Гносеологический анализ проблемы искусственного интеллекта
Современные системы искусственного интеллекта. Исследование гносеологических проблем, с которыми сталкивается теория искусственного интеллекта при решении многих задач. Анализ вопроса о возможности передачи интеллектуальных функций техническим системам.
Рубрика | Философия |
Вид | статья |
Язык | русский |
Дата добавления | 29.06.2018 |
Размер файла | 21,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Гносеологический анализ проблемы искусственного интеллекта
Технические науки
Шапкарин Алексей Михайлович, бакалавр, аспирант Военно-воздушная академия имени профессора Н. Е. Жуковского и Ю. А. Гагарина, г. Воронеж
Теория искусственного интеллекта при решении многих задач сталкивается с гносеологическими проблемами. Некоторые из этих проблем будут кратко рассмотрены в данной статье.
Одна из таких проблем состоит в выяснении вопроса, доказуема ли теоретически (математически) возможность или невозможность искусственного интеллекта. На этот счет существуют две точки зрения. Одни считают математически доказанным, что ЭВМ в принципе может выполнить любую функцию, осуществляемую естественным интеллектом. Другие полагают в такой же мере доказанным математически, что есть проблемы, решаемые человеческим интеллектом, которые принципиально недоступны ЭВМ. Эти взгляды высказываются как кибернетиками, так и философами [1 -4].
Гносеологический анализ проблемы искусственного интеллекта вскрывает роль таких познавательных орудий, как категории, специфическая семиотическая система, логические структуры, ранее накопленное знание. Они обнаруживаются не посредством исследования физиологических или психологических механизмов познавательного процесса, а выявляются в знании, в его языковом выражении.
Орудия познания, формирующиеся, в конечном счете, на основе практической деятельности, необходимы для любой системы, выполняющей функции абстрактного мышления, независимо от ее конкретного материального субстрата и структуры.
Поэтому, чтобы создать систему, выполняющую функции абстрактного мышления, то есть, в конечном счете, формирующую адекватные схемы внешних действий в существенно-меняющихся средах, необходимо наделить такую систему этими орудиями.
Развитие систем искусственного интеллекта за последние десятилетия идет по этому пути. Однако степень продвижения в данном направлении в отношении каждого из указанных познавательных орудий неодинакова и в целом пока незначительна.
1. В наибольшей мере системы искусственного интеллекта используют формально-логические структуры, что обусловлено их неспецифичностью для мышления и, в сущности, алгоритмическим характером. Это дает возможность относительно легкой их технической реализации. Однако даже здесь кибернетике предстоит пройти большой путь. В системах искусственного интеллекта еще слабо используются модальная, императивная, вопросная и иные логики, которые функционируют в человеческом интеллекте и не менее необходимы для успешных познавательных процессов, чем давно освоенные логикой, а затем и кибернетикой формы вывода. Повышение "интеллектуального" уровня технических систем, безусловно, связано не только с расширением применяемых логических средств, но и с более интенсивным их использованием (для проверки информации на непротиворечивость, конструирования планов вычислений и т.д.).
2. Намного сложнее обстоит дело с семиотическими системами, без которых интеллект невозможен. Языки, используемые в ЭВМ, еще далеки от семиотических структур, которыми оперирует мышление.
Прежде всего, для решения ряда задач необходимо последовательное приближение семиотических систем, которыми наделяется ЭВМ, к естественному языку, точнее, к использованию его ограниченных фрагментов. В этом плане предпринимаются попытки наделить входные языки ЭВМ универсалиями языка, например полисемией (которая элиминируется при обработке в лингвистическом процессоре). Разработаны проблемно-ориентированные фрагменты естественных языков, достаточные для решения системой ряда практических задач. Наиболее важным итогом этой работы является создание семантических языков (и их формализация), в которых слова-символы имеют интерпретацию.
Однако многие универсалии естественных языков, необходимые для выполнения ими познавательных функций, в языках искусственного интеллекта пока реализованы слабо (например, открытость) или используются ограниченно (например, полисемия). Все большее воплощение в семиотических системах универсалий естественного языка, обусловленных его познавательной функцией, выступает одной из важнейших линий совершенствования систем искусственного интеллекта, особенно тех, в которых проблемная область заранее жестко не определена.
Современные системы искусственного интеллекта способны осуществлять перевод с одномерных языков на многомерные. В частности, они могут строить диаграммы, схемы, чертежи, графы, высвечивать на экранах кривые и т.д. ЭВМ производят и обратный перевод (описывают графики и тому подобное с помощью символов). Такого рода перевод является существенным элементом интеллектуальной деятельности. Но современные системы искусственного интеллекта пока не способны к непосредственному (без перевода на символический язык) использованию изображений или воспринимаемых сцен для "интеллектуальных" действий. Поиск путей глобального (а не локального) оперирования информацией составляет одну из важнейших перспективных задач теории искусственного интеллекта.
3. Воплощение в информационные массивы и программы систем искусственного интеллекта аналогов категорий находится пока в начальной стадии. Аналоги некоторых категорий (например, "целое", "часть", "общее", "единичное") используются в ряде систем представления знаний, в частности в качестве "базовых отношений", в той мере, в какой это необходимо для тех или иных конкретных предметных или проблемных областей, с которыми взаимодействуют системы.
В формализованном понятийном аппарате некоторых систем представления знаний предприняты отдельные (теоретически существенные и практически важные) попытки выражения некоторых моментов содержания и других категорий (например, "причина", "следствие"). Однако ряд категорий (например, "сущность", "явление") в языках систем представления знаний отсутствует. Проблема в целом разработчиками систем искусственного интеллекта в полной мере еще не осмыслена, и предстоит большая работа философов, логиков и кибернетиков по внедрению аналогов категорий в системы представления знаний и другие компоненты интеллектуальных систем. Это одно из перспективных направлений в развитии теории и практики кибернетики.
4. Современные системы искусственного интеллекта почти не имитируют сложную иерархическую структуру образа, что не позволяет им перестраивать проблемные ситуации, комбинировать локальные части сетей знаний в блоки, перестраивать эти блоки и т.д.
Не является совершенным и взаимодействие вновь поступающей информации с совокупным знанием, фиксированным в системах. В семантических сетях и фреймах пока недостаточно используются методы, благодаря которым интеллект человека легко пополняется новой информацией, находит нужные данные, перестраивает свою систему знаний и т.д.
5. Еще в меньшей мере современные системы искусственного интеллекта способны активно воздействовать на внешнюю среду, без чего не может; осуществляться самообучение и вообще совершенствование "интеллектуальной" деятельности.
Таким образом, хотя определенные шаги к воплощению гносеологических характеристик мышления в современных системах искусственного интеллекта сделаны, но в целом эти системы еще далеко не владеют комплексом гносеологических орудий, которыми располагает человек и которые необходимы для выполнения совокупности функций абстрактного мышления. Чем больше характеристики систем искусственного интеллекта будут приближены к гносеологическим характеристикам мышления человека, тем ближе будет их «интеллект» к интеллекту человека, точнее, тем выше будет их способность к комбинированию знаковых конструкций, воспринимаемых и интерпретируемых человеком в качестве решения задач и вообще воплощения мыслей.
В связи с этим возникает сложный вопрос. При анализе познавательного процесса гносеология абстрагируется от психофизиологических механизмов, посредством которых реализуется этот процесс. Но из этого не следует, что для построения систем искусственного интеллекта эти механизмы не имеют значения. Вообще говоря, не исключено, что механизмы, необходимые для воплощения неотъемлемых характеристик интеллектуальной системы, не могут быть реализованы в цифровых машинах или даже в любой технической системе, включающей в себя только компоненты неорганической природы. Иначе говоря, в принципе не исключено, что хотя мы можем познать все гносеологические закономерности, обеспечивающие выполнение человеком его познавательной функции, но их совокупность реализуема лишь в системе, субстрактно тождественной человеку.
Такой взгляд обосновывается X. Дрейфусом. «Телесная организация человека, -- пишет он, -- позволяет ему выполнять... функции, для которых нет машинных программ -- таковые не только еще не созданы, но даже не существуют в проекте... Эти функции включаются в общую способность человека к приобретению телесных умений и навыков. Благодаря этой фундаментальной способности наделенный телом субъект может существовать в окружающем его мире, не пытаясь решить невыполнимую задачу формализации всего и вся» [5].
Как отмечает Б.В. Бирюков, подчеркивание значения "телесной организации" для понимания особенностей психических процессов, в частности возможности восприятия, заслуживает внимания. Качественные различия в способности конкретных систем отражать мир, тесно связаны с их структурой, которая хотя и обладает относительной самостоятельностью, но не может преодолеть некоторых рамок, заданных субстратом. В процессе биологической эволюции совершенствование свойства отражения происходило на основе усложнения нервной системы, то есть субстрата отражения. Не исключается также, что различие субстратов ЭВМ и человека может обусловить фундаментальные различия в их способности к отражению, что ряд функций человеческого интеллекта в принципе недоступен таким машинам [6].
Иногда в литературе [7, 8] утверждается, что допущение возможности выполнения технической системой интеллектуальных функций человека означает сведение высшего (биологического и социального) к низшему (к системам из неорганических компонентов) и, следовательно, противоречит материалистической диалектике. Однако в этом рассуждении не учитывается, что пути усложнения материи однозначно не предначертаны и не исключено, что общество имеет возможность создать из неорганических компонентов (абстрактно говоря, минуя химическую форму движения) системы не менее сложные и не менее способные к отражению, чем биологические. Созданные таким образом системы являлись бы компонентами общества, социальной формой движения. Следовательно, вопрос о возможности передачи интеллектуальных функций техническим системам, и в частности о возможности наделения их рассмотренными в работе гносеологическими орудиями, не может быть решен только исходя из философских соображений. Он должен быть подвергнут анализу на базе конкретных научных исследований.
X. Дрейфус подчеркивает, что ЭВМ оперирует информацией, которая не имеет значения, смысла. Поэтому для ЭВМ необходим перебор огромного числа вариантов. Телесная организация человека, его организма позволяет отличать значимое от незначимого для жизнедеятельности и вести поиск только в сфере первого. Для "нетелесной" ЭВМ, утверждает Дрейфус, это недоступно [5]. Конечно, конкретный тип организации тела позволяет человеку ограничивать пространство возможного поиска. Это происходит уже на уровне анализаторной системы. Совсем иначе обстоит дело в ЭВМ. Когда в кибернетике ставится общая задача, например распознания образов, то эта задача переводится с чувственно-наглядного уровня на абстрактный. Тем самым снимаются ограничения, не осознаваемые человеком, но содержащиеся в его "теле", в структуре органов чувств и организма в целом. Они игнорируются ЭВМ. Поэтому пространство поиска резко увеличивается. Это значит, что к "интеллекту" ЭВМ предъявляются более высокие требования (поиска в более обширном пространстве), чем к интеллекту человека, к которому приток информации ограничен физиологической структурой его тела.
Системы, обладающие психикой, отличаются от ЭВМ прежде всего тем, что им присущи биологические потребности, обусловленные их материальным, биохимическим субстратом. Отражение внешнего мира происходит сквозь призму этих потребностей, в чем выражается активность психической системы. ЭВМ не имеет потребностей, органически связанных с ее субстратом, для нее как таковой информация незначима, безразлична. Значимость, генетически заданная человеку, имеет два типа последствий. Первый- круг поиска сокращается, и тем самым облегчается решение задачи. Второй- нестираемые из памяти фундаментальные потребности организма обусловливают односторонность психической системы. Дрейфус пишет в связи с этим: «Если бы у нас на Земле очутился марсианин, ему, наверное, пришлось бы действовать в абсолютно незнакомой обстановке; задача сортировки релевантного и нерелевантного, существенного и несущественного, которая бы перед ним возникла, оказалась бы для него столь же неразрешимой, как и для цифровой машины, если, конечно, он не сумеет принять в расчет никаких человеческих устремлений» [5]. С этим нельзя согласиться. Если "марсианин" имеет иную биологию, чем человек, то он имеет и иной фундаментальный слой неотъемлемых потребностей, и принять ему "человеческие устремления" значительно труднее, чем ЭВМ, которая может быть запрограммирована на любую цель.
Животное в принципе не может быть по отношению к этому фундаментальному слою перепрограммировано, хотя для некоторых целей оно может быть запрограммировано вновь посредством дрессировки. В этом (но только в этом) смысле потенциальные интеллектуальные возможности машины шире таких возможностей животных. У человека над фундаментальным слоем биологических потребностей надстраиваются социальные потребности, и информация для него не только биологически, но и социально значима. Человек универсален и с точки зрения потребностей и с точки зрения возможностей их удовлетворения. Однако эта универсальность присуща ему как социальному существу, производящему средства целесообразной деятельности, в том числе и системы искусственного интеллекта.
Таким образом, телесная организация не только дает дополнительные возможности, но и создает дополнительные трудности. Поэтому интеллекту человека важно иметь на вооружении системы, свободные от его собственных телесных и иных потребностей, пристрастий. Конечно, от таких систем неразумно требовать, чтобы они самостоятельно распознавали образы, классифицировали их по признакам, по которым это делает человек. Им цели необходимо задавать в явной форме.
Вместе с тем следует отметить, что технические системы могут иметь аналог телесной организации. Развитая кибернетическая система обладает рецепторными и эффекторными придатками. Начало развитию таких систем положили интегральные промышленные роботы, в которых ЭВМ в основном выполняет функцию памяти. В роботах третьего поколения ЭВМ выполняет и "интеллектуальные" функции. Их взаимодействие с миром призвано совершенствовать их "интеллект". Такого рода роботы имеют "телесную организацию", конструкция их рецепторов и эффекторов содержит определенные ограничения, сокращающие пространство, в котором, абстрактно говоря, могла бы совершать поиск цифровая машина.
Тем не менее, совершенствование систем искусственного интеллекта на базе цифровых машин может иметь границы, из-за которых переход к решению интеллектуальных задач более высокого порядка, требующих учета глобального характера переработки информации и ряда других гносеологических характеристик мышления, невозможен на дискретных машинах при сколь угодно совершенной программе. Это значит, что техническая (а не только биологическая) эволюция отражающих систем оказывается связанной с изменением материального субстрата и конструкции этих систем. Такая эволюция, то есть аппаратурное усовершенствование систем искусственного интеллекта, например, через более интенсивное использование аналоговых компонентов, гибридных систем, голографии и ряда других идей, будет иметь место. При этом не исключается использование физических процессов, протекающих в мозгу, и таких, которые психика в качестве своих механизмов не использует. Наряду с этим еще далеко не исчерпаны возможности совершенствования систем искусственного интеллекта путем использования в функционировании цифровых машин гносеологических характеристик мышления, о которых речь шла выше.
искусственный интеллект гносеологический технический
Список литературы
1. Шалютин, И.С. Искусственный интеллект: Гносеологический аспект / И.С. Шалютин. - М.: Мысль, 1985.
2. Финн, В.К.Философские проблемы логики интеллектуальных систем / В.К. Финн // Новости Искусственного Интеллекта. - 1999. - №1.
3. Осипов, Г.С.Искусственный интеллект: состояние исследований и взгляд в будущее / Г.С. Осипов // Новости Искусственного Интеллекта. - 2001. - №1.
4. Чайлахян, Л.М. Искусственный интеллект и мозг (Можно ли моделировать мозг средствами искусственного интеллекта?) / Л.М. Чайлахян // Новости Искусственного Интеллекта. - 2001. - №4.
5. Дрейфус, X. Чего не могут вычислительные машины / Х. Дрейфус. - М.: Наука, 1978.
6. Бирюков, Б.В. Что же могут вычислительные машины? Вместо послесловия // Дрейфус Х. "Чего не могут вычислительные машины" / Б.В. Бирюков. М.: Прогресс, 1978.
7. Банерджи, Р. Теория решения задач. Подход к созданию искусственного интеллекта / Р. Банерджи. - М.: Прогресс, 1972.
8. Эндрю, А. Искусственный интеллект / А. Эндрю. - М.: Мир, 1985.
Размещено на Allbest.ru
...Подобные документы
Анализ влияния искусственного интеллекта и искусственной жизни на философские проблемы человеческого мышления. Исследования искусственного интеллекта. Обзор вопросов теоретической доказуемости возможности или невозможности искусственного интеллекта.
реферат [58,5 K], добавлен 08.04.2015Проблема, гипотеза, теория, закон как формы научного знания. Методы обоснования научной теории: анализ и синтез, абстрагирование, идеализация. Системно-структурный подход и принцип историзма. Информационные системы и возможности искусственного интеллекта.
реферат [18,2 K], добавлен 21.12.2009Современная трактовка и виды сознания, его основные функции и психологическая характеристика. Формирование в философии различных стратегий исследования вопроса об источниках сознания, его взаимосвязь с бытием. История разработки искусственного интеллекта.
презентация [1,1 M], добавлен 17.02.2013Научные трактовки человеческого интеллекта. Концепция Кабанова А.Б. об уровне социального интеллекта и его устойчивости во времени и пространстве. Учение о трансформации отдельных элементов моральной системы при постоянном уровне социального интеллекта.
реферат [24,9 K], добавлен 25.08.2013Уровни социального интеллекта и его устойчивость во времени и пространстве. Воспроизводство культур и появление сходных культурных феноменов. Факторы трансформации отдельных элементов моральной системы при постоянном уровне социального интеллекта.
реферат [29,7 K], добавлен 19.05.2014Природа человеческого интеллекта на примере естественных языков и музыкальной культуры индивидов и общности людей. Объединяющая информациологическая трактовка двойной сущности интеллекта. Механизмы и алгоритмы самоорганизации информационных структур.
реферат [74,3 K], добавлен 17.02.2015Определение интуиции как непосредственного отражения связей между предметами и явлениями реального мира, ее основные формы. Синтез информации, принятие решения. Интуитивные методы прогнозирования. Особенности и значение искусственного интеллекта.
контрольная работа [28,7 K], добавлен 23.12.2012Анализ проблемы субъекта и объекта как центральной проблемы философии Карла Маркса. Исследование гносеологических проблем в "Философских арабесках" Н.И. Бухарина. Особенности философских проблем развития науки, искусства, духовной культуры в целом.
контрольная работа [70,9 K], добавлен 05.04.2012Интеллект как система познавательных способностей индивида. Формирование представлений об интеллекте в истории философии. Основные подходы в психологии к формированию интеллекта. Концептуальные линии в трактовке природы интеллекта, уровни его устройства.
контрольная работа [37,0 K], добавлен 21.09.2009Описания основных форм бытия: материального, идеального и виртуального. Характеристика атрибутов и структурных уровней организации материи. Изучение путей моделирования интеллекта, проблем веры и знания, структуры сознания человека и психики животных.
курс лекций [50,9 K], добавлен 21.06.2011Анализ труда Дж. Локка "Опыт о человеческом разуме": разрешение проблемы происхождения человеческих знаний, внутреннего опыта (рефлексии). Характеристика теории первичных и вторичных качеств. Изучение логико-гносеологических аспектов в толковании языка.
реферат [29,1 K], добавлен 02.03.2010Изучение понятия и характера воли в философии Артура Шопенгауэра. Исследование глубинных мотивов человеческого поведения. Воля и интеллект как составные части духовного мира человека. Анализ особенностей взаимодействия интеллекта с волей через интуицию.
реферат [37,8 K], добавлен 28.12.2016Возможности человеческого познания в истории философии: оптимисты, скептики и агностики. Субъект и объект познания, способы их формирования. Чувственное познание и мышление. Рассудок и разум как аспекты ума, измерение интеллекта. Роль интуиции в познании.
реферат [31,0 K], добавлен 24.12.2009Ницше - материалист, интенсивно сосредоточенный на творческой способности человека преобразовывать материальный мир гением искусства. Нематериальное счастье в творческом взаимодействии с материей. Деятельность интеллекта.
доклад [8,2 K], добавлен 08.04.2007Соотношение философии науки и техники. Различия естественного и искусственного в философии. Хронология технических устройств (XVIII—XXI века). Производительность, надёжность и долговечность как главные показатели. Физическая, конструктивная форма техники.
реферат [439,7 K], добавлен 20.12.2014Философское обоснование проблем диагностики и врачевания; использование законов диалектики и логики. Специфика процесса диагностики как метода познания, роль практики; логическая структура заключения врача. Гносеологические причины диагностических ошибок.
презентация [596,9 K], добавлен 18.05.2015Гносеологическая характеристика классической науки. Теория познания и методологический анализ науки. Новейшая революция в науке. Соотношение моральных и организационно-управленческих норм в профессиональной деятельности сотрудников органов внутренних дел.
научная работа [65,0 K], добавлен 28.01.2015Жизненный путь, его этапы и исходная социальная и философская позиция Френсиса Бэкона. Сущность учения о идолах (призраках) и об очищении от них человеческого интеллекта. Бэкон как сторонник абсолютной монархии и сильного централизованного государства.
реферат [33,4 K], добавлен 11.04.2010Основные решения проблемы познаваемости мира: гносеологический оптимизм и агностицизм. Гносеологические концепции, их сущность. Формы чувственного и рационального познания. Виды и критерии истины. Специфика научного и религиозного типов познания.
презентация [73,1 K], добавлен 08.01.2015Зарождение и особенности, эволюция религиозно-философского мировоззрения древних эллинов. Духовный путь Древней Греции, его направления и подходы к исследованию. Центрация роли человеческого интеллекта в вопросах познания онтологического первопринципа.
контрольная работа [35,1 K], добавлен 23.09.2011