественность элементов

наличие связей между элементами и с окружающей средой

согласованная организация взаимоотношений элементов как в пространстве, так и во времени, направленное на осуществление функций системы.

Жизнь - это высшая из природных форм движения материи, она характеризуется самообновлением, саморегуляцией и самовоспроизведением разноуровневых открытых систем, вещественную основу которых составляют белки, нуклеиновые кислоты и фосфорорганические соединения.

Свойства живого состоят из упорядоченной структуры; получения энергии из внешней среды; так же живые организмы не только изменяются, но и усложняются; присутствует активная реакция на внешнюю среду; самовоспроизводство; способность сохранять и передавать информацию; обладают высокой приспособляемостью к внешней среде.

3. Фрактальные структуры в окружающем мире

Привести примеры фрактальных структур в природе. В чем отличие природных фрактальных систем от их математического представления? Что такое фрактальный кластер. О каких процессах в природе свидетельствует образование фрактальных систем: фрактальных кластерах. Обосновать ответ.

Понятие "фрактал" было введено Бенуа Мандельбротом. Термин "фрактал" происходит от латинского fractus, что означает дробный, изрезанный. Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому. Самоподобие фракталов означает, что их форма воспроизводится на различных масштабах. Самоподобие фракталов иначе называют масштабной инвариантностью.

Фрактал можно получить, задав ломаную линию, называемую генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор в соответствующем масштабе. В результате при переходе к пределу получается фрактальная кривая. Простейшим примером фрактала является кривая Коха, которая после нескольких повторений алгоритма становится похожей на снежинку.

Фракталы отличаются от других объектов необычной геометрией. Если размерность точки равна нулю, размерности прямой линии - единица, поверхности - два, объема - три, то размерность фрактальных объектов всегда оказывается дробным числом. Так как фрактал состоит из бесконечного числа повторяющихся элементов, невозможно точно измерить его длину. Действительно, чем более точным инструментом измерять длину, тем большей она окажется. Классическим примером, иллюстрирующим данное утверждение, может служить разное значение длины границы между Испанией и Португалией. Эта граница представляет собой типичную фракталоподобную структуру. Длина такой границы будет меняться в зависимости от масштаба единицы измерения. Согласно испанской энциклопедии общая длина границы между Испанией и Португалией составляет 987 км, однако португальская энциклопедия утверждает, что эта длина равна 1214 км. Это расхождение объясняется тем, что Португалия выбрала меньшую единицу длины.

В окружающем нас мире можно обнаружить большое число фрактальных объектов: береговые линии, кучевые облака, кроны деревьев, молнии, систему кровообращения человека и т.д. Более того, выяснилось, что почти все природные образования имеют фрактальную структуру.

В отличие от математических "идеальных" представлений, невероятно красивых и правильных, фрактальные структуры не идеальны и имеют неправильную форму.

Фрактальный кластер, который так же называется фрактальным агрегатом, это хаотический фрактал, который образуется при ассоциации твердых аэрозолей в газе в случае диффузионного характера их движения, а также в результате конденсации в сложных неравновесных условиях. Например, при слипании движущихся по определенному закону твердых частиц кластера. Фрактальные кластеры наиболее часто исследуются при помощи модели диффузионно-лимитированного роста.

В природе свидетельством образования фрактальных систем являются процессы, которые происходят при образовании гелей в растворах, при слипании частиц в дымах, так как они являются не идеальными, однако дополняют друг друга и являются частью одного целого.

4. Вселенная. Ранний этап эволюции вселенной

Вселенная - не имеющее строгого определения понятие в астрономии и философии. Оно делится на две принципиально отличающиеся сущности: умозрительную (философскую) и материальную, доступную наблюдениям в настоящее время или в обозримом будущем. Если автор различает эти сущности, то, следуя традиции, первую называют Вселенной, а вторую - астрономической Вселенной или Метагалактикой. Вселенная является предметом исследования космологии.

Представляя Вселенную как весь окружающий мир, мы сразу делаем её уникальной и единственной. И вместе с этим лишаем себя возможности описать её в терминах классической механики: из-за своей уникальности Вселенная ни с чем не может взаимодействовать, она - система систем, и поэтому в её отношении теряют свой смысл такие понятия, как масса, форма, размер. Вместо этого приходится прибегать к языку термодинамики, употребляя такие понятия как плотность, давление, температура и химический состав.

Если вы спросите у людей, как же зародилась наша вселенная, то скорее всего услышите о теории большого взрыва, но что же она означает? Большой взрыв - общепринятая космологическая модель, описывающая раннее развитие Вселенной, а именно - начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.

Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения, и рассматривается далее.

Сразу после Большого взрыва Вселенная представляла собой плазму из элементарных частиц всех видов и их античастиц в состоянии термодинамического равновесия при температуре 1027 К, которые свободно превращались друг в друга. В этом сгустке существовали только гравитационное и большое (Великое) взаимодействия. Потом Вселенная стала расширяться, одновременно ее плотность и температура уменьшались. Дальнейшая эволюция Вселенной происходила поэтапно и сопровождалась, с одной стороны, дифференциацией, а с другой - усложнением ее структур. Этапы эволюции Вселенной различаются характеристиками взаимодействия элементарных частиц и называются эрами. Самые важные изменения заняли менее трех минут.

Андронная эра продолжалась 10-7 с. На этом этапе температура понижается до 1013 К. При этом появляются все четыре фундаментальных взаимодействия, прекращается свободное существование кварков, они сливаются в адроны, важнейшими среди которых являются протоны и нейтроны. Наиболее значимым событием стало глобальное нарушение симметрии, которое произошло в первые мгновения существования нашей Вселенной. Число частиц оказалось чуть больше, чем число античастиц. Причины такой асимметрии точно неизвестны до сих пор. В общем плазмоподобном сгустке на каждый миллиард пар частиц и античастиц на одну частицу оказывалось больше, ей не хватало пары для аннигиляции. Это и определило дальнейшее появление вещественной Вселенной с галактиками, звездами, планетами и разумными существами на некоторых из них.

Лептонная эра продолжалась до 1 с после начала. Температура Вселенной понизилась до 1010 К. Главными ее элементами были лептоны, которые участвовали во взаимных превращениях протонов и нейтронов. В конце этой эры вещество стало прозрачным для нейтрино, они перестали взаимодействовать с веществом и с тех пор дожили до наших дней.

Эра излучения (фотонная эра) продолжалась 1 млн. лет. За это время температура Вселенной снизилась с 10 млрд. К до 3000 К. На протяжении данного этапа происходили важнейшие для дальнейшей эволюции Вселенной процессы первичного нуклеосинтеза - соединение протонов и нейтронов (их было примерно в 8 раз меньше, чем протонов) в атомные ядра. К концу этого процесса вещество Вселенной состояло на 75% из протонов (ядер водорода), около 25% составляли ядра гелия, сотые доли процента пришлись на дейтерий, литий и другие легкие элементы, после чего Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовало то, что в нашу эпоху называется реликтовым излучением.

Затем почти 500 тысяч лет не происходило никаких качественных изменений - шло медленное остывание и расширение Вселенной. Вселенная, оставаясь однородной, становилась все более разреженной. Когда она остыла до 3000 К, ядра атомов водорода и гелия уже могли захватывать свободные электроны и превращаться при этом в нейтральные атомы водорода и гелия. В итоге образовалась однородная Вселенная, представлявшая собой смесь трех почти не взаимодействующих субстанций: барионного вещества (водород, гелий и их изотопы), лептонов (нейтрино и антинейтрино) и излучения (фотоны). К этому времени уже не было высоких температур и больших давлений. Казалось, в перспективе Вселенную ждет дальнейшее расширение и остывание, образование "лептонной пустыни" - что-то вроде тепловой смерти. Но этого не случилось; напротив, произошел скачок, создавший современную структурную Вселенную, который, по современным оценкам, занял от 1 до 3 миллиардов лет.

После большого взрыва образовавшееся вещество и электромагнитное поле были рассеяны и представляли собой газово-пылевое облако и электромагнитный фон. Спустя 1 млрд. лет после образования Вселенной из случайных уплотнений вещества стали появляться галактики и звезды.

5. Понятия "хаос" и "бифуркация"

Хаос - в древнегреческой мифологии - это стихия, якобы существовавшая до возникновения мира, земли с её жизнью.

В обыденном смысле хаос понимают как беспорядок, неразбериху, смешение. Понятие возникло от названия в древнегреческой мифологии изначального состояния мира, некой "разверзшейся бездны" (а не беспорядочного состояния), из которой возникли первые божества. Лишь в раннехристианские времена этому слову стали приписывать значение беспорядка.

В математике хаосом называют апериодическое поведение динамической системы, крайне чувствительное к начальным условиям. Бесконечно малое возмущение граничных условий для хаотической динамической системы приводит к конечному изменению траектории в фазовом пространстве. Изучается математическими средствами теории хаоса.

Для количественного измерения хаотичности (неупорядоченности) некоторой системы в физике и математике (теории информации, математической статистике) часто используется понятие энтропии, которая одновременно характеризует информационную ёмкость системы.

Бифуркация - термин происходит употребляется в широком смысле для обозначения всевозможных качественных перестроек или метаморфоз различных объектов при изменении параметров, от которых они зависят.

Бифуркация рек - разделение русла реки и её долины на две ветви.

Бифуркация в биологии - разделение трубчатого органа (сосуда или бронха) на 2 ветви одинакового диаметра, отходящие в стороны под одинаковыми углами.

Бифуркация в образовании - разделение старших классов учебного заведения на два отделения.

Бифуркация времени-пространства в научной фантастике - разделение времени на несколько потоков, в каждом из которых происходят свои события. В параллельном времени-пространстве у героев бывают разные жизни.

Точка бифуркации - смена установившегося режима работы системы. Термин из неравновесной термодинамики и синергетики.

Есть другое понятие этого термина:

Бифуркация - это приобретение нового качества в движениях динамической системы при малом изменении её параметров. Этот термин относится непосредственно к теории бифуркации динамических систем.

Теория бифуркаций динамических систем - это теория, которая изучает изменения качественной картины разбиения фазового пространства, в зависимости от изменения параметра (или нескольких параметров).

Центральным понятием теории бифуркации является понятие негрубой системы. Берётся какая-либо динамическая система и рассматривается такое параметрическое семейство динамических систем, что исходная система получается в качестве частного случая - при каком-либо одном значении параметра. Если при значении параметров, достаточно близких к данному, сохраняется качественная картина разбиения фазового пространства на траектории, то такая система называется грубой. В противном случае, если такой окрестности не существует, то система называется негрубой.

Размещено на Allbest.ru

...

Подобные документы

  • Эмпирический и теоретический уровни научного познания, их единство и различие. Понятие научной теории. Проблема и гипотеза как формы научного поиска. Динамика научного познания. Развитие науки как единство процессов дифференциации и интеграции знания.

    реферат [25,3 K], добавлен 15.09.2011

  • Фундаментальные представления, понятия и принципы науки как ее основание. Компоненты научного знания, его систематический и последовательный характер. Общие, частные и рабочие гипотезы. Основные типы научных теорий. Проблема как форма научного знания.

    реферат [49,5 K], добавлен 06.09.2011

  • Понятие и основные признаки научного закона, главные пути его формирования и становления как основы научной теории. Принципиальные характеристики научного закона, как основной категории в познании, степень его участия в современном научном исследовании.

    реферат [52,2 K], добавлен 30.11.2015

  • Метод научного исследования как способ познания действительности. Основные уровни методологии. Специальные методы исследования, их использование в одной отрасли научного знания или в нескольких узких областях знаний. Характеристика теории моделирования.

    презентация [53,7 K], добавлен 22.08.2015

  • Специфика и уровни научного познания. Творческая деятельность и развитие человека. Методы научного познания: эмпирические и теоретические. Формы научного познания: проблемы, гипотезы, теории. Важность наличия философских знаний.

    реферат [42,4 K], добавлен 29.11.2006

  • Сущность научного знания и его методы. Научная картина мира как особая форма теоретического знания. Этапы эволюции науки: классическая, неклассическая и постнеклассическая наука. Нормы научной этики и стороны деятельности ученых, которые они охватывают.

    контрольная работа [27,8 K], добавлен 19.05.2014

  • Эмпирический и теоретический структурные уровни научного знания. Понятие, роль и задачи эмпирического познания. Методы изучения объектов: наблюдение, эксперимент, измерение и описание. Основные характеристики теоретического познания. Виды умозаключений.

    реферат [23,5 K], добавлен 02.02.2011

  • Научное знание как достоверное, логически непротиворечивое знание. Содержание социогуманитарного познания. Научное познание и функции научной теории. Структура научного объяснения и предсказания. Формы научного познания, его основные формулы и методики.

    контрольная работа [24,7 K], добавлен 28.01.2011

  • Наука как форма духовной и творческой деятельности по получению нового знания. Ограниченность научного предвидения. Системность, непосредственная цель и методологическая рефлексия как признаки научного познания. Главные элементы науки по В. Вернадскому.

    реферат [19,0 K], добавлен 16.04.2009

  • Общая характеристика эвристических методов научного познания, исследование исторических примеров их применения и анализ значения данных методов в теоретической деятельности. Оценка роли аналогии, редукции, индукции в теории и практике научного познания.

    курсовая работа [49,4 K], добавлен 13.09.2011

  • Научное познание и его уровни. Формы научного познания. Методы научного познания. Эмпирический и теоретический уровни познания. Достоверность знания - необходимое условие его превращения в факт. Научная идея. Мыслительный эксперимент.

    реферат [17,9 K], добавлен 24.04.2007

  • Современная ветеринарная медицина как дифференцированная отрасль научного знания. Философия науки: определение сущности природы, общие закономерности и тенденции познания. История паразитологии, методология научного исследования в ветеринарной науке.

    реферат [34,4 K], добавлен 19.05.2011

  • Научное познание и его структура. Термин "знание". Субъект и объект познания. Понятие метода. Общелогические приемы познания. Эмпирические и теоретические методы научного исследования. Ощущение. Восприятие. Представление. Мышление.

    контрольная работа [15,5 K], добавлен 08.02.2007

  • Понятие научного познания, научное и вненаучное знание. Проблема взаимоотношения философии, знания и языка в позитивизме, основные этапы его развития. Проблема происхождения человека в философии и науке. Названия философских течений в теории познания.

    контрольная работа [36,9 K], добавлен 10.07.2011

  • Накопительная и диалектическая модели развития научного знания. Принятие эволюции за повышение степени общности знания как суть индуктивистского подхода к науке и ее истории. Сущность концепции внутренней и внешней причин развития научного знания.

    реферат [29,9 K], добавлен 23.12.2015

  • Сущность и особенности научного исследования. Структурные компоненты и свойства теоретического познания. Взаимодействие эмпирического и теоретического уровней исследования. Последовательные этапы научного исследования. План магистерского исследования.

    реферат [48,1 K], добавлен 25.01.2010

  • Понимание научного знания как набора догадок о мире. Рост научного знания в логико-методологической концепции Поппера. Схема развития научного знания. Теория познания К. Поппера. Выдвижение теорий, их проверка и опровержение. Возрастание сложности теорий.

    реферат [66,0 K], добавлен 24.06.2015

  • Изучение теории познания как раздела философии, изучающего взаимоотношение субъекта и объекта в процессе познавательной деятельности и критерии истинности и достоверности знания. Особенности рационального, чувственного и научного познания. Теория истины.

    контрольная работа [20,8 K], добавлен 30.11.2010

  • Основные цели науки как технологии научного творчества. Средства логического анализа систем научного знания. Изучение логических структур научных теорий, дедуктивных и индуктивных выводов, применяемых в естественных, социальных и технических науках.

    реферат [56,6 K], добавлен 29.01.2011

  • Уровни научного познания: эмпирический (непосредственное изучение реальных чувственно воспринимаемых объектов), теоретический (обработка данных с помощью понятий, категорий, законов), метатеоретический (исследование математических и логических теорий).

    презентация [923,3 K], добавлен 27.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.