Учения об атомах. Законы Кеплера. Механика Галилея

Вклад Платона в естествознание. Механика Галилея и законы Ньютона. Закон сохранения энергии. Формы записи закона сохранения энергии в классической физике. О необходимости применения понятия "энергообмен". Происхождение терминов "электричество" и "магнит".

Рубрика Физика и энергетика
Вид шпаргалка
Язык русский
Дата добавления 24.01.2013
Размер файла 467,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Закон сохранения энергии в современной трактовке ничего не говорит о сохранении направления движения, так как энергия является скалярной величиной. Но на странице, посвященной движению материи, показано, что энергия является модулем векторной физической величины, названной движением. То есть закон сохранения энергии является частным случаем более общего закона сохранения движения. А закон сохранения движения учитывает не только сохранение количества энергии, но и сохранение направления движения. Именно закон сохранения движения отражает не только вечное существование материи, но и вечное ее движение.

О необходимости применения понятия “энергообмен”

Обобщенным понятием для обозначения любого переноса энергии из системы в систему является понятие “энергообмен”. К сожалению, это понятие сейчас используется, в основном, в биологии, а не в физике, хотя это чисто физическое понятие.

Словарное определение понятия “энергообмен” найти не удалось. В том смысле, в каком оно применяется в энергодинамике, понятие “энергообмен” встречается лишь в философских словарях применительно к таким научным направлениям, как синергетика и неодетерминизм. Однако при систематизации физических величин это понятие является одним их ключевых.

Важное пояснение сделал А.Вейник (1968), указывая на то, что в записи энергетического воздействия на систему dW оператор d перед W не говорит о том, что dW является дифференциалом, так как величина dW в энергодинамике есть не изменение чего-либо, а просто бесконечно малое приращение энергообмена.

Физики чаще говорят о формах переноса энергии, а не об “энергообмене”. Но это не означает, что в физике не используются широко понятия, эквивалентные понятию “энергообмен”. Например, в механической форме движения вместо энергообмена говорят о работе силы, в электрической форме движения - о количестве электроэнергии, в тепловой форме движения - о теплообмене, а это частные случаи обобщенного понятия “энергообмен”. Представляется целесообразным постепенно вместо термина “работа силы” применять термин “механический энергообмен”, вместо термина “количество электроэнергии” - термин “электрический энергообмен”.

Наконец, необходимо учитывать, что внутри реальных физических систем всегда происходит диссипативный энергообмен, то есть переход части энергии упорядоченного движения любой формы движения в энергию неупорядоченной тепловой формы движения.

Из всего сказанного следует, что термин “энергообмен” имеет право на весьма широкое распространение в физике. Поэтому он и внесен в схему, приведенную на странице, посвященной классификации форм и видов энергии (И.Коган, 2006, 2009). И неверно, когда вместо обобщенного понятия “энергообмен” ко многим формам движения применяют частное понятие “работа”, применимое лишь в механических формах движения.

Что касается энергообмена в механических формах движения, то об этом подробно написано на странице, посвященной работе силы.

Закон Клаузиуса

Клаузиус тоже был против допущения Вебера, что при гальваническом токе в каждом элементе проводника должны одновременно перемещаться в противоположных направлениях и с одинаковыми скоростями равные количества положительного и отрицательного электричества. «Пока не существует, -- говорит он, -- неопровержимых доводов в пользу допущения подобного двойного тока, не следует отказываться от более простого представления, что ток является течением одной только жидкости, и на основе этого представления следует попытаться объяснить действия гальванического тока». Но так как закон Вебера казался ему несовместимым с этим простым представлением, то он сам попытался построить новый основной закон электродинамического действия двух движущихся частиц электричества. При этом он счел необходимым отказаться и от другого положения Вебера, согласно которому силы притяжения и отталкивания двух электрических элементов должны действовать по линии, соединяющей эти элементы. Для случая тяготения двух весомых покоящихся частиц он принял подобное направление взаимодействия как само собою разумеющееся, так как в данном случае иного определенного направления, кроме соединяющей их линии, не существует; но для двух частиц электричества, находящихся в движении, дело обстоит совершенно иначе. В данном случае кроме прямой, соединяющей обе частицы, есть еще и другие определенные направления, а именно -- направления движений самих частиц, и есть все основания думать, что и эти направления влияют на направление силы их взаимодействия. Таким образом, из всех основ веберовской теории Клаузиус оставляет в силе лишь допущение, что взаимодействие двух электрических частиц зависит от их положения и от состояния движения, обусловленного их скоростями и ускорениями. На этой основе и с помощью только опытных фактов Клаузиус выводит для электродинамического взаимодействия новый потенциал V=k(ee'vv'/r)cose или вообще для потенциала двух электрических масс е и е' друг по отношению к другу V=(ee'/r)(1+kvv'cose), где, однако, v и v' обозначают уже не относительные, а абсолютные скорости частиц и e -- угол между направлениями их движения. Однако и закон Клаузиуса вызвал ряд возражений и привлек на свою сторону лишь мало последователей. Сам Вебер был склонен признать его лишь постольку, поскольку он совпадал с его собственным законом. Г. Лорберг, по-видимому, вполне правильно, признал совершенно неприемлемой вытекающую из формулы Клаузиуса зависимость действий от абсолютных скоростей электричеств, признавая возможной зависимость этих действий только от относительной их скорости. «A priori, -- говорит он, -- конечно, нельзя отвергать допущения, что между двумя электрическими частицами может возникнуть сила не только в результате относительного их движения, но и в результате абсолютного движения их по отношению, скажем, к окружающему эфиру; но тогда, конечно, сила только кажущимся образом исходила бы из электрических частиц, и закон, поскольку он совершенно не учитывает истинного действия внешних сил, представлял бы собою нечто неудовлетворительное». Он пытается затем обосновать это действие, не делая никаких определенных допущений о движении электричества в токе, и снова приходит к тому выводу, что как пондеромоторная, так и электродвижущая силы двух элементов тока вполне соответствуют основному закону Вебера и что поэтому должно быть допущено существование противоположных движений двух электричеств в токе. Клаузиус признает ценность исследования Лорберга для выяснения данной проблемы, но продолжает настаивать на правильности своего закона и характеризует создавшееся положение следующими словами: «Если исходить из предположения, что только относительное движение в веберовском смысле этого слова может влиять на электродинамические силы, то приходишь к выводу, что основной закон Вебера является единственно возможным и что в гальваническом токе должны течь два электричества в противоположных направлениях и с равными скоростями. Если же не желают прибегать к допущению, что в гальванических, а равно и в других электрических токах, относительно которых имеют силу электродинамические законы, оба электричества движутся с равными скоростями в противоположных направлениях, то нельзя и допускать, что на электродинамические силы влияет только относительное движение (все равно, в веберовском или же в обычном смысле этого слова), а следует приписать такое влияние и абсолютным движениям; в этом случае мы приходим к моему основному закону как к единственно возможному».

«Тепловая смерть» Вселеннои?

Немецкии? астроном Г. Ольберс (1758--1840) сформулировал загадочныи? вопрос: почему звездное небо выглядит темным при бесконечно огромном скоплении звезд на небе? На современном уровне этот вопрос формулируется таким образом: какова природа несветящеи?ся материи, темноты, окружающеи? звезды, галактики, и каков предел ее распространения?

У. Кельвин высказал предположение, что правильныи? ответ на этот вопрос зависит от того, является ли Вселенная бесконечнои? или конечнои? в пространстве. Второи? закон термодинамики устанавливает направление изменения от упорядоченнои? системы к системе менее упорядоченнои?. Поэтому У. Кельвин высказал мысль, что со временем Земля не будет пригоднои? для жизни. Энтропия, ее рост, является как бы стрелои? времени. В обобщенном виде, согласно Кельвину, Вселенная погибнет или горячеи? смертью, если ее радиус в пространстве конечен (тепло всех звезд нагреет все космическое пространство), или холоднои? смертью, если энергия Вселеннои? будет рассеяна по ее безграничному пространству. Обсуждение этого вопроса общественностью конца XIX в. сделало известнои? точку зрения римского папы (Пии? XII): физика доказывает конец тленного мира, предсказанного Библиеи?.

В свою очередь Л. Больцман высказал идею флуктуационнои? гипотезы Вселеннои?. Термин «флуктуация» при переводе с латинского означает колебание, отклонение от среднеи? величины. Л. Больцман полагал, что приблизительно каждые 70 млн земных лет во Вселеннои? происходят самопроизвольно возникающие термодинамические процессы, которые препятствуют росту энтропии в отдельных местах Вселеннои?, поэтому еи? не угрожает ни холодная, ни горячая смерть.Немецкии? физик Вальтер Нернст (1864--1941) сформулировал в 1906 г. теорему, которая получила название третьего закона термодинамики.

При стремлении температуры к абсолютному нулю все изменения состояния термодинамическои? системы не изменяют ее энтропию. Другая формулировка: при помощи конечнои? последовательности термодинамических процессов нельзя достичь температуры, равнои? абсолютному нулю.

Теорема Нернста интересна своим космологическим следствием: существует ли во Вселеннои? механизм, которыи? препятствует переходу энергии на такои? структурныи? уровень, которыи? делает невозможнои? энергетическую эволюцию Вселеннои?. Эта проблема является актуальнои? и в настоящее время для современных моделеи? эволюции Вселеннои?. С учетом теоремы Нернста об энтропии сегодня говорят как о критерии различения открытых и закрытых термодинамических систем, а также как о критерии различения обратимых и необратимых термодинамических процессов. Как уже отмечалось выше, в любои? замкнутои? механическои? системе все физические процессы обратимы: «маятник Фуко», однажды запущенныи?, должен качаться вечно. В замкнутои? термодинамическои? системе дело обстоит иначе: рост энтропии приводит в неи? к необратимым процессам. Замкнутые системы не являются, грубо говоря, идеализированными объектами. Например, чтобы выи?ти в космос, необходимо изолировать космонавта от воздеи?ствии? на него космического пространства.

Открытые системы обмениваются энергиеи?, веществом и информациеи? с окружающеи? средои?. В открытых системах незначительное поступление энергии извне может увеличиваться за счет внутреннеи? энергии системы, что невозможно в закрытых, изолированных системах, как это требует второи? закон термодинамики. Применение законов классическои? термодинамики к живои? природе показало, что эти термодинамические системы имеют специфическии? механизм собственного воспроизводства, развития во времени. Например, у человека имеется иммунная система весом приблизительно в 1,5 кг, которая является системои? защиты организма от неблагоприятных воздеи?ствии? окружающеи? среды. В 1884 г. французскии? физик, химик, металловед Анри Луи Шаталье сформулировал закон или принцип: воздеи?ствие, выводящее систему из термодинамического равновесия, вызывает в неи? процессы, стремящиеся ослабить результаты этого воздеи?ствия. Этот закон называют принципом Шаталье. Данныи? принцип используется при исследовании живых систем.

Происхождение терминов «электричество» и «магнит»

Электричество - совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц - носителей электрических зарядов. Связь электричества и магнетизма Взаимодействие неподвижных электрических зарядов осуществляется посредством электростатического поля. Движущиеся заряды (электрический ток) наряду с электрическим полем возбуждают и магнитное поле, то есть порождают электромагнитное поле, посредством которого осуществляются электромагнитные взаимодействия. Таким образом, электричество неразрывно связано с магнетизмом. Электромагнитные явления описываются классической электродинамикой, в основе которой лежат уравнения Максвелла.

Происхождение терминов электричество и магнетизм. Простейшие электрические и магнитные явления известны с глубокой древности. Близ города Магнесия в Малой Азии были найдены удивительные камни (по месту нахождения их назвали магнитными, или магнитами), которые притягивали железо.

Кроме того, древние греки обнаружили, что кусочек янтаря (греч. elektron, электрон), потертый о шерсть, мог поднять маленькие клочки папируса. Именно словам магнит и электрон обязаны своим происхождением термины магнетизм, электричество и производные от них.Электромагнитные силы в природеКлассическая теория электричества охватывает огромную совокупность электромагнитных процессов.

Среди четырех типов взаимодействий - электромагнитных, гравитационных, сильных (ядерных) и слабых, существующих в природе, электромагнитные взаимодействия занимают первое место по широте и разнообразию проявлений. В повседневной жизни, за исключением притяжения к Земле и приливов в океане, человек встречается в основном только с проявлениями электромагнитных сил. В частности, упругая сила пара имеет электромагнитную природу. Поэтому смена века пара веком электричества означала лишь смену эпохи, когда не умели управлять электромагнитными силами, на эпоху, когда научились распоряжаться этими силами по своему усмотрению.Трудно даже перечислить все проявления электрических (точнее, электромагнитных) сил.

Они определяют устойчивость атомов, объединяют атомы в молекулы, обусловливают взаимодействие между атомами и молекулами, приводящее к образованию конденсированных (жидких и твердых) тел. Все виды сил упругости и трения также имеют электромагнитную природу. Велика роль электрических сил в ядре атома. В ядерном реакторе и при взрыве атомной бомбы именно эти силы разгоняют осколки ядер и приводят к выделению огромной энергии. Наконец, взаимодействие между телами осуществляется посредством электромагнитных волн - света, радиоволн, теплового излучения и др.

Основные особенности электромагнитных сил

Электромагнитные силы не универсальны. Они действуют лишь между электрически заряженными частицами. Тем не менее они определяют структуру материи и физические процессы в широком пространственном интервале масштабов - от 10-13 до 107 см (на меньших расстояниях определяющими становятся ядерные взаимодействия, а на больших - нужно учитывать и гравитационные силы).

Главная причина в том, что вещество построено из электрически заряженных частиц - отрицательных - электронов и положительных атомных ядер. Именно существование зарядов двух знаков - положительных и отрицательных - обеспечивает действие как сил притяжения между разноименными зарядами, так и сил отталкивания между одноименными, и эти силы очень велики по сравнению с гравитационными.

С увеличением расстояния между заряженными частицами электромагнитные силы медленно (обратно пропорционально квадрату расстояния) убывают, подобно гравитационным силам. Но заряженные частицы образуют нейтральные системы - атомы и молекулы, силы взаимодействия между которыми проявляются лишь на очень малых расстояниях. Существенен также сложный характер электромагнитных взаимодействий: они зависят не только от расстояний между заряженными частицами, но и от их скоростей и даже ускорений.

Применение электричества в технике Широкое практическое использование электрических явлений началось лишь во второй половине 19 в., после создания Дж. К. Максвеллом классической электродинамики. Изобретение радио А. С. Поповым и Г. Маркони - одно из важнейших применений принципов новой теории. Впервые в истории человечества научные исследования предшествовали техническим применениям. Если паровая машина была построена задолго до создания теории теплоты (термодинамики), то сконструировать электродвигатель или осуществить радиосвязь оказалось возможным только после открытия и изучения законов электродинамики.

Широкое применение электричества связано с тем, что электрическую энергию легко передавать по проводам на большие расстояния и, главное, преобразовывать с помощью сравнительно несложных устройств в другие виды энергии: механическую, тепловую, энергию излучения и т. д. Законы электродинамики лежат в основе всей электротехники и радиотехники, включая телевидение, видеозапись и почти все средства связи. Теория электричества составляет фундамент таких актуальных направлений современной науки, как физика плазмы и проблема управляемых термоядерных реакций, лазерная оптика, магнитная гидродинамика, астрофизика, конструирование вычислительных машин, ускорителей элементарных частиц и др.

Бесчисленные практические применения электромагнитных явлений преобразовали жизнь людей на земном шаре. Человечество создало вокруг себя электрическую среду - с повсеместной электрической лампочкой и штепсельной розеткой почти на каждой стене.

Границы применимости классической электродинамикиС прогрессом науки значение классического учения об электричестве не уменьшилось. Были определены лишь границы применения классической электродинамики.

Эти границы устанавливаются квантовой теорией. Классическая электродинамика успешно описывает поведение электромагнитного поля при достаточно медленных колебаниях этого поля. Чем больше частота колебаний, тем отчетливее обнаруживаются квантовые (корпускулярные) свойства электромагнитного поля.

Магнит. Тело, обладающее собственным магнитным полем. Возможно, слово происходит от др.-греч. (Magnзtis lнthos), «камень из Магнесии» -- от названия региона Магнисия и древнего города Магнесия в Малой Азии, где в древности были открыты залежи магнетита.

Простейшим и самым маленьким магнитом можно считать электрон. Магнитные свойства всех остальных магнитов обусловлены магнитными моментами электронов внутри них. С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозоном -- фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля).

Постоянный магнит -- изделие, изготовленное из ферромагнетика, способного сохранять остаточную намагниченность после выключения внешнего магнитного поля. В качестве материалов для постоянных магнитов обычно служат железо, никель, кобальт, некоторые сплавы редкоземельных металлов, а также некоторые естественные минералы, такие как магнетиты. Постоянные магниты применяются в качестве автономных (не потребляющих энергии) источников магнитного поля.

Свойства магнита определяются характеристиками размагничивающего участка петли магнитного гистерезиса материала магнита: чем выше остаточная индукция Br и коэрцитивная сила Hc, тем выше намагниченность и стабильность магнита. Характерные поля постоянных магнитов -- до 1 Тл (10 кг·с).

Электромагнит -- устройство, магнитное поле которого создаётся только при протекании электрического тока. Как правило, это катушка-соленоид, со вставленным внутрь ферромагнитным (обычно железным) сердечником с большой магнитной проницаемостью. Характерные поля электромагнитов 1,5-2 Тл определяются так называемым насыщением железа, то есть резким спадом дифференциальной магнитной проницаемости при больших значениях магнитного поля.

История открытия. Старинная легенда рассказывает о пастухе по имени Магнус (у Льва Толстого в рассказе для детей «Магнит» этого пастуха зовут Магнис). Он обнаружил однажды, что железный наконечник его палки и гвозди сапог притягиваются к чёрному камню. Этот камень стали называть «камнем Магнуса» или просто «магнитом», по названию местности, где добывали железную руду (холмы Магнезии в Малой Азии).

Таким образом, за много веков до нашей эры было известно, что некоторые каменные породы обладают свойством притягивать куски железа. Об этом упоминал в 6 веке до нашей эры греческий физик и философ Фалес. Первое научное изучение свойств магнита было предпринято в 13 веке ученым Петром Перегрином. В 1269 году вышло его сочинение «Книга о магните», где он писал о многих фактах магнетизма: у магнита есть два полюса, которые ученый назвал северным и южным; невозможно отделить полюса друг от друга разламыванием. Перегрин писал и о двух видах взаимодействия полюсов -- притяжении и отталкивании. К 12--13 векам нашей эры магнитные компасы уже использовались в навигации в Европе, в Китае и других странах мира.

В 1600 году вышло сочинение английского врача Уильяма Гильберта «О магните». К известным уже фактам Гильберт прибавил важные наблюдения: усиление действия магнитных полюсов железной арматурой, потерю магнетизма при нагревании и другие. В 1820 г. датский физик Ганс Христиан Эрстед на лекции попытался продемонстрировать своим студентам отсутствие связи между электричеством и магнетизмом, включив электрический ток вблизи магнитной стрелки. По словам одного из его слушателей, он был буквально «ошарашен», увидев, что магнитная стрелка после включения тока начала совершать колебания. Большой заслугой Эрстеда является то, что он оценил значения своего наблюдения и повторил опыт. Соединив длинным проводом полюса гальванической батареи, Эрстед протянул провод горизонтально и параллельно свободно подвешенной магнитной стрелке. Как только был включён ток, стрелка немедленно отклонилась, стремясь встать перпендикулярно к направлению провода. При изменении направления тока стрелка отклонилась в другую сторону. Вскоре Эрстед доказал, что магнит действует с некоторой силой на провод, по которому идёт ток.

Открытие взаимодействия между электрическим током и магнитом имело огромное значение. Оно стало началом новой эпохи в учении об электричестве и магнетизме. Это взаимодействие сыграло важную роль в развитии техники физического эксперимента.

Узнав об открытии Эрстеда, французский физик Доминик Франсуа Араго начал серию опытов. Он обмотал медной проволокой стеклянную трубку, в которую вставил железный стержень. Как только замкнули электрическую цепь, стержень сильно намагнитился и к его концу крепко прилипли железные ключи; когда выключили ток, ключи отпали. Араго рассматривал проводник, по которому идёт ток, как магнит. Правильное объяснение этого явления было дано после исследования французского физика Андре Ампера, который установил внутреннюю связь между электричеством и магнетизмом. В сентябре 1820 года он сообщил Французской Академии наук о полученных им результатах.

Затем Ампер в своем «станке» заменил раму свободно подвешенным спиральным проводником. Этот провод при пропускании по нему тока приобретал свойство магнита. Ампер назвал его соленоидом. Исходя из магнитных свойств соленоида, Ампер предложил рассматривать магнетизм как явление, обязанное круговым токам. Он считал, что магнит состоит из молекул, в которых имеются круговые токи. Каждая молекула представляет собой маленький магнитик, располагаясь одноимёнными полюсами в одну и ту же сторону, эти маленькие магнитики и образуют магнит. Проводя вдоль стальной полосы магнитом (несколько раз в одну и ту же сторону), мы заставляем молекулы с круговыми токами ориентироваться в пространстве одинаково. Таким образом, стальная пластинка превратится в магнит. Теперь стал понятен и опыт Араго со стеклянной трубкой, обмотанной медным проводом. Вдвинутый в неё железный стержень стал магнитом потому, что вокруг него шёл ток. Это был электромагнит.

В 1825 году английский инженер Уильям Стёрджен изготовил первый электромагнит, представляющий собой согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки. Для изолирования от обмотки стержень был покрыт лаком. При пропускании тока железный стержень приобретал свойства сильного магнита, но при прерывании тока он мгновенно их терял. Именно эта особенность электромагнитов позволила широко применять их в технике.

История происхождения магнетизма

физика энергия закон магнит

Форма взаимодействия движущихся электрических зарядов, осуществляемая на расстоянии посредством магнитного поля. Наряду с электричеством, магнетизм -- одно из проявлений электромагнитного взаимодействия. С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозоном -- фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля).

Существуют различные сведения о первом упоминании магнитов, обычно рассматривающихся в истории Древнего мира в контексте компаса или религиозных культов. Согласно одним оценкам, магнетит или магнитный железняк впервые был открыт в Китае за четыре тысячи лет до н. э. При этом отмечается, что западным исследователям свойственно отдавать приоритет в открытии магнетизма древним грекам. Первые упоминания в летописях о применении магнитных материалов восходят к третьему тысячелетию до н. э., когда легендарный китайский император Хуан-ди использовал компас во время битвы.Однако по иной версии, он использовал так называемые колесницы, указывающие на юг. Китайские мореплаватели конца второго тысячелетия до н. э. использовали компас для морской навигации. В целом, время его изобретения оценивается между 2637 и 1100 годами до н. Компас в виде ложки на гладкой поверхности использовался в династии Хань (III век до н. э.) для предсказаний. Согласно иной версии, первое упоминание магнита и магнитного компаса было сделано лишь в IV веке до н. э. в «Книге владельца Долины дьявола», а сам компас уже тогда выглядел как использовавшийся век спустя в фэншуе. Притяжение магнитом железа объяснялось с позиции проявления высших сил.

Магнетит был хорошо известен древним грекам. Тит Лукреций Кар в своём сочинении «О природе вещей» писал, что камень, притягивающий железо назывался в Греции магнитом по имени провинции Магнисия в Фессалии. По версии Плиния Старшего, слово «магнит» произошло от имени пастуха Магнеса гвозди из обуви которого и наконечник его посоха были притянуты магнитным полем, когда он вывел на пастбище своё стадо.

Первые греческие письменные упоминания магнетита относятся к VIII веку до н. э. Фалес Милетский (VII--VI вв. до н. э.) первым обратил внимание, что он притягивает железо. Различные философские школы объясняли его необычные свойства по-своему. Фалес и Анаксагор считали, что магнетит обладает душой, тянущейся к железу. Современник Анаксагора, Диоген из Аполлонии считал, что железо имеет некую «влажность» и магнит поглощает её. По иным теориям, магниты выделяли некоторые испарения, приводившие к наблюдавшимся результатам. Эмпедокл Акрагантский полагал, что магнитное взаимодействие имеет механическую природу, и для его проявления необходим прямой контакт между магнитом и железом. Эффект появления силы притяжения у железных колец, притянутых к магниту, был отмечен Сократом. Четыре века спустя, Лукреций Кар первым отметил, что магнитные материалы могут отталкиваться.

Средние века и эпоха Великих географических открытий. Во времена средневековья накопление новых знаний и теорий о природе магнетизма практически отсутствовало. Лишь монахами высказывались некоторые теологические предположения. Но в народном творчестве различных стран иногда упоминались магнитные горы или острова, способные притягивать все металлические предметы вокруг.

Согласно одной из европейских легенд, магнитный компас изобрел бедный ювелир Флавио Джойя, чтобы жениться на дочери богатого рыбака Доменико. Отец не желал себе такого зятя и поставил условие научиться плавать по прямой линии в тумане ночью. Находчивый ювелир заметил, что пробка с лежащим на ней магнитным камнем, помещенная в чашку с водой всегда ориентируется в одну сторону, и сумел выполнить сложное задание. В действительности же, «ювелиром» был папский секретарь Флавио Бьондо, в 1450 году описавший знание жителей Амальфи о компасе.

Впервые в Европе компас был упомянут в 1187 году англичанином Александром Неккамом в своих трудах De utensilibus и De naturis rerum.

Развитие магнетизма как науки

Угол, на который отклоняется магнитная стрелка от направления север -- юг, называют магнитным склонением. Христофор Колумб установил, что магнитное склонение зависит от географических координат, что послужило толчком к исследованию этого нового свойства магнитного поля Земли.

Практически все накопленные к началу XVII века сведения о магнитах подытожили в 1589 году книгой «Естественная магия» Ион Баптиста Порта и в 1600 году Уильям Гильберт своим трудом «лат. De Magnete». Магнитным силам эти учёные приписывали духовное происхождение. Русский ученый М. В. Ломоносов в 1759 г. в докладе «Рассуждение о большой точности морского пути» дал ценные советы, позволяющие увеличить точность показаний компаса. Для изучения земного магнетизма М. В. Ломоносов рекомендовал организовать сеть постоянных пунктов (обсерваторий), в которых производить систематические магнитные наблюдения; такие наблюдения необходимо широко проводить и на море. Мысль Ломоносова об организации магнитных обсерваторий была осуществлена лишь спустя 60 лет в России. Первую подробную материалистическую теорию магнетизма составил Р. Декарт. Теорию магнетизма разрабатывали также Ф. У. Т. Эпинус, Ш. Кулон, в 1788 году обобщивший закон Кулона на случай взаимодействия точечных полюсов магнита, А. Бургманс, которому принадлежит открытие притяжения и отталкивания слабомагнитных веществ (названных М. Фарадеем в 1845 году диа- и парамагнетиками), и другие учёные.

Одной из важнейших вех в истории физики магнитных явлений стало осуществление в 1820 году опыта Эрстеда с магнитной стрелкой, фактически подтолкнувшего учёных к созданию единой теории электромагнитных взаимодействий. В том же году А. М. Ампер высказал гипотезу молекулярных токов, которая конкурировала с гипотезой элементарных магнитиков -- магнитных диполей, детально разработанной В. Э. Вебером и развитой позднее Дж. А. Юингом. В 1831 г. английским полярным исследователем Джоном Россом в Канадском архипелаге был открыт магнитный полюс -- область, где магнитная стрелка занимает вертикальное положение, то есть наклонение равно 90°. В 1841 г. Джеймс Росс (племянник Джона Росса) достиг другого магнитного полюса Земли, находящегося в Антарктиде.

В 1831 году М. Фарадей открыл закон электромагнитной индукции и впервые ввёл в обращение термин «магнитное поле». В 1834 году русский академик Э. Х. Ленц установил правило о направлении индукционного тока и связанного с ним магнитного поля. В 1873 году начало современной электродинамике положило опубликование «Трактата об электричестве и магнетизме» Дж. К. Максвелла и экспериментальное обнаружение в 1888 году Г. Р. Герцем предсказанных в этом трактате электромагнитных волн. Взаимодействия электромагнитного поля с веществом рассматривал Х. А. Лорентц, создавший электронную теорию магнитных свойств и объяснивший в её рамках открытый в 1896 году эффект Зеемана.

В 1905 году П. Ланжевен на основе теоремы Лармора и электронной теории Лорентца развил классическую трактовку теории диа- и парамагнетизма.

Исследование электрическои? силы

Исследованием этои? проблемы занималось много ученых. Б. Франклину (1706-- 1790) -- одному из авторов Декларации независимости США (1776) и Конституции США (1787) -- принадлежит несколько плодотворных идеи? в исследовании природы электричества. Он полагал, что электричество, свободно движущееся в металлах, переносится мельчаи?шими частицами, которые существенно меньше атомов. Он же ввел понятие положительного и отрицательного зарядов: положительныи? заряд -- это заряд тела, которое накапливает электричество, отрицательныи? -- это заряд тела, теряющего электричество. Франклин не знал, что электричество связано с движением электронов. Поэтому то, что он назвал положительным зарядом, является на самом деле отрицательным, но традиция сохраняет принятые Франклином термины.

Б. Франклину принадлежит формулировка закона сохранения электрических зарядов в замкнутои? системе (без деи?ствия внешних сил): полныи? заряд тел, входящих в эту систему, сохраняется, хотя внутри этои? системы будут происходить изменения заряда от тела к телу при их движении внутри системы. Электричество, которое изучал Франклин, называется статическим. В России электричество изучалось М. В. Ломоносовым и Г. В. Рихманом (1711--1753), академиком Петербургскои? академии, погибшим по нелепои? случаи?ности при эксперименте. М. Ломоносову были известны идеи Франклина. В своеи? диссертации «Теория электричества, математически выведенная автором М. Ломоносовым» он сформулировал принципиально новое объяснение атмосферного электричества, чего у Франклина не было: электричество возникает в результате «трения» вертикально восходящих и нисходящих потоков частиц воздуха в атмосфере.

Исследование динамического электричества начинается с открытии? итальянцев А. Вольта (1745--1827) и Л. Гальвани (1734--1787). Изобретение в 1800 г. электрическои? батареи как иcточника постоянного электрического тока в результате химического и механического процессов вызвало огромную сенсацию: человечество приобрело способ производства электричества.

В 1791 г. профессор анатомии в Болонии Л. Гальвани опубликовал трактат «Об электрических силах в мускуле», в котором говорилось, что механизм передачи, взаимодеи?ствия в животных тканях имеет электрическую природу. Эта идея, основанная на эксперименте с лягушками, вызвала огромную сенсацию. Многие врачи стали рассматривать электричество как средство воскрешения из мертвых и восстановления функции? организма: дыхания, сердцебиения, а некоторые пытались использовать электричество как средство оживления.

В 1809 г. Л. Окен, последователь немецкого философа Ф. Шеллинга (1775-1854), опубликовал трехтомныи? труд «Учебник натуральнои? философии», в котором сформулировал 3738 истин-постулатов о происхождении жизни на основе гальваническои? полярности, т. е. электричества. Л. Окен развивал идею Ф. Шеллинга о природе как о развивающеи?ся и самоорганизующеи?ся системе, но не приводил доказательств в обоснование выдвинутых им постулатов. Исследования Ш. Кулона электрических и магнитных сил показали, что эти силы деи?ствуют в пустоте (вакууме) и убывают с увеличением расстояния между телами, как электрически заряженными, так и являющимися намагниченными. Это означало, что эти силы не нуждаются в физическои? среде для своего распространения и, следовательно, являются, как и силы тяготения, силами дальнодеи?ствия, убывающими с увеличением расстояния между взаимодеи?ствующими телами.

Аналогия между этими силами включала и существенные различия: сила тяготения, по Ньютону, зависела исключительно от массы взаимодеи?ствующих тел, в то же время электрическая сила, как показал Ш. Кулон, зависит от величины зарядов тел и их знаков (одноименно заряженные тела отталкиваются, заряженные противоположными знаками -- притягиваются). Кроме этого, прохождение электричества через металлы приводит к их нагреванию, что не наблюдалось при намагничивании тел. Далее, при электрическом взаимодеи?ствии наблюдается явление электрического разряда типа молнии и свечения среды, при магнитном и гравитационном взаимодеи?ствии такое явление отсутствует. В 1820 г. шведскии? ученыи? X. Эрстед (1777--1851) на четырех страницах опубликовал наблюдаемое им явление. Он был уверен в существовании всеобщеи? связи в мире и наблюдаемое им явление расценивал как подтверждение этои? идеи. Демонстрируя опыт о нагревании проводника, через которыи? проходит электричество, он случаи?но оставил около этого проводника компас. Наблюдательныи? студент обратил внимание на факт отклонения стрелки компаса от ее первоначального положения, когда по проводнику пропускалось электричество. X. Эрстед не смог дать объяснения этому факту. Но этот факт имел решающее значение в изучении связи электрических и магнитных сил. До этого было известно, что стрелки компаса изменяют свое положение на противоположное во время электрических разрядов в атмосфере.

Во Французскои? академии A.M. Ампер (1775--1836) и его современник Д. Ф. Араго занимались этими проблемами. Первыи? пытался объяснить, почему движущиеся электрические заряды производят магнитные свои?ства, а неподвижные -- нет. А. Ампер внес огромныи? вклад в развитие электродинамики, но его слабое здоровье не позволило ему осуществить многие идеи в области не только электродинамики, но и науки в целом. Что касается Д. Ф. Араго, изучавшего явление отклонения магнитнои? стрелки при атмосферных процессах с электрическими разрядами, то он был близок к объяснению открытия X. Эрстеда, но это удалось сделать лишь англии?скому физику М.Фарадею (1791 -- 1867). Именно исследования М. Фарадея стали основои? теории электромагнитного взаимодеи?ствия, созданнои? другим англии?ским физиком Д. Максвеллом (1831 -- 1879).

Понятие физического поля

М. Фарадеи? вошел в науку исключительно благодаря таланту и усердию в самообразовании. Выходец из беднои? семьи, он работал в переплетнои? мастерскои?, где познакомился с трудами ученых, философов. Известныи? англии?скии? физик Г.Дэви (1778--1829), которыи? способствовал вхождению М. Фарадея в научное сообщество, однажды сказал, что самым крупным его достижением в науке является «открытие» им М. Фарадея. М. Фарадеи? изобрел электродвигатель и электрогенератор, т. е. машины для производства электричества. Ему принадлежит идея о том, что электричество имеет единую физическую природу, т. е. независимо от того, каким образом оно получено: движением магнита или прохождением электрически заряженных частиц в проводнике. Для объяснения взаимодеи?ствия между электрическими зарядами на расстоянии М. Фарадеи? ввел понятие физического поля.

Физическое поле он представлял как свои?ство самого пространства вокруг электрически заряженного тела оказывать физическое воздеи?ствие на другое заряженное тело, помещенное в это пространство. С помощью металлических частиц он показал расположение и наличие сил, деи?ствующих в пространстве вокруг магнита (магнитных сил) и электрического заряженного тела (электрических). Свои идеи о физическом поле М. Фарадеи? изложил в письме-завещании, которое было вскрыто лишь в 1938 г. в присутствии членов Лондонского Королевского общества. В этом письме было обнаружено, что М. Фарадеи? владел методикои? изучения свои?ств поля и в его теории электромагнитные волны распространяются с конечнои? скоростью. Причины, по которым он изложил свои идеи о физическом поле в форме письма - завещания, возможно, следующие. Представители французскои? физическои? школы требовали от него теоретического доказательства связи электрических и магнитных сил. Кроме того, понятие физического поля, по М. Фарадею, означало, что распространение электрических и магнитных сил осуществляется непрерывным образом от однои? точки поля к другои? и, следовательно, эти силы имеют характер близкодеи?ствующих сил, а не дальнодеи?ствующих, как полагал Ш. Кулон. М. Фарадею принадлежит еще одна плодотворная идея. При изучении свои?ств электролитов он обнаружил, что электрическии? заряд частиц, образующих электричество, не является дробным. Эта идея была подтверждена определением заряда электрона уже в конце XIX в.

Электромагнитная теория Максвелла

Примерно к 1860 г. благодаря работам Неймана, Вебера, Гельмгольца и Феличи электродинамика считалась уже наукой окончательно систематизированной, с четко определенными границами. Основные исследования теперь уже, казалось, должны были идти по пути нахождения и вывода всех следствий из установленных принципов и их практического применения, к которому уже и приступили изобретательные техники.

Однако перспективу такой спокойной работы нарушил молодой шотландский физик Джемс Кларк Максвелл (1831--1879), указав на гораздо более широкую область применений электродинамики. С полным основанием Дюэм писал: «Никакая логическая необходимость не толкала Максвелла придумывать новую электродинамику; он руководствовался лишь некоторыми аналогиями и желанием завершить работу Фарадея в таком же духе, как труды Кулона и Пуассона были завершены электродинамикой Ампера, а также, возможно, интуитивным ощущением электромагнитной природы света».

Быть может, основным побуждением, которое заставило Максвелла заняться работой, вовсе не требовавшейся наукой тех лет, было восхищение новыми идеями Фарадея, столь оригинальными, что ученые того времени не способны были воспринять их и усвоить. Поколению физиков-теоретиков, воспитанных на понятиях и математическом изяществе работ Лапласа, Пуассона и Ампера, мысли Фарадея казались слишком расплывчатыми, а физикам-экспериментаторам -- слишком мудреными и абстрактными. Произошла странная вещь: Фарадей, который по своему образованию не был математиком (он начал свою карьеру разносчиком в книжной лавке, а затем поступил в лабораторию Дэви на положение полуассистента-полуслуги), чувствовал настоятельную необходимость в разработке некоего теоретического метода, столь же действенного, как и математические уравнения. Максвелл угадал это.

«Приступив к изучению труда Фарадея,-- писал Максвелл в предисловии к своему знаменитому «Трактату»,-- я установил, что его метод понимания явлений был также математическим, хотя и не представленным в форме обычных математических символов, Я также нашел, что этот метод можно выразить в обычной математической форме и, таким образом, сравнить с методами профессиональных математиков. Так, например, Фарадей видел силовые линии, пронизывающие все пространство, там, где математики видели центры сил, притягивающих на расстоянии; Фарадей видел среду там, где они не видели ничего, кроме расстояния; Фарадей предполагал источник и причину явлений в реальных действиях, протекающих в среде, они же были удовлетворены тем, что нашли их в силе действия на расстоянии, приписанной электрическим флюидам.

Когда я переводил то, что я считал идеями Фарадея, в математическую форму, я нашел, что в большинстве случаев результаты обоих методов совпадали, так что ими объяснялись одни и те же явления и выводились одни и те же законы действия, но что методы Фарадея походили на те, при которых мы начинаем с целого и приходим к частному путем анализа, в то время как обычные математические методы основаны на принципе движения от частностей и построения целого путем синтеза.

Я также нашел, что многие из открытых математиками плодотворных методов исследования могли быть значительно лучше выражены с помощью идей, вытекающих из работ Фарадея, чем в их оригинальной форме».

Что же касается математического метода Фарадея, Максвелл в другом месте замечает, что математики, которые считали метод Фарадея лишенным научной точности, сами не придумали ничего лучшего, как использование гипотез о взаимодействии вещей, не обладающих физической реальностью, как, например, элементов тока, «которые возникают из ничего, проходят участок провода и затем снова превращаются в ничто».

Чтобы придать идеям Фарадея математическую форму, Максвелл начал с того, что создал электродинамику диэлектриков. Теория Максвелла непосредственно связана с теорией Моссотти. В то время как Фарадей в своей теории диэлектрической поляризации намеренно оставил открытым вопрос о природе электричества, Моссотти, сторонник идей Франклина, представляет себе электричество как единый флюид, который он называет эфиром и который, по его мнению, присутствует с определенной степенью плотности во всех молекулах. Когда молекула находится под действием силы индукции, эфир концентрируется на одном конце молекулы и разрежается на другом; из-за этого возникает положительная сила на первом конце и равная ей отрицательная -- на втором. Максвелл целиком принимает эту концепцию. В своем «Трактате» он пишет: «Электрическая поляризация диэлектрика представляет собой состояние деформации, в которое тело приходит под действием электродвижущей силы и которое исчезает одновременно с прекращением этой силы. Мы можем представить себе ее как нечто такое, что можно назвать электрическим смещением, производимым электродвижущей силой. Когда электродвижущая сила действует в проводящей среде, она вызывает там ток, но если среда непроводящая или диэлектрическая, то ток не может проходить через эту среду. Электричество, однако, смещено в ней в направлении действия электродвижущей силы, и величина этого смещения зависит от величины электродвижущей силы. Если электродвижущая сила увеличивается или уменьшается, то в той же пропорции соответственно увеличивается или уменьшается и электрическое смещение.

Величина смещения измеряется количеством электричества, пересекающего единицу поверхности при возрастании смещения от нуля до максимальной величины. Такова, следовательно, мера электрической поляризации».

Если поляризованный диэлектрик состоит из совокупности рассеянных в изолирующей среде проводящих частиц, на которых электричество распределено определенным образом, то всякое изменение состояния поляризации должно сопровождаться изменением распределения электричества в каждой частице, т. е. настоящим электрическим током, правда ограниченным лишь объемом проводящей частицы. Иначе говоря, каждое изменение состояния поляризации сопровождается током смещения. В том же «Трактате» Максвелл говорит: «Изменения электрического смещения, очевидно, вызывают электрические токи. Но эти токи могут существовать лишь во время изменения смещения, а поскольку смещение не может превысить некоторой величины, не вызывая разрушительного разряда, то эти токи не могут продолжаться бесконечно в одном и том же направлении, подобно токам в проводниках».

После того как Максвелл вводит понятие напряженности поля, представляющее собой математическое истолкование фарадеевского понятия поля сил, он записывает математическое соотношение для упомянутых понятий электрического смещения и тока смещения. Он приходит к выводу, что так называемый заряд проводника является поверхностным зарядом окружающего диэлектрика, что энергия накапливается в диэлектрике в виде состояния напряжения, что движение электричества подчиняется тем же условиям, что и движение несжимаемой жидкости. Сам Максвелл так резюмирует свою теорию:«Энергия электризации сосредоточена в диэлектрической среде, будь то твердое тело, жидкость или газ, плотная среда, или разреженная, или же совершенно лишенная весомой материи, лишь бы она была в состоянии передавать электрическое действие.

Энергия заключена в каждой точке среды в виде состояния деформации, называемого электрической поляризацией, величина которой зависит от электродвижущей силы, действующей в этой точке...

В диэлектрических жидкостях электрическая поляризация сопровождается натяжением в направлении линий индукции и равным ему давлением по всем направлениям, перпендикулярным линиям индукции; величина этого натяжения или давления на единицу поверхности численно равна энергии в единице объема в данной точке».

Трудно более ясно выразить основную идею такого подхода, являющуюся идеей Фарадея: местом, в котором совершаются электрические явления, является среда. Как бы желая подчеркнуть, что это и есть главное в его трактате, Максвелл заканчивает его следующими словами: «Если мы примем эту среду в качестве гипотезы, я считаю, что она должна занимать выдающееся место в наших исследованиях и что нам следовала бы попытаться сконструировать рациональное представление о всех деталях: ее действия, что и было моей постоянной целью в этом трактате».

Обосновав теорию диэлектриков, Максвелл переносит ее понятия с необходимыми поправками на магнетизм и создает теорию электромагнитной индукции. Все свое теоретическое построение он резюмирует в нескольких уравнениях, ставших теперь знаменитыми: в шести уравнениях Максвелла.

Эти уравнения сильно отличаются от обычных уравнений механики -- они определяют структуру электромагнитного поля. В то время как законы механики применимы к областям пространства, в которых присутствует материя, уравнения Максвелла применимы для всего пространства независимо от того, присутствуют или не присутствуют там тела или электрические заряды. Они определяют изменения поля, тогда как законы механики определяют изменения материальных частиц. Кроме того, ньютоновская механика отказалась от непрерывности действия в пространстве и времени, тогда как уравнения Максвелла устанавливают непрерывность явлений. Они связывают события, смежные в пространстве и во времени: по заданному состоянию поля «здесь» и «теперь» мы можем вывести состояние поля в непосредственной близости в близкие моменты времени. Такое понимание поля абсолютно согласуется с идеей Фарадея, но находится в непреодолимом противоречии с двухвековой традицией. Поэтому нет ничего удивительного в том, что оно встретило сопротивление.

Возражения, которые выдвигались против теории электричества Максвелла, были многочисленны и относились как к фундаментальным понятиям, положенным в основу теории, так и, может быть в еще большей степени, к той слишком свободной манере, которой Максвелл пользуется при выводе следствий из нее. Максвелл шаг за шагом строит свою теорию с помощью «ловкости пальцев», как удачно выразился Пуанкаре, имея в виду телогические натяжки, которые иногда позволяют себе ученые при формулировке новых теорий. Когда в ходе аналитического построения Максвелл наталкивается на очевидное противоречие, он, не колеблясь, преодолевает его с помощью обескураживающих вольностей. Например, ему ничего не стоит исключить какой-нибудь член, заменить неподходящий знак выражения обратным, подменить значение какой-нибудь буквы. На тех, кто восхищался непогрешимым логическим построением электродинамики Ампера, теория Максвелла должна была производить неприятное впечатление. Физикам не удалось привести ее в стройный порядок, т. е. освободить от логических ошибок и непоследовательностей. Но с другой стороны, они не могли отказаться от теории, которая, как мы увидим в дальнейшем, органически связывала оптику с электричеством. Поэтому в конце прошлого века крупнейшие физики придерживались тезиса, выдвинутого в 1890 г. Герцем: раз рассуждения и подсчеты, с помощью которых Максвелл пришел к своей теории электромагнетизма, полны ошибок, которые мы не можем исправить, примем шесть уравнений Максвелла как исходную гипотезу, как постулаты, на которые и будет опираться вся теория электромагнетизма. «Главное в теории Максвелла -- это уравнения Максвелла»,-- говорит Герц.

...

Подобные документы

  • Законы сохранения в механике. Проверка закона сохранения механической энергии с помощью машины Атвуда. Применение закона сохранения энергии для определения коэффициента трения. Законы сохранения импульса и энергии.

    творческая работа [74,1 K], добавлен 25.07.2007

  • Гидроаэромеханика. Законы механики сплошной среды. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения энергии. Гидростатика. Равновесие жидкостей и газов. Прогнозирование характеристик течения. Уравнение неразрывности.

    курсовая работа [56,6 K], добавлен 22.02.2004

  • Пространство и время в нерелятивистской физике. Принципы относительности Галилея. Законы Ньютона и границы их применимости. Физический смысл гравитационной постоянной. Законы сохранения энергии и импульса. Свободные и вынужденные механические колебания.

    шпаргалка [7,1 M], добавлен 30.10.2010

  • Кинетическая энергия, работа и мощность. Консервативные силы и системы. Понятие потенциальной энергии. Закон сохранения механической энергии. Условие равновесия механических систем. Применение законов сохранения. Движение тел с переменной массой.

    презентация [15,3 M], добавлен 13.02.2016

  • Секрет летающей тарелки или противоречия в некоторых умах. Законы сохранения. Главные законы физики (механики): три Закона Ньютона и следствия из них - законы сохранения энергии, импульсов, моментов импульсов.

    статья [77,4 K], добавлен 07.05.2002

  • Закон сохранения импульса в классической механике и его связь с законом динамики Ньютона. Суть законов Кеплера, их связь с законом всемирного тяготения. Понятие о метрической системе. Развитие идей эволюции видов. Понятие солнечной активности, излучения.

    контрольная работа [123,7 K], добавлен 26.05.2008

  • Основные концепции классической механики Ньютона: принципы относительности и инерции, законы всемирного тяготения и сохранения, законы термодинамики. Прикладное значение классической механики: применение в пожарной экспертизе, баллистике и биомеханике.

    контрольная работа [29,8 K], добавлен 16.08.2009

  • Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.

    курс лекций [1,0 M], добавлен 13.10.2011

  • Принцип относительности Галилея. Связь между координатами произвольной точки. Правило сложения скоростей в классической механике. Постулаты классической механики Ньютона. Движение быстрых заряженных частиц. Скорость распространения света в вакууме.

    презентация [193,4 K], добавлен 28.06.2013

  • Закон сохранения импульса, закон сохранения энергии. Основные понятия движения жидкостей и газов, закон Бернулли. Сила тяжести, сила трения, сила упругости. Законы Исаака Ньютона. Закон всемирного тяготения. Основные свойства равномерного движения.

    презентация [1,4 M], добавлен 22.01.2012

  • Физическое содержание закона сохранения энергии в механических и тепловых процессах. Необратимость процессов теплопередачи. Формулировка закона сохранения энергии для механических процессов. Передача тепла от тела с низкой температурой к телу с высокой.

    презентация [347,1 K], добавлен 27.05.2014

  • Бесконечное и неделимое. Обсуждение Галилеем природы пустоты и возможности ее присутствия в телах. Сходство его теории с идеями Н. Кузанского. Теория движения Галилея. Представитель физики импетуса Дж. Бенедетти. Изменение античного понятия материи.

    реферат [35,7 K], добавлен 16.11.2013

  • Понятие механической системы; сохраняющиеся величины. Закон сохранения импульса. Взаимосвязь энергии и работы; влияние консервативной и результирующей силы на кинетическую энергию частицы. Момент импульса материальной точки; закон сохранения энергии.

    курсовая работа [111,6 K], добавлен 06.12.2014

  • Аксиоматика динамики. Первый закон Ньютона (закон инерции). Сущность принципа относительности Галилея. Инертность тел. Область применения механики Ньютона. Закон Гука. Деформации твердых тел. Модуль Юнга и жесткость стержня. Сила трения и сопротивления.

    презентация [2,0 M], добавлен 14.08.2013

  • Краткая биография Исаака Ньютона. Явление инерции в классической механике. Дифференциальный закон движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил. Третий закон Ньютона: принцип парного взаимодействия тел.

    презентация [544,5 K], добавлен 20.01.2013

  • Ускорение как непосредственный результат действия силы на тело. Теорема о кинетической энергии. Законы сохранения импульса и механической энергии. Особенности замкнутой и консервативной механических систем. Потенциальная энергия взаимодействующих тел.

    реферат [132,0 K], добавлен 22.04.2013

  • Анализ механической работы силы над точкой, телом или системой. Характеристика кинетической и потенциальной энергии. Изучение явлений превращения одного вида энергии в другой. Исследование закона сохранения и превращения энергии в механических процессах.

    презентация [136,8 K], добавлен 25.11.2015

  • Понятие работы и мощности, их измерение. Взаимосвязь между работой и энергией. Кинетическая и потенциальная энергии. Закон сохранения энергии и импульса. Столкновение двух тел. Формулы, связанные с работой и энергией при поступательном движении.

    реферат [75,6 K], добавлен 01.11.2013

  • Анализ принципов относительности Галилея и Эйнштейна. Астрономический и лабораторный метод измерения скорости света. Преобразование Лоренца и его следствия. Релятивистская механика. Взаимосвязь массы и энергии покоя. Использование ядерных реакций.

    презентация [8,7 M], добавлен 13.02.2016

  • Одномерное геометрическое пространство как частный случай трехмерного пространства без участия массы. Обоснование приближенности (неточности) традиционного закона сохранения энергии в геометрическом пространстве путем алгебраического решения интегралов.

    творческая работа [42,4 K], добавлен 17.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.