Эксплуатация трансформаторных масел

Классификация и эксплуатационный контроль маслонаполненного оборудования и трансформаторных масел. Методы и оборудование для удаления примесей в масле. Осушка и дегазация трансформаторных масел. Средства защиты масла от старения в процессе эксплуатации.

Рубрика Физика и энергетика
Вид методичка
Язык русский
Дата добавления 12.10.2013
Размер файла 257,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Сепараторы ПСМ (с обязательным вакуумированием масла) можно применять для обработки эксплуатационных трансформаторных масел непосредственно в электрооборудовании до 150 кВ включительно, с целью восстановления их электрической прочности (Uпp). Обработка масла осуществляется по замкнутой схеме (бак трансформатора ПСМ фильтр тонкой очистки масла бак трансформатора) и при обеспечении надежной герметичности схемы и требований техники безопасности может осуществляться в оборудовании, находящимся под напряжением.

7.10. Очистку эксплуатационных и отработанных трансформаторных масел от механических примесей и шлама целесообразно производить методом фильтрации.

Для этой цели на энергопредприятиях наиболее широко применяются передвижные рамные фильтр - прессы ФП2-3000 и ФП4-4 производства Полтавского турбомеханического завода, а также фильтр - прессы Ф11Р-2,2-315/16У. Основные технические характеристики фильтр - прессов приведены в приложении 5.

7.11. Маслоочистительные установки ПСМ2-4 оборудуются фильтрами тонкой очистки масла типа щелевых суперфильтров. Фильтрующие элементы данных суперфильтров представляют собой пакет бумажных колец, набранных на специальном стержне и сжатых пружиной. Оптимальная сила сжатия пакета составляет 20 кГс. Установки ПСМ2-4 также могут оборудоваться фильтр - прессами вместо щелевых суперфильтров.

7.12. Тонкость очистки трансформаторных масел от механических примесей и шлама зависит от вида и свойств фильтровального материала и конструкции фильтра.

Наиболее широко применяется на энергопредприятиях фильтровальный технический картон ГОСТ 6722-75, задерживающий частицы примесей размером более 20 мкм.

В качестве фильтрующих материалов применяются современные ткани на синтетической и вискозно-штапельной основе. Основные характеристики фильтровальных материалов, применяемых для фильтр - прессов, приведены в приложении 6. В случае отсутствия указанных фильтровальных материалов можно использовать ткань Бельтинг (ГОСТ 332-69) или фильтровальную бумагу БФМ (ТУ 81-042-70).

7.13. Перед применением фильтровальный картон необходимо высушить в сушильном шкафу в течение 24 ч при температуре 80°С. Просушенный картон до употребления хранят в баке, заполненном свежим сухим трансформаторным маслом.

7.14. При нормальной работе фильтр - пресса давление масла на фильтре должно быть не выше 0,4 МПа (4 кгс/см2). Увеличение давления масла до 0,5 МПа указывает на частичное или полное засорение фильтровального картона.

7.15. На ряде энергопредприятий имеется положительный опыт применения фильтров ФГН и ФОСН для очистки трансформаторных масел от механических примесей и шлама. В качестве фильтрующих элементов в данных фильтрах применяется нетканый материал и специальные фильтрующие патроны (Реготмас 561-1), обеспечивающие тонкость фильтрации порядка 20 мкм. Данные фильтры не комплектуются насосами и следовательно их производительность будет зависеть от производительности маслонасоса, используемого для подачи масла на фильтр. Максимальная производительность фильтров по трансформаторному маслу при 20°С будет составлять не более 40% производительности, указанной в марке фильтра.

Например для фильтров ФГН-20-20 - 8 м3, ФОСН-60 - 24 м3 или ФГН-120 - 48 м3/ч.

Достоинствами фильтров ФОСН и ФГН, разработанных объединениями “Вторнефтепродукт”, являются:

- высокая производительность при малых габаритах;

- отсутствие смешения фильтруемого масла с воздухом;

- простота регулирования и обслуживания.

8. Осушка и дегазация трансформаторных масел

8.1. В настоящее время различными руководящими и нормативно-техническими документами, а также инструкциями заводов-изготовителей электротехнического оборудования установлены предельно допустимые значения различных показателей качества трансформаторного масла, таких как пробивное напряжение, влагосодержание и газосодержание (РД 16363-87). Масло с высокими изоляционными свойствами возможно получить лишь при условии глубокой его осушки и дегазации с применением различной вакуумной и адсорбционной техники.

8.2. Эффективная осушка трансформаторных масел достигается путем адсорбционной обработки их цеолитами (молекулярными ситами).

8.2.1. Цеолиты обладают высокой адсорбционной активностью и емкостью по отношению к воде, и поэтому могут обеспечивать удаление из масла значительной части растворенной вода, даже при малом ее содержании. Целесообразнее осушку масла цеолитами производить при пробивном напряжении масла 10 кВ и более.

Средний размер пор синтетического цеолита марки NaA и природного марки ПЦГ-2, наиболее широко используемых на энергопредприятиях, составляет 410-10 м (110-10 м = 1).

Физико-химические показатели синтетических и природных цеолитов приведены в приложении 7.

Данные цеолиты обладают высоким избирательным действием по отношению к воде и практически не адсорбируют углеводородные компоненты масла и продукты его старения (размеры превышают 710-10 м), поэтому их нельзя использовать для регенерации масел.

8.2.2. При хранении цеолита интенсивно поглощают влагу и некоторые газы из окружающей среды, поэтому перед применением их необходимо восстановить (просушить) одним из следующих способов:

- сушка в тонком слое (10-20 мм) при температуре 350-400°С в течение пяти-шести часов, которая осуществляется в сушильном шкафу, электропечи;

- сушка продувкой через слой цеолита горячего сухого воздуха или инертного газа (азота) в течение трех часов при температуре 300--350°С, расход воздуха (газа) составляет 0,5-0,6 м3/ч на 1 кг цеолита;

- вакуумная сушка цеолита при температуре 250°С и остаточном давлении не выше 5332 Па (40 мм рт. ст.) в течение двух-трех часов.

Наиболее эффективны два последних способа, которые позволяют производить сушку цеолитов непосредственно в рабочих адсорберах (патронах) и тем самым предотвратить частичное увлажнение цеолита при его загрузке в адсорберы (патроны).

Перед загрузкой в адсорбер (патрон) цеолит должен быть просеян от пыли и мелких фракций (менее 2,8 мм).

Загруженный в адсорберы (патроны) цеолит, при его применении для осушки масла непосредственно в электротехническом оборудовании, должен дополнительно промываться сухим трансформаторным маслом от остатков пыли.

Хранение подготовленного цеолита осуществляется в герметичном баке под слоем сухого трансформаторного масла (Uпр более 60 кВ) без потери активности достаточно продолжительное время.

8.2.3. В настоящее время осушка масла цеолитами может осуществляться передвижными цеолитовыми установками БЦ 77-1100, ПЦУ (HO-71) или МО.02-А, технические характеристики которых приведены в приложении 8. На рис.1 изображена технологическая схема блока установки ПЦУ для осушки масла цеолитами. На территории маслохозяйства можно монтировать стационарные цеолитовые установки, используя штатное оборудование маслохозяйства (адсорберы, фильтрпрессы, маслонасосы), по технологическим схемам аналогичным схеме ПЦУ.

В настоящее время отечественной промышленностью выпускаются цеолитовые установки БЦ 77-1100 и МО.02-А

8.2.4. В качестве цеолитовых адсорберов (патронов) целесообразнее применять адсорберы, в которых отношения высоты слоя цеолита к внутреннему диаметру адсорбера составляет не менее 4:1. Расход цеолита марки NaА при осушке трансформаторного масла составляет приблизительно 0,2% массы осушаемого масла (расход природного цеолита ПЦГ-2 выше примерно в два раза).

Оптимальная производительность цеолитовой установки с четырьмя адсорберами (по 50 кг цеолита каждый), работающих по параллельной схеме, составляет 1,6-2,5 м3/ч. Осушка масла идет достаточно эффективно при температуре 15-25°С, то есть не требуется дополнительный подогрев масла.

Зa один цикл осушки пробивное напряжение масла поднимается с 10-20 до 60 кВ, а содержание воды может снижаться в 10 раз.

Рис.1. Технологическая схема блока установки ПЦУ для осушки трансформаторного масла цеолитом: 1 - маслонасос; 2 - подогреватель масла. 3, 5 - фильтры тонкой очистки масла; 4 - адсорберы (патроны); 6 - манометр; 7, 8 - коллекторы; 9 - краны; 10 - вентили

8.2.5. В настоящее время наряду с дефицитным и дорогим синтетическим цеолитом марки NаA возможно использовать природный грузинский цеолит марки ПЦГ-2, который значительно дешевле и доступнее синтетического и его применение не требует какого-либо изменения существующих технологических схем и оборудования.

8.2.6. Рационально совместное применение цеолита и силикагеля при регенерации трансформаторных масел.

Предварительная сушка масла цеолитами перед регенерацией масла силикагелем (или другим крупнопористым адсорбентом) позволяет повысить адсорбционную емкость силикагеля по отношению к продуктам старения масла.

8.3. Эффективную осушку и дегазацию трансформаторного масла обеспечивает вакуумная обработка масла.

8.3.1. Вакуумная обработка масла позволяет выделить из масла растворенную воду и газ (воздух).

Наиболее эффективными способами вакуумной обработки трансформаторных масел являются вакуумирование:

- распылением масла в вакуумных камерах большого объема;

- в тонком слое при медленном перетекании масла по поверхности специальных насадок (кольца Рашипа, хордовые насадки, спиральные кольца и др.) в вакуумных колоннах.

Учитывая, что при атмосферном давлении в трансформаторном масле может содержаться до 10% объема воздуха, для подготовки масла к заливу в герметичное оборудование трансформаторы с азотной или пленочной защитой, герметичные вводы) необходима дегазация масла.

При вакуумировании масла достигается определенное равновесие между содержанием воды и воздуха (растворенных в масле газов) в жидкой и газовой фазах, которое зависит от температуры и степени разрежения (остаточного давления). Чем ниже остаточное давление и выше температура при вакуумировании, тем полнее и быстрее происходит удаление воды и газов из масла.

Оптимальными параметрами вакуумирования для осушки и дегазации масла следует считать температуру 80 С и остаточное давление около 133 Па (1 мм рт. ст.).

8.3.2. В настоящее время осушка и дегазация масла может осуществляться на передвижных установках УРТМ-200 М, УВМ-1, УВМ-2.

Установки УВМ-1 и УВМ-2 предназначаются для сушки, дегазации, очистки от механических примесей, азотирования и нагрева трансформаторного масла, заливаемого в силовые трансформаторы и другое электротехническое оборудование. Установки могут применяться при ремонте, изготовлении, монтаже маслонаполненного высоковольтного оборудования.

Установки УВМ оборудованы электроподогревателями, масляными и вакуумными насосами, фильтрами тонкой очистки. Они могут использоваться для подготовки масел для залива в оборудование после их регенерации крупнопористыми адсорбентами с применением адсорберов непосредственно на действующем оборудовании.

Совместное применение адсорберов и вакуумных установок УВМ может обеспечивать весь необходимый комплекс мероприятий по восстановлению и поддержанию качества эксплуатационных трансформаторных масел.

Техническая характеристика передвижных установок вакуумной обработки трансформаторных масел УВМ приведена в приложении 9.

Установки типа УВМ желательно иметь каждому центральному маслохозяйству.

8.3.3. При необходимости дегазации масла в процессе эксплуатации (например для долива герметичных трансформаторов с пленочной или азотной защитой) и отсутствии вакуумных установок типа УВМ на предприятии или энергосистеме можно осуществлять дегазацию масла разбрызгиванием его при вакууме в герметичной емкости, выдерживающей остаточное давление до 13,3 Па (0,1 мм рт. ст.).

8.3.4. Современные требования к эксплуатации трансформаторных масел создают необходимость широкого использования вакуумной и адсорбционной техники, поэтому на энергопредприятиях необходимо иметь вакуумные насосы серии ВН, НВЗ, АВР, АВМ, 2ДВН, АВЗ и т.д. (при отсутствии вакуумных установок типа УВМ).

Техническая характеристика некоторых вакуумных насосов и агрегатов приведена в приложении 10.

9. Средства защиты масла от старения в процессе эксплуатации

9.1. Во время работы в электрооборудовании эксплуатационные свойства трансформаторного масла постепенно ухудшаются. Основной причиной этого процесса является термоокислительное старение масла, интенсивность которого зависит от условий эксплуатации и изначального качества масла. Процесс старения трансформаторного масла ускоряется при повышении температуры и напряженности электрического поля, а также катализируется металлами (в основном медь и железо в твердом и растворенном состоянии).

Продукты старения накапливаются в масле, оказывая отрицательное воздействие на состояние всей изоляционной системы оборудования. На поздних стадиях образуется шлам, который не только ухудшает охлаждение активной части электрооборудования, но и разрушает твердую изоляцию. Кроме того из-за образующейся в процессе старения воды ухудшаются диэлектрические свойства масла.

Наиболее интенсивно процесс старения протекает в масле, которое эксплуатируется в электрооборудовании со "свободным дыханием", где масло соприкасается с воздухом (кислородом) во время работы.

9.2. Основными способами сохранения эксплуатационных свойств масла являются:

- непрерывная регенерация крупнопористыми адсорбентами масла, залитого в оборудование, с использованием термосифонных или адсорбционных фильтров;

- правильная эксплуатация воздухоосушительных фильтров;

- применение специальных средств защиты масла от окисления (пленочная или азотная);

- поддержание необходимой концентрации антиокислительной присадки ионол;

- эффективное охлаждение масла.

9.3. Адсорбционные и термосифонные фильтры применяются для сохранения необходимых свойств масла в эксплуатации, замедления процессов его старения и увеличения срока службы масла и твердой изоляции.

9.3.1. В соответствии с требованиями ГОСТ 11677-85 масляные трансформаторы мощностью более 1 MBА оборудуются термосифонными фильтрами в системах охлаждения с естественной циркуляцией масла (вид “М” и “Д”) и адсорбционными фильтрами в системах охлаждения с принудительной циркуляцией масла, а также фильтрами для очистки от механических примесей, с целью предотвращения попадания мелких частиц адсорбента в бак трансформатора (виды ДЦ, НДЦ, Ц, НЦ).

9.3.2. Непрерывная регенерация масла осуществляется при естественной циркуляции масла сверху - вниз через термосифонный фильтр на основе термосифонного эффекта, а в адсорбционных фильтрах - с помощью принудительной циркуляции масла, создаваемой насосами охлаждения.

9.3.3. При подготовке к эксплуатации термосифонных и адсорбционных фильтров следует особое внимание обращать на надежность крепления фильтрующей сетки на опорной решетке с тем, чтобы исключить унос потоками масла фракций адсорбента в бак трансформатора, особенно в трансформаторах с принудительной циркуляцией масла, так как, попадая в масляные каналы обмотки, адсорбент вызывает ухудшение охлаждения обмотки, ее перегревы, и как следствие, ускоренное старение твердой изоляции и масла, сопровождающееся чаще всего газовыделением.

9.3.4. Количество адсорбента, загружаемого в фильтры трансформаторов, различно и зависит от марки оборудования и количества залитого в него масла. Количество адсорбента должно составлять не менее 1,25% массы залитого масла в трансформаторах мощностью до 630 кВА, 1% для трансформаторов, масса залитого масла в которых не превышает 30 т и 0,8% для трансформаторов, масса залитого масла в которых более 30 т.

9.3.5. Для регенерации трансформаторных масел применяются крупнопористые адсорбента (размер пор (30-70) х 10-10 м): силикагель марок КСКГ и ШСКГ, активная окись алюминия марок AOA-1 и АОА-2, алюмосиликатный адсорбент-катализатор и некоторые другие. Крупнопористые адсорбенты активно поглощают из масел различные продукты старения (органические кислота, перекиси, мыла и т.д.), растворенную воду и асфальто - смолистые соединения, тем самым поддерживают эксплуатационные свойства масла в необходимых пределах. Физико-химические показатели синтетических адсорбентов приведены в приложении 11.

Не рекомендуется полная замена в фильтрах силикагеля или другого крупнопористого адсорбента на цеолит, так как цеолиты (NaА, ПЦГ-2) не адсорбируют большинство продуктов старения масла в связи с малым размером пор (3,8 х 10-10 - 4,5 х 10-10 м).

Также нерационально использование в адсорбционных и термосифонных фильтрах силикагеля - шихты марки ШСКГ, содержащего до 65% зерен размером от 0,5 до 3 мм и уходящих в отсев.

9.3.6. Для регенерации трансформаторных масел можно использовать импортные силикагели марок TC-TROCKENPERLENTR (средний радиус пор 5410-10 м) производства ФРГ. Другие импортные силикагели производства Японии и Румынии в основном следует использовать в воздухоосушительных фильтрах.

9.3.7. Перед загрузкой в фильтры адсорбент должен быть просеян для удаления пыли и мелких фракций. Рабочей фракцией адсорбента является фракция 2,8-7 мм.

9.3.8. Адсорбент, загружаемый в фильтры трансформаторов, должен иметь остаточное влагосодержание не более 0,5% массы. Метод определения остаточного влагосодержания адсорбентов приведен в приложении 12. Для достижения необходимого влагосодержания просеянные адсорбенты необходимо просушить при температуре 150-200 С в течение пяти - десяти часов тонким слоем. Применение вакуумирования позволяет значительно ускорить процесс осушки и снизить температуру. Для ускорения процесса осушки адсорбентов можно также продувать через слой адсорбента горячий воздух или инертный газ. Использование вакуумирования или продувки позволяет осуществлять сушку адсорбентов непосредственно в фильтрах. После осушки остывший адсорбент загружается в фильтр или при необходимости транспортирования и хранения высыпается в герметичный бак со свежим сухим трансформаторным маслом (Uпр не менее 60 кВ). В герметичном баке под слоем масла адсорбент может храниться без потери активности длительное время. При загрузке адсорбента непосредственно в фильтр, минуя хранение в герметичном баке, необходима дополнительная отмывка его от пыли свежим, сухим маслом.

Недопустимо использование в фильтрах непросушенного адсорбента с остаточным влагосодержанием более 0,5% массы для предотвращения увлажнения масла и твердой изоляции трансформаторов.

9.3.9. Адсорбционные и термосифонные фильтры после сборки и монтажа, загруженные подготовленным адсорбентом, должны быть заполнены маслом из маслосистемы трансформатора путем подачи масла снизу вверх при открытой воздуховыпускной пробке на верхнем патрубке фильтра или маслоохладителе. Фильтры трансформаторов напряжением 110 кВ и выше должны заполняться маслом под вакуумом, а фильтры трансформаторов напряжением 110 кВ и менее - ниже без вакуума, но с принятием мер для предотвращения попадания воздуха в бак. В этом случае фильтр следует включать в работу после длительного отстоя (не менее 12 ч) и периодического выпуска выделявшегося из пор адсорбента воздуха.

9.3.10. Заполнение фильтров трансформаторов напряжением 220 кВ и выше маслом следует проводить при остаточном давлении не выше 5332 Па (40 мм рт. ст.). Для трансформаторов напряжением 110 - 154 кВ глубина вакуумирования при заполнении фильтров маслом должна быть установлена заводами-изготовителями.

9.3.11. Для оценки работоспособности адсорбента в процессе эксплуатации необходимо использовать данные химического анализа масла. Значительное увеличение кислотного числа, содержания водорастворимых кислот и tg масла в сравнении с предыдущим анализом указывает на потерю активности адсорбента и необходимость его замены.

9.3.12. Адсорбент в термосифонных и адсорбционных фильтрах должен заменяться в трансформаторах мощностью более 630 кВА при превышении значения одного из следующих показателей;

- кислотного числа масла - 0,1 мг КОН/г;

- tg соответствующей эксплуатационной нормы для данного класса оборудования (см. табл.5).

Для трансформаторов мощностью 630 кВА и менее замена адсорбента должна производиться при неудовлетворительных характеристиках твердой изоляции.

Замена адсорбента должна производиться также после капитального ремонта трансформатора и при обнаружении в эксплуатационном масле трансформаторов и реакторов напряжением 500 кВ и выше (рекомендуется также и для 220 и 330 кВ) растворенного шлама (риск появления растворенного шлама повышается при КЧ более 0,08 мг KОH/г и (или) высоком значении tg.

Замена адсорбента в процессе эксплуатации может осуществляться без демонтажа фильтра. Для этого необходимо перекрыть верхний и нижний запорные вентили, слить масло из фильтра в подготовленную емкость, а затем выгрузить отработанный адсорбент. Далее загрузка адсорбентом в соответствии с п.9.3.9. Замена может производиться на работающем оборудовании.

9.3.13. Эффективность регенерации масла крупнопористым адсорбентом тем выше, чем меньше влаги содержится в эксплуатационном масле. Поэтому представляет практический интерес применение цеолита для удаления из циркулирующего масла влаги. Осушая масло, цеолит повышает эффективность использования крупнопористого адсорбента. Совместное применение цеолита и силикагеля осуществляется следующим образом:

- слой цеолита следует засыпать в фильтры первым по ходу движения масла в количестве 0,3 объема фильтра;

- один фильтр (из четырех-шести штук, работающих в системе охлаждения трансформатора) полностью должен быть засыпан цеолитом.

Использовать можно как синтетический цеолит марки NaA, так и природный (грузинский) марки ПЦГ-2.

Последний способ предпочтителен для систем охлаждения с принудительной циркуляцией масла (адсорбционные фильтры).

9.3.14. Срок службы (продолжительность эффективной регенерации эксплуатационного масла) силикагеля марки КСКГ составляет не менее пяти лет (в оборудовании без дефектов).

9.4. Воздухоосушительные фильтры применяются:

- для осушки от влаги воздуха, поступающего в надмасляное пространство расширителя трансформаторов со "свободным дыханием". Сухой воздух защищает масло, а следовательно и твердую изоляцию трансформатора от увлажнения. Расширители трансформаторов мощностью 25 кВА и более оборудуются воздухоосушительными фильтрами с масляными затворами в соответствии с требованием ГОСТ 11677-85;

- для предохранения от увлажнения масла в резервуарах на маслохозяйстве. Наличие сухого воздуха над маслом предохраняет резервуар от коррозии, а масло от загрязнения ржавчиной;

- для предохранения масла и изоляции от увлажнения и загрязнений во вводах напряжением 110-500 кВ негерметичного исполнения.

9.4.1. Общий вид наиболее часто применяемого воздухоосушительного фильтра конструкции ОРГРЭС показан на рис.2. Заводами изготавливаются четыре типоразмера фильтров - на 1, 2, 3 и 5 кг адсорбента. Трансформаторы с массой масла свыше 60 т должны оборудоваться двумя фильтрами по пять кг адсорбента каждый. Использование для трансформаторов воздухоосушительных фильтров конструкций “Энергосетьпроект” и “Гидропроект”, которые применяются на резервуарах склада маслохозяйства, не рекомендуется, так как их конструкция несовершенна (не контролируется наличие масла в маслозатворе, трудно менять силикагель - осушитель, нет патрона для индикаторного силикагеля).

9.4.2. В качестве поглотителя в воздухоосушительных фильтрах наиболее целесообразно использовать крупнопористые силикагели (КСКГ, ШСКГ по ГОСТ 3956-76), обработанные хлористым кальцием.

Возможно использование в качестве осушителя воздуха природного и синтетического цеолитов, мелкопористых силикагелей (КСМГ, ШСМГ по ГОСТ 3956-76, импортных силикагелей производства Японии, Румынии, ФРГ), специально предназначенные для осушки газов.

Рис. 2. Общий вид воздухоосушительного фильтра конструкции ОРГРЭС: 1 - дыхательная трубка к расширителю трансформатора; 2 - стенка трансформатора; 3 - соединение фильтра с дыхательной трубкой; 4 - смотровое окно; 5 - масляный затвор; 6 - указатель уровня в масляном затворе; 7 - силикагель - индикатор; 8 - силикагель - осушитель; 9 - кронштейн

9.4.3. Осушитель перед загрузкой в фильтр должен быть просеян от пыли и просушен для достижения необходимой остаточной влажности (не более 0,5% массы). Условия подготовки осушителей приводятся в пп.8.2.2 (для цеолитов) и 9.3.8 (для силикагелей).

9.4.4. Фильтры должны быть заполнены осушителем через верхний патрубок или через люк в дне. При этом между уровнем осушителя и крышкой фильтра должно оставаться 15-20 мм свободного пространства. Для удобства обслуживания фильтр присоединяется к "дыхательному трубопроводу" на высоте 1,5 м от земли.

9.4.5. Для контроля качества осушителя в фильтре применяется индикаторный силикагель, который помещается в патрон напротив смотрового окна фильтра.

В качестве индикаторного силикагеля следует применять силикагель - индикатор ГОСТ 8984-75. Этот силикагель изменяет свою окраску (от синей до розовой) при повышении относительной влажности осушенного воздуха, проходящего через фильтр, до 50%, что свидетельствует о необходимости замены силикагеля - осушителя в фильтре.

9.4.6. Для изоляции осушителя от окружающего воздуха и очистки воздуха от механических примесей фильтры снабжены масляным затвором. Затвор следует заливать сухим трансформаторным маслом.

9.4.7. Контроль за осушителем в эксплуатации заключается в наблюдении за окраской индикаторного адсорбента и уровнем масла в масляном затворе. При посветлении отдельных зерен следует усилить надзор за фильтром, а когда зерна индикаторного адсорбента примут розовую окраску, следует заменить осушитель в фильтре. Если нельзя осуществлять регулярный контроль за цветом индикаторного силикагеля, то осушитель в фильтре следует заменять не реже одного раза в шесть месяцев.

9.4.8. При замене адсорбента в воздухоосушителе следует сменить и масло в масляном затворе. Замену следует производить в сухую погоду, отключая воздухоосушитель из работы не более чем на три часа. Целесообразно замену производить путем демонтажа воздухоосушителя с отработанным адсорбентом и установкой вместо него подготовленного к работе нового фильтра.

9.4.9. Индикаторный адсорбент, насыщенный хлористым кобальтом, для повторного использования восстанавливается прогревом при 120°С в течение 15-20 ч до принятия всей массы адсорбента голубой окраски. Нагрев адсорбента до 200-300°С не рекомендуется, так как при этом хлористый кобальт разлагается.

9.4.10. Установка воздухоосушительных фильтров к гидрозатворам вводов осуществляется в соответствии с Противоаварийным циркуляром № Э-3/69 “О повышении надежности работы вводов 110-500 кВ с бумажно-масляной изоляцией негерметичного исполнения” (М.: СЦНТИ ОРГРЭС, 1969).

В связи с небольшой вместимостью по адсорбенту воздухоосушительных фильтров вводов, измерительных трансформаторов и воздухоосушительных патронов баков контакторов устройств РПН, в наследует использовать только силикагель - индикатор по ГОСТ 8964-75 или ИС-2 по ТУ 113-12-11.075-87.

9.5. Специальные средства защиты масла от окисления применяются для исключения возможности непосредственного контакта масла в расширителе при “дыхании” трансформатора с кислородом воздуха, т.е. практически полного устранения главной причины старения масла - окисления.

Однако процессы старения масла наблюдаются и при использовании специальных средств защиты от окисления.

Процессы старения масла в герметичном оборудовании будут проявляться, в основном, в потемнении масла и увеличении tg.

Чем больше содержит масло смолистых веществ, полициклических ароматических и нафтено-ароматических углеводородов., тем интенсивнее идут процессы уплотнения углеводородов, ведущие к потемнению масла и увеличению tg. Эти процессы интенсифицируются электрическим полем.

Следовательно, особенно интенсивно процессы уплотнения протекают в маслах с высоким содержанием ароматических углеводородов и смол, таких как ТАп и ТКп.

Поэтому наиболее полно характеризует степень старения масла в герметичных трансформаторах с азотной или пленочной защитой такой показатель качества масла, как tg. В процессе эксплуатации может происходить снижение пробивного напряжения масла и увеличение влагосодержания за счет образования реакционной воды при старении в основном твердой изоляции.

9.5.1. Трансформатор с пленочной защитой заливается дегазированным маслом.

В эксплуатации для оценки герметичности защиты выполняется контроль общего газосодержания масла. Определение газосодержания можно осуществлять хроматографическим методом для определения растворенных газов. О надежности защиты косвенно можно судить также по показателям кислотного числа и содержанию антиокислительной присадки в масле.

9.5.2. Трансформаторы с азотной защитой необходимо заливать специально обработанным маслом (дегазированное и азотированное).

При эксплуатации трансформаторов с азотной защитой проверяется избыточное давление в системе (оно должно составлять 290 Па) и раз в шесть месяцев определяется чистота азота в надмасленном пространстве с помощью газоанализатора ВТИ-2 ГОСТ 5439-76 или хроматографическим методом.

9.6. Химическая защита масла от старения осуществляется с помощью ингибиторов окисления.

9.6.1. Все отечественные трансформаторные масла, выпускаемые в настоящее время, содержат антиокислительную присадку ионол (2,6 - дитретбутил; 4 - метилфенол).

Количество ионола в свежем трансформаторном масле зависит от марки масла и должно быть не менее 0,2% массы.

В присутствии ионола процесс термоокислительного старения масла находится в индукционном периоде, который характеризуется малыми скоростями образования различных продуктов окисления и как следствие малым изменением показателей качества масла. Оптимальным содержанием присадки в масле является количество 0,2-0,3% массы. Ионол в масле находится в растворенном состоянии и практически не извлекается из масла различными адсорбентами при непрерывной регенерации.

Эффективность работы ионола как ингибитора окисления, значительно выше в глубоко очищенных маслах с малым содержанием ароматических углеводородов и смол, таких как масло гидрокрекинга марки ГК

9.6.2. При эксплуатации трансформаторного масла идет процесс непрерывного расхода ионола, скорость которого зависит от многих факторов и в первую очередь от температуры и концентрации кислорода в масле. С их увеличением растет и расход ионола.

При снижении концентрации ионола в эксплуатационном масле ниже определенного предела (ниже 0,1% массы) начинается процесс интенсивного старения масла, обусловленный значительным снижением стабильности против окисления. Снижение стабильности против окисления объясняется тем, что при малых концентрациях ионола в масле он перестает работать как ингибитор окисления и становится инициатором окисления.

Эксплуатация трансформаторного масла с содержанием ионола ниже 0,1% массы недопустима потому, что при этой возможно образование шлама и ухудшение эксплуатационных свойств масла, что ведет к значительному увеличению расхода силикагеля в фильтрах трансформаторов для поддержания эксплуатационных свойств масла или к необходимости последующей замены масла на свежее.

Поэтому необходимо в процессе эксплуатации контролировать содержание ионола и вводить его в масло при снижении концентрации ионола до 0,1% массы в количестве 0,2-0,3% массы.

Введение ионола в эксплуатационное масло, в котором образовался шлам, а также с КЧ более 0,1 мг КОН/г, неэффективно, поэтому перед введением присадки необходима регенерация такого масла крупнопористым адсорбентом (п.10.2).

9.6.3. Для определения содержания ионола в трансформаторном масле (свежем, эксплуатационном и регенерированном) на энергопредприятиях следует применять метод тонкослойной хроматографии (приложение 3).

9.6.4. Присадку ионол следует вводить в масло непосредственно в баке электрооборудования или на маслохозяйстве (для слитого из оборудования масла).

Ионол вводят в трансформатор следующими способами:

- подача концентрированного раствора (до 20%) ионола через нижний боковой кран трансформатора в эксплуатационное масло;

- долив трансформатора концентрированным раствором ионола через расширитель;

- загрузка ионола в один из адсорбционных фильтров трансформатора вместо силикагеля и включения фильтра в работу.

Наиболее предпочтителен способ введения ионола посредством концентрированного раствора через нижний боковой кран трансформатора, так как обеспечивает быстрое и равномерное распределение присадки во всем объеме масла.

Технологическая схема подачи концентрированного раствора ионола в трансформаторное масло, залитое в оборудование, приведена на рис.3.

Концентрированный (до 20%) раствор ионола в свежем, сухом трансформаторном масле готовят на маслохозяйстве в специальном баке, который оборудуется мешалкой и подогревом. Нагрев бака может осуществляться электронагревателем или змеевиком, через который пропускается пар давлением 0,1-0,2 МПа или сетевая вода температурой 85-110°С. Вместо механической мешалки перемешивание раствора в баке может осуществляться путем барботирования его азотом.

Оптимальная температура приготовления раствора 60°С. Для приготовления раствора бак заполняется на 3/4 объема маслом, затем включается обогрев и при перемешивании масло нагревают до оптимальной температуры.

Постепенно мелкими порциями в бак вводят расчетное количество присадки при непрерывном перемешивании до полного ее растворения в масле. Затем готовый раствор из бака фильтруют и закачивают в специальную емкость, где он может храниться до введения его в эксплуатационное масло.

Рис. 3. Технологическая схема подачи концентрированного раствора ионола в трансформаторное масло, залитое в оборудование: 1 - передвижная емкость для раствора ионола; 2 - маслонасос; 3 - фильтр тонкой очистки масла; 4 - нижний боковой кран трансформатора; 5 - бак трансформатора; 6 - трубопроводы (шланги); 7 - расширитель.

Пунктиром обозначена линия введения раствора ионола в расширитель трансформатора

Нагрев масла до 60°С, а также его непрерывную циркуляцию в баке для приготовления раствора можно осуществлять с помощью вакуумного сепаратора типа ПСМ.

При заливе концентрированного раствора в трансформатор раствор должен удовлетворять норме по пробивному напряжению свежего масла для данного класса оборудования (для трансформаторов, оборудованных пленочной или азотной защитой, раствор должен быть дегазирован).

При обеспечении надежной герметичности схемы подачи раствора и требований техники безопасности ионол может вводиться по схеме рис.3 в оборудование, находящееся под напряжением.

9.6.5. Определить количество ионола и свежего масла, необходимого для приготовления концентрированного раствора с целью стабилизации эксплуатационного масла, можно по формуле:

где: Р - количество присадки ионол, необходимое для стабилизации эксплуатационного масла, т;

Q - количество эксплуатационного масла, подлежащего стабилизации ионолом, т;

n - задаваемое содержание присадки ионол в стабилизированном масле, % массы (до 20%);

где: q - количество свежего трансформаторного масла, необходимого для приготовления концентрированного раствора, т;

N - содержание присадки ионол в концентрированном растворе, % массы (до 20%).

9.6.6. Для продления срока службы эксплуатационных трансформаторных масел в трансформаторах 3 и 4 габаритов, а также для снижения tg можно использовать деактивирующие присадки антраниловая кислота, бетол и некоторые другие.

Эти присадки могут вводиться в масло в соответствии с Типовой инструкцией по продлению срока службы трансформаторных масел с помощью присадки “Антраниловая кислота”. ТИ 34-70-007-82 (М.: СПО Союзтехэнерго, 1982).

Оптимальное количество присадки “Антраниловая кислота” составляет 0,02-0,04% массы и при применении деактивирующих присадок необходимо отключение адсорбционных и термосифонных фильтров на начальной стадии эксплуатации масел с данными присадками.

10. Регенерация трансформаторного масла в оборудовании

10.1. Непрерывная регенерация масла крупнопористыми адсорбентами с помощью адсорбционных и термосифонных фильтров в процессе эксплуатации позволяет удалить большую часть продуктов старения и замедлить процесс старения масла.

Однако при интенсивном старении масла, вызванном различными факторами (конструктивные дефекта, работа оборудования в перегруженном режиме, малое содержание антиокислительной присадки ионол в масле и другие) и отсутствием возможности своевременной замены адсорбента в термосифонных или адсорбционных фильтрах некоторые показатели качества масла могут превысить предельно допустимые значения и становится необходимой замена или регенерация масла. Регенерация значительно выгоднее, чем замена масла на свежее.

Необходимость регенерации масла крупнопористым адсорбентом возникает при превышении одного или нескольких показателей качества предельного значения таких, как:

- кислотное число - 0,25 мг КОН/г масла;

- содержание водорастворимых кислот - 0,014 мг KОH/г масла;

- тангенс угла диэлектрических потерь при 90°С для оборудования 1150 кВ - 4%, 750 кВ - 5%, 220-500 кВ вкл. - 10%, 110-150 кВ вкл. 15%;

- наличие растворенного шлама в оборудовании свыше 220 кВ.

10.2. Регенерация масла осуществляется непосредственно в оборудовании с помощью маслорегенерационных установок.

Основной рабочий блок таких установок составляют перколяторы (адсорберы).

Технологическая схема регенерации трансформаторного масла крупнопористым адсорбентом непосредственно в оборудовании приведена на рис.4.

Рис. 4. Технологическая схема регенерации трансформаторного масла крупнопористым адсорбентом непосредственно в оборудовании: 1 - бак трансформатора; 2 - расширитель; 3 - маслонасос; 4 - подогреватель; 5 - адсорберы с крупнопористым адсорбентом; 6 - фильтр тонкой очистки (фильтр-пресс); 7 - манометр; 8 - расходомер; 9 - подсоединительные трубопроводы (шланги); 10 - трехходовые краны; 11 - вентили; 12 - нижний боковой кран трансформатора

В качестве подогревателя масла можно использовать электроподогреватель установки ПСМ или УВМ. Совместное применение адсорберов и установки УВМ позволяет проводить регенерацию масла в оборудовании, находящимся под напряжением, при обеспечении полной герметичности технологической схемы и выполнении требований техники безопасности.

Оптимальная температура регенерации масла составляет 70-80°С Расход силикагеля зависит от степени старения масла и составляет 1-2% массы от регенерируемого масла.

В настоящее время промышленные установки для регенерации трансформаторных масел не выпускаются.

Маслорегенерационные установки по приведенной выше технологической схеме могут временно монтироваться рядом с оборудованием из штатного оборудования маслохозяйства или выполняться в передвижном варианте на автоприцепе.

10.3. В процессе регенерации масла рекомендуется определять следующие, показатели качества масла:

- кислотное число;

- содержание водорастворимых кислот;

- tg при 90°С.

Наиболее удобно осуществлять контроль за процессом регенерации масла по изменению кислотного числа.

После регенерации необходимо провести сокращенный анализ масла, определить tg при 90°С и отсутствие растворенного шлама (только для масел, в которых шлам был обнаружен до регенерации). Дополнительно необходимо определить содержание ионола и (или) стабильность против окисления. Показатели качества регенерированного масла (без слива из оборудования) должны удовлетворять нормам на эксплуатационное масло (см. табл.5) и иметь кислотное число не более 0,05 мг КОН/г, при нейтральной реакции водной вытяжки.

В случае низкой стабильности против окисления регенерированного масла и (или) малого содержания антиокислительной присадки ионол (менее 0,1% массы) необходимо ввести ионол в количестве 0,2-0,3% массы в соответствии с п.9.6.4 настоящих Методических указаний.

11. Восстановление отработанных адсорбентов

11.1. Применение синтетических адсорбентов для регенерации трансформаторных масел экономически рационально лишь при условии их многократного восстановления и повторного использования.

11.2. Проведенные ПО “Союзтехэнерго” исследования показали, что для энергопредприятий наиболее эффективен комбинированный вакуум-термический метод восстановления адсорбентов. Способ основан на удалении (испарении) нефтепродуктов и воды из пор и с поверхности адсорбентов при высокой температуре в вакууме. Технологическая схема установки для восстановления отработанных адсорбентов приведена на рис.5.

Для создания вакуума можно использовать вакуумные насосы и агрегата серий 2ДВН, АВР, АВЗ, ВН и некоторые другие (например, 2ДВН-500, ABP-150, АВЗ-90, ВН-1Г и другие). В качестве конденсатора-холодильника можно использовать кожухотрубчатые теплообменники или теплообменники типа “труба в трубе”. Чем выше температура и ниже остаточное давление в процессе восстановления тем выше скорость и больше степень извлечения нефтепродуктов из адсорбентов.

11.3. Технологические параметры процесса восстановления определяются видом адсорбента и техническими характеристиками вакуумного оборудования. Крупнопористые адсорбенты (силикагель, активная окись алюминия, алюмосиликатный адсорбент) требует значительно более жесткого режима восстановления (более высоких температур и степени разряжения), чем цеолиты.

Однако температура восстановления силикагеля не должна превышать 400°С, так как при длительном воздействии более высоких температур он теряет механическую прочность и разрушается.

11.3.1. Для восстановления, крупнопористых адсорбентов рекомендуются следующие технологические параметры:

- температура не менее 350°С (для силикагеля не выше 400°С);

- остаточное давление не более 133 Па (1 мм рт. ст.).

После восстановления при остаточном давлении 13,3 Па (0,1 мм рт. ст.) и температуре 350-400С силикагель КСКГ содержит не более 2% массы нефтепродуктов и обладает достаточно высокой адсорбционной способностью. (Отработанный силикагель КСКГ содержит около 40% массы нефтепродуктов и влаги).

Рис. 5. Технологическая схема установки для восстановления отработанных адсорбентов:1 - реактор-регенератор (отношение высоты к диаметру не менее 4:1); 2 - отработанный адсорбент; 3 - ложное дно регенератора (сетка HP 2,8); 4 -электропечь (индукционная или сопротивления); 5 - вакууметр; 6 - конденсатор-холодильник; 7 - приемник сконденсированных нефтепродуктов и воды; 8 - адсорбционная ловушка; 9 - вакуумсоздающее оборудование (вакуумные насосы); 10 - вакуумные трубопроводы; 11 - вакуумный вентиль для отключения в/насоса; 12 - вакуумные вентили или заглушки для дренажа нефтепродуктов и воды, выделившихся из адсорбента

11.3.2. Для восстановления цеолитов рекомендуются следующие технологические параметры:

- температура не ниже 200С

- остаточное давление не более 1330 Па (10 мм рт. ст.).

Нефтепродукты находятся лишь на поверхности цеолитов и при их восстановлении главным является удаление воды из пор адсорбента. Восстановление цеолитов целесообразнее проводить в тех же адсорберах (патронах), в которых он используется для осушки трансформаторного масла.

Продолжительность процесса восстановления адсорбентов определяется количеством восстанавливаемого адсорбента и конструкцией установки.

11.4. При отсутствии на энергопредприятии вакуумных насосов или агрегатов, способных создавать средний вакуум [Рост не более 133 Па (1 мм рт. ст.)], целесообразно проводить восстановление адсорбентов по двухстадийной технологической схеме. Данная схема включает следующие стадии процесса:

- предварительное удаление основной массы нефтепродуктов с поверхности адсорбентов (и частично из пор) при низком вакууме (Рост более 133 Па) и невысокой температуре (около 200°С);

- дожигание оставшихся нефтепродуктов кислородом воздуха при некотором разряжении.

Предварительное удаление нефтепродуктов позволяет значительно снизить температуру в зоне горения и предотвратить разрушение силикагеля.

В качестве вакуумсоздающего оборудования целесообразно в данной схеме использовать водокольцевые насосы ВВН (ВВН-1-1,5, BBH-1-3, ВВН-3Н, BBH-1-6 и др.), а также паровые эжекторы.

Технологическая схема установки, изображенная на рис.5, применима к двухстадийному процессу, но при этом отпадает необходимость в защите вакуумного насоса от попадания паров нефтепродуктов и воды (адсорбционная ловушка 8).

11.5. После восстановления целесообразна проверка адсорбционной активности адсорбентов.

12. Указания по эксплуатации масляного хозяйства

12.1. В соответствии с требованиями ПТЭ и нормативно-техническими документами по научной организации труда масляное хозяйство электростанций и предприятий электрических сетей находятся в подчинении электроцеха электростанции или службы изоляции и грозозащита предприятий электросетей.

12.2. Масляное хозяйство энергопредприятий различных типов (ТЭС, ГЭС, ПЭС) должны обеспечивать следующие технологические операции:

- прием, хранение и выдача свежего масла;

- обработка свежего масла;

- слив подготовленного масла в оборудование;

- слив отработанных масел из оборудования;

- очистка и регенерация масла в работающем оборудовании;

- сбор, хранение, регенерация и стабилизация отработанных масел, а также их сдача на приемные пункты нефтебаз;

- учет расхода нефтепродуктов;

- хранение, подготовка и восстановление адсорбентов и других вспомогательных материалов.

12.3. В настоящее время сооружение масляных хозяйств предусмотрено на всех ТЭС независимо от количества и единичной мощности установленного оборудования.

На ГЭС и ГАЭС в зависимости от конкретных условий имеются следующие разновидности масляных хозяйств:

- стационарное, предназначенное для обслуживания только объекта базирования;

- центральное, предназначенное для обслуживания (кроме объекта базирования) также и других объектов (например ГЭС каскада);

- филиальное, предназначенное для обслуживания объекта базирования с использованием оборудования, средств и персонала центрального маслохозяйства.

На предприятиях электрических сетей масляное хозяйство, как правило, сооружается в составе ремонтно-производственных баз и мастерских по ремонту трансформаторов напряжением 330-750 кВ.

12.4. Для выполнения операций, указанных в п.12.2, в состав масляного хозяйства входит:

- открытый склад хранения масел;

- маслоаппаратная и складские помещения, расположенные в одном здании;

- коммуникации трубопроводов;

- передвижное маслоочистительное оборудование.

12.4.1. Открытый склад должен быть оборудован баками для хранения свежих (не менее двух баков), отработанных и регенерированных масел, а также трубопроводами.

Вместимость одного бака для свежего масла должна быть не менее вместимости маслосистемы одного наиболее маслоемкого трансформатора или железнодорожной цистерны (рекомендуется не менее 70 м3).

Вместимость бака для отработанного или регенерированного масла должна быть не менее вместимости маслосистемы одного наиболее маслоемкого трансформатора.

Внутренняя поверхность маслобаков должна иметь маслобензостойкое антикоррозионное покрытие ГОСТ 1510-84. Баки должны быть оборудованы воздухоосушительными фильтрами. Вокруг открытого склада хранения масел и вокруг баков должно быть обвалование для предотвращения растекания нефтепродуктов при повреждении баков.

12.4.2. Маслоаппаратная должна быть размещена в отдельном помещении и включать в себя следующее оборудование:

- расходные баки;

- маслонасосы серии III или РЗ;

- фильтры тонкой очистки масла (ФОСН, ФГН, фильтр - прессы);

- установки для очистки, осушки и регенерации масла (ПСМ, УВМ, цеолитовые установки и др.);

- адсорберы;

- подогреватели масла;

- специальное оборудование для введения присадок;

- жидкостные счетчики для учета, приема-выдачи масел;

- коммуникации трубопроводов;

- раздаточная колонка для выдачи нефтепродуктов в автотранспорт;

- приточно-вытяжную вентиляцию;

- систему автоматического пожаротушения.

Рекомендуется оснащать маслоаппаратную вакуумными насосами 2ДВН-500, ABP-150, АВЗ-90, ВН-1Г и другими при отсутствии установок УВМ.

12.4.3. Для хранения, подготовки к работе (сушка и просеивание) и восстановление адсорбентов, а также других вспомогательных материалов должны быть оборудованы отдельные помещения.

12.4.4. Масляное хозяйство должно быть оборудовано средствами механизации погрузочно-разгрузочных работ (кран-балка, лебедка, автопогрузчик, захват для бочек и др.).

12.4.5. Масляное хозяйство может быть оборудовано различным передвижным оборудованием для обработки, регенерации, сбора и залива трансформаторных масел (передвижные емкости, передвижные установки типа УВМ, ПЦУ, УТМ и др.).

12.5. Свежее и регенерированное трансформаторные масла одной марки могут храниться в одной емкости, если регенерированное масло отвечает всем требованиям ГОСТ или ТУ на свежее масло (см. табл. 1). Масла различных марок следует хранить отдельно.

12.6. Система коммуникаций трубопроводов должна быть выполнена в стационарном варианте.

Стационарные трубопроводы (напорные и сливные) изготавливаются из углеродистой стали. При временном пребывании в нерабочем состоянии они должны быть заполнены маслом и в них должно поддерживаться избыточное давление масла.

Перед каждой единицей маслонаполненного оборудования, к которой подходит стационарный трубопровод, должна быть оборудована пробоотборная точка.

Гибкие шланги, используемые при обработке масла передвижным оборудованием, перед применением должны быть тщательно осмотрены и промыты чистым маслом. Шланги, применяемые для чистого и для отработанного масла, должны иметь соответствующую маркировку и храниться с герметично закрытыми пробками.

13. Указания мер безопасности при эксплуатации масляного хозяйства

13.1. Для обеспечения пожарной безопасности необходимо:

- создать условия, снижающие или полностью исключающие возможность образования горючей паровоздушной смеси;

- провести комплекс мероприятий по устранению источников загорания;

- провести комплекс мероприятий, направленных на ограничение развития пожара и создание условий для успешного тушения начавшегося пожара.

13.1.1. К условиям снижающих возможность образования горючей паровоздушной смеси следует отнести:

- безопасные температурные условия хранения;

- применение герметичного оборудования;

- поддержание нормальной воздушной среды в аппаратной;

- обнаружение и ликвидация аварийной загазованности;

- безопасные способы и приемы ликвидации утечек масла.

13.1.2. К комплексу мероприятий по устранению источников загорания относятся следующие мероприятия:

- регламентация размеров зон взрывоопасных концентраций;

- использование искробезопасных материалов и инструмента;

...

Подобные документы

  • Особенности конструкции и диагностирования трансформаторных вводов. Метод контроля вводов путем измерения тангенса угла диэлектрических потерь и емкости изоляции. Дефектоскопия, основанная на хроматографическом анализе растворенных в масле газов (ХАРГ).

    реферат [1,6 M], добавлен 25.02.2011

  • Строительство и монтаж трансформаторных подстанций, испытание трансформаторов. Организация труда и механизация электромонтажных работ. Эксплуатация и наладка электрооборудования. Профилактические испытания изоляции, параметры надежности работы приборов.

    курсовая работа [1,8 M], добавлен 13.04.2014

  • Структурная схема контроля трансформаторных подстанций. Характеристика семейства PROFIBUS. Принцип действия измерительного трансформатора постоянного тока. Режим управления преобразователем частоты. Оценка погрешности каналов измерения напряжения и тока.

    курсовая работа [1,2 M], добавлен 29.05.2010

  • Выбор электродвигателей для привода насосных установок: расчет и построение механических характеристик, оценка возможности пуска при снижении напряжения сети. Выбор трансформаторных подстанций для станков-качалок, сечения жил кабеля для кабельной линии.

    курсовая работа [400,1 K], добавлен 21.01.2015

  • Теоретические основы по проектированию цеховых трансформаторных подстанций. Характеристика ООО "Электроремонт". Назначение цеха по ремонту электрического оборудования. Обоснование к проектированию цеховой трансформаторной подстанции предприятия.

    курсовая работа [470,6 K], добавлен 24.05.2012

  • Монтаж внутренних электрических сетей, прокладка кабельных линий в земле, внутри зданий, в каналах, туннелях и коллекторах. Электрооборудование трансформаторных подстанций, электрические машины аппаратов управления. Эксплуатация электрических сетей.

    курсовая работа [61,8 K], добавлен 31.01.2011

  • Охрана труда при эксплуатации электроустановок. Должностные обязанности электромонтеров. Инструменты, оборудование, средства защиты и материалы для выполнения комплексных работ по монтажу и обслуживанию электрического и электромеханического оборудования.

    отчет по практике [1,8 M], добавлен 20.02.2010

  • Виды трансформаторов и магнитопроводов. Выбор проводов воздушных линий. Предварительный расчет дифференциальной защиты и выбор типа реле. Расчет токов короткого замыкания. Монтаж оборудования трансформаторных подстанций. Расчет параметров схемы замещения.

    дипломная работа [2,7 M], добавлен 16.06.2015

  • Основы организации и управления производством, качеством монтажно-наладочных работ и технического обслуживания электроустановок. Нормативно-техническая документация. Правила по монтажу, эксплуатации и ремонту электрооборудования и средств автоматизации.

    реферат [2,5 M], добавлен 12.01.2009

  • Расчет параметров заданной электрической сети и одной из выбранных трансформаторных подстанций. Составление схемы замещения сети. Расчет электрической части подстанции, электромагнитных переходных процессов в электрической сети и релейной защиты.

    дипломная работа [1,0 M], добавлен 29.10.2010

  • Классификация помещения цеха по условиям окружающей среды. Классификация электроприемников, их разновидности и предъявляемые требования. Выбор места расположения цеховых трансформаторных подстанций, определение их числа и мощности. Защитная аппаратура.

    дипломная работа [1,3 M], добавлен 06.09.2014

  • Организация эксплуатации воздушных линий электропередач и трансформаторных подстанций в РЭС. Расчет осветительной сети БТОР. Способы сушки трансформаторов потерями в собственном баке, токами нулевой последовательности и токами короткого замыкания.

    дипломная работа [3,6 M], добавлен 08.06.2010

  • Разработка схемы распределительных сетей для электроснабжения потребителей в нормальном и послеаварийном режимах; выбор трансформаторных подстанций; сечений кабелей по допустимой потере напряжения. Расчет токов короткого замыкания; аппараты защиты.

    дипломная работа [917,8 K], добавлен 12.11.2011

  • Расчет максимальной токовой защиты. Выбор рационального напряжения. Расчет токов короткого замыкания. Определение числа и мощности трансформаторных подстанций. Расчетные условия для выбора проводников и аппаратов по продолжительным режимам работы.

    методичка [249,8 K], добавлен 07.03.2015

  • Диспетчеризация, обеспечение равномерности загрузки звеньев предприятия, непрерывности, ритмичности. Экономичность выполнения процессов основного производственного цикла. Режим управления преобразователем частоты, оценка погрешности каналов измерения.

    реферат [518,7 K], добавлен 27.07.2010

  • Характеристика электроприемников завода. Расчет электрических и силовых нагрузок, составление их картограммы. Определение количества и мощности цеховых трансформаторных подстанций. Подбор электрического оборудования. Выбор схемы внешнего электроснабжения.

    курсовая работа [528,6 K], добавлен 07.02.2014

  • Расчет электрических нагрузок жилых домов и общественных зданий, определение категории надежности электроснабжения объектов. Выбор количества и места расположения трансформаторных подстанций по микрорайонам. Проектирование релейной защиты и автоматики.

    дипломная работа [1,0 M], добавлен 04.09.2010

  • Определение расчетных активных нагрузок при электроснабжении завода. Выбор силовых трансформаторов главной подстанции завода и трансформаторных подстанций в цехах. Расчет и выбор аппаратов релейной защиты. Автоматика в системах электроснабжения.

    курсовая работа [770,9 K], добавлен 04.05.2014

  • Расчет электрических нагрузок жилых и общественных зданий. Вычисление основных параметров уличного освещения. Выбор силовых трансформаторов, токов короткого замыкания, оборудования на трансформаторных подстанциях. Электрические сети жилых зданий.

    дипломная работа [751,1 K], добавлен 06.04.2014

  • Выбор проводов линии, числа и места расположения трансформаторных подстанций. Расчет сечения проводов линии по методу экономических интервалов мощностей, токов короткого замыкания, аппаратов защиты, заземления. Мероприятия по защите от перенапряжений.

    курсовая работа [608,4 K], добавлен 18.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.