Естественнонаучные основания стереохронодинамики

Естественные модели категорий топологии, размеров и размерностей в категориях топологии, механизмов влияния природы процессов на размерности миров. Модели поведения локальных деформаций в среде под влиянием изменений размерностей физических миров.

Рубрика Физика и энергетика
Вид научная работа
Язык русский
Дата добавления 03.02.2014
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ЕСТЕСТВЕННОНАУЧНЫЕ ОСНОВАНИЯ СТЕРЕОХРОНОДИНАМИКИ

П.А. Вертинский

г. Усолье-Сибирское

1. Вступление (о названии)

В истории физики от Аристотеля [1] до наших дней использовались многочисленные названия физических теорий, среди которых встречаются лаконичные (ДИНАМИКА, ОПТИКА…), составные (ТЕРМОДИНАМИКА, ГИДРОДИНАМИКА, ЭЛЕКТРОДИНАМИКА…), феноменологические (МОЛЕКУЛЯРНАЯ ФИЗИКА, АТОМНАЯ ФИЗИКА…), многословные (СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ, РЕЛЯТИВИСТСКАЯ ТЕОРИЯ ГРАВИТАЦИИ…), но при внимательном рассмотрении каждого из названий мы вынуждены признать, что все названия являются ФЕНОМЕНОЛОГИЧЕСКИМИ, так как имеют своим предметом один или комплекс определенных, специально выделенных ФЕНОМЕНОВ ПРИРОДЫ: взаимодействие тел, течение жидкостей или газов, тяготение…

Одновременно с исследованиями во всех областях многочисленных феноменологических теорий на протяжении всей истории физики учёные каждый раз убеждались, что в действительности ПРИРОДА едина, но многообразна в проявлениях частных своих свойств…

Этим обстоятельством и объясняется стремление физиков с эпохи А. Эйнштейна создать ЕДИНУЮ ТЕОРИЮ ПОЛЯ (ЕТП), в которой бы объединялись законы ЭЛЕКТРОДИНАМИКИ и ТЯГОТЕНИЯ, МЕХАНИКИ и ОПТИКИ…[1], [2].

Такую теорию следовало бы назвать ТЕОРИЕЙ ЕДИНОГО ПОЛЯ (ТЕП), но исторически физика уже накопила знания о свойствах и законах многочисленных феноменов, которые мы называем полями ЭЛЕКТРИЧЕСКИМ, МАГНИТНЫМ, ГРАВИТАЦИОННЫМ..., поэтому название «ТЕП» приведёт к недоразумениям, вызывая ассоциацию ещё об одном физическом поле…[2], [3]. Вместе с тем, преследуя цель изучить единые, самые общие законы и свойства МАТЕРИАЛЬНОЙ ПРИРОДЫ, атрибутами (неотъемлимыми свойствами) которой являются пространство и время, можно в соответствии с традицией использования древнегреческих терминов назвать этот подход СТЕРЕОХРОНОДИНАМИКОЙ (СХД).

2. Происхождение проблемы

26 мая 1917 года Нобелевский лауреат, Организатор и Председатель Сольвеевских Конгрессов физиков Г.А. Лоренц по просьбе профессора Лейденского Университета П. Эренфеста представил на заседании Амстедамской Академии доклад П. Эренфеста «Каким образом в фундаментальных законах физики проявляется то, что пространство имеет три измерения?», в котором П. Эренфест выразил вековечную мечту мыслителей о ясном представлении себе всех свойств нашего мира [4]. Действительно, задолго до И.Р. Пригожина [5] специалисты из различных отраслей знания заподозрили существование различных размерностей в мирах различной природы: биологи и историки, геологи и химики, математики и философы с изумлением наблюдали такое поведение своих объектов, словно эти объекты находились в пространствах различных размерностей. Яркие примеры, иллюстрирующие этот феномен, можно привести из области физики ядерных сил, поведение которых резко отличается от поведения всех других сил в Природе, а фрактальная геометрия природы Р. Мандельброта [6] наглядно показала объективность такого феномена - зависимость размерности пространства от природы процессов. Совершенно ясно, что с целью исследования этой проблемы прежде всего необходимо обратиться к тем фундаментальным категориям, которые характеризуются размерностью. Как известно, современная топология широко применяет эту величину - размерность для своих категорий множества и многообразия, пространства и континуума, являющихся основными предметами топологических исследований.

3. Естественные модели содержания категорий топологии

Привлекая знания не только топологии, но и естественных наук, здесь с учётом корневых смысловых значений слов приходится отметить всего ПЯТЬ уровней иерархии категорий [7]:

I. Континуумы (множеств).

II. Множества (многообразий).

III. Многообразия (пространств).

IV. Пространства (миров конкретной природы).

V. Миры (взаимодействий конкретной природы).

Особенности этапов эволюции самоорганизующихся систем позволяют нам обозначить эти этапы соответствующими названиями как этапы S - образного закона эволюции систем (ПЯТЬ этапов):

1. самозарождение системы.

2. самостановление.

3. самоутверждение.

4. самосовершенствование.

5. самовырождение.

Из последнего нашего вывода об эволюции систем приходится отметить корреляцию иерархии систем и этапов их S - образного закона эволюции, то есть соответствующее усложнение системы с достижением определенного этапа развития. Другими словами, более совершенная система является более сложной, включает в себя больше под-систем, или каждая над-система является более развитой по отношению своих под-систем. Таким образом, отмечая иерархию миров по степени их развития можно отметить следующие ступени эволюции природы движения:

1. Физические миры.

2. Химические миры.

3. Биологические миры.

4. Психические миры.

5. Социальные миры.

При этом периодичность свойств материальных объектов (частиц, атомов, молекул, кристаллов, растений, животных, социумов…) порождается очередным распространением аналогий форм связей на всех ступенях иерархии. Законы - выражения связей, сохраняясь по форме, наполняются в каждой ступени своим конкретным (физическим, химическим, биологическим, психологическим, социологическим) содержанием. В связи с отмеченным обстоятельством вполне понятна гносеологическая причина значительных затруднений в систематике различных научных дисциплин, которые мы выше заметили, например, в химии (Закон Д, И. Менделеева), в биологии (систематика биологических видов) и т.п. Поэтому представляется целесообразным здесь ввести определенность при указании заданного уровня иерархии, например, арабской нумерацией со скобками, латинским алфавитом, греческим алфавитом и т.п. Из всего обилия возможных вариантов, принципиально равноправных на применение, исходя из практического удобства использования шрифтов и символов условимся латинскую нумерацию (I, II, III, IV, V) оставить за начальным уровнем иерархии, тогда арабская нумерация может применяться для очередного уровня иерархии с указанием степени, соответствующей порядку иерархической ступени, традиционно степень = 1 указывать не будем:

1.Физические миры:

1. Частицы.

2. Кластеры.

3. Ядра.

4. Атомы.

5. Тела.

Примечательным примером периодизации миров является известная периодическая таблица химических элементов Д.И. Менделеева, которая первоначально была им исполнена в виде ПЯТИ периодов. Проведенные в течение XX века различные модификации и усовершенствования этой таблицы на основе продолжающихся новых и новейших достижений атомной физики не могут быть приняты безупречными и окончательными, так как, например, до сих пор не выявлены четкие границы между последовательно заполняющимися электронами энергетическими уровнями, как это мы видели выше на примере плотности вещества в атоме. Но иерархии химических веществ, изученных за много веков, позволяют нам довольно определенно отметить именно ПЯТЬ уровней их иерархии, продолжение которой для всех миров приводит к периодической системе миров:

Например, категорию ЧЕЛОВЕК РАЗУМНЫЙ в этой нумерации можно обозначить, опуская промежуточные ступени, так:

V. Миры:

31. Биологические миры:

52. Животные:

53. Млекопитающие:

54.Приматы:

55.Человек, то есть: (V-31-52-53-54 -55).

Невольно на себя обращает внимание обозначение человека ПЯТОЙ ступенью иерархии в биологических мирах - возможно, человек разумный действительно является венцом природы, а не просто так нами принято из наших амбиций?

Периодическая система миров:

4. Естественные модели размеров и размерностей в категориях топологии

С естественнонаучной точки зрения [8] определения размерностей , и в сущности сводятся к следующим выражениям, придерживаясь терминологии и символики первоисточников:

1. Малая индуктивная размерность пространства Х равна n, если у каждой точки х есть сколь угодно малые окрестности, границы которых имеют размерность n-1 (в смысле ). Размерность пустого множества? = 0.

2. Большая индуктивная размерность пространства Х равна n, если для любых его двух не пересекающихся множеств найдётся n-1- мерное замкнутое множество, разделяющее их. Также ?=0.

3. Размерность пространства Х, определяемая с помощью покрытий пространства Х, равна n, если минимальная кратность сколь угодно малых покрытий пространства Х равна n+1.

Таким образом, ни одно из этих утверждений, справедливых по существу нахождения величины размерности соответствующих пространств, не может являться определением размерности в логическом смысле, так как логически строгое определение категории, как это мы уже видели на примере определений категорий топологии [7] континуума, множества, многообразия, пространства, требует подведения определяемой категории под более широкое понятие, такую категорию, которая является более общей по отношению к определяемой, отличающейся от боле общего своими частными особенностями. В приведенных выше топологических определениях размерности указывается на принадлежность этой категории к числу, но не указывается нигде на особенности этого числа от других чисел, не являющихся размерностью (числом линий, поверхностей, точек…).

Так как в работе [8] мы обнаружили, что переходя от уровня к уровню (от вида к виду) иерархии движений, в каждом мире взаимодействие сводится к изменению величины некоторого параметра (расстояния, размера, количества, величины…), то есть: взаимодействие = движение = изменение качества = изменение величины некоторого параметра, то наш вывод, что изменение размерности - суть изменение количества независимых свойств системы (изменение качества системы) означает определение размерности как числа независимых свойств системы, которыми в частном и самом абстрактном случае могут служить в простейшем геометрическом смысле пространственные направления - оси координат, как это представляется на рис. 1 и рис. 2:

Рис.1 Рис.2

Так как размерность является числом независимых свойств, то в случаях гомогенных миров, когда все направления изотропны, можно за координаты принимать геометрические направления под 90О, то есть применить ортогональную систему координат, так как , а , позволяя проекциям осей друг на друга превращаться в 0, то есть обеспечивать «независимость». Именно этот смысл - независимость - несёт на себе наше изображение на рис.1 и рис.2 дополнительного свойства по оси под 90о к заданному направлению уже известного свойства (длины, ширины…).

В случаях гетерогенных миров, когда направления анизотропны, такие условия «независимости» обеспечить невозможно, поэтому и условия «ортогональности» теряют своё значение, в этих мирах координаты по своему происхождению, по своей природе, «по определению» независимы. Например, - в законах газового состояния и т.п. А в общем смысле могут быть любые, принимаемые за независимые параметры, как это мы полагаем, например, в функциональных пространствах (PVT закон состояния газов) и т.п., где при углубленном подходе можно показать взаимную зависимость избранных базисных осей-параметров…(вспомним из предисловия в работе [1]:

) (1).

В качестве наглядной иллюстрации изложенных суждений воспользуемся нашим примером на рис. 3 изменения размерностей из работы [5]:

1. К 1-мерной линии (метр) добавляем новое направление - образуется двумерная плоскость (м2).

2. К 2-мерной плоскости (м2) добавляем новое направление - образуется трёхмерный объём (м3).

3. К 3-мерному объёму (м3) добавляем новое направление-свойство - давление (Па) - образуется функциональное пространство - изотермический процесс по закону Бойля - Мариотта.

4. К 3-мерному объёму (м3) добавляем новое направление - температуру (оК) - образуется функциональное пространство - изобарический процесс по закону Гей-Люссака.

Рис. 3

5. К трёхмерному объёму (м3) добавляем два новых направления - температуру (оК) и давление (Па) -- образуется функциональное пространство - процесс по закону Клайперона-Клаузиуса-Менделеева Перечисление подобных примеров можно продолжать неопределенно долго, но уже из сказанного можно вполне обоснованно заключить, что всякий раз увеличение размерности путём добавления нового независимого направления приводит к образованию Рис. 3 (Рис. 8 по [8]) нового качественного состояния системы - функциональному пространству, характеризуемому новой величиной, выраженной в соответствующих новых единицах измерения!

Так как единицы измерения длины - одномерной категории не могут быть использованы для измерения площади поверхности - двумерной категории, требующей новых единиц измерения - единиц площади, которые не могут применяться в трёхмерной категории - объёмных телах и т.д., то мы вправе представить себе, что все возможные единицы измерения, как проявления свойств соответствующих категорий являются атрибутом своих категорий, существуют, то есть содержатся в самом понятии категории: способность длины иметь определенную величину в соответствующих единицах длины, способность площади поверхности иметь определенную величину в единицах площади, способность объёма тела иметь определенную величину в единицах объёма и т.д., и т.п.

5. Определение размерности

естественный топология деформация физический

В качестве следствия из этого положения необходимо сделать вывод о субстанциональной природе всех категорий, имеющих размерность: точка расширяется (движется) по линии потому, что линия для точки как возможность двигаться есть (существует) изначально ПО ОПРЕДЕЛЕНИЮ [9], линия расширяется (движется) по поверхности потому, что поверхность для линии как возможность двигаться есть (существует) изначально ПО ОПРЕДЕЛЕНИЮ, поверхность расширяется (движется) в объём потому, что объём для поверхности как возможность двигаться есть (существует) изначально ПО ОПРЕДЕЛЕНИЮ в виде объективной субстанции.

Этот атрибутивно - субстанциональный взгляд на категорию размерности позволяет нам сформулировать принципиально важные выводы:

. В качестве определения понятия размерности мира мы теперь вправе принять число независимых свойств данного мира, то есть число его атрибутов, присущих ему по определению.

. Сопоставляя этот наш атрибутивно - субстанциональный взгляд на категории размерности с известными эмпирическими положениями об объективности лишь двух видов материи (вещества и поля) и с отсутствием в природе «просто» движения в пустоте как смещения относительно «абсолютного» пространства, приходится признать, что для всех материальных объектов в виде полей или вещественных тел предполагается общая среда, в которой и локализованы все материальные объекты (тела и поля), взаимодействуя между собой по установленным законам.

Так как мы можем применять фрактальные размерности для процессов изменения размерности куба Лебега.

При неизменном масштабе, так как при

,

То

(2).

Другими словами, на основании фрактальности геометрии многочисленных процессов мы вправе распространить самый общий топологический принцип непрерывности и на размерность тех категорий топологии, для которых этот принцип является фундаментальным. Так как функциональные связи имеют одну, общую для всех миров, форму, то вследствие различного естественного содержания различных миров возможен «дефект размера» - суть дефект того «естественного содержания» при переходе от одного мира в другой ! Мы ранее видели по (6), что в этом случае такой «дефект размера» можно вычислить как определенный интеграл в пределах от до :

(3)

Другими словами, изменение размеров объекта при его переходе из мира одной размерностив мир другой размерности можно вычислить как разницу размеров этого объекта в этих мирах. В процессе изменения размерности система приобретает или утрачивает часть своих свойств (при увеличении размерности - число свойств возрастает, а при уменьшении размерности-их число уменьшается соответственно):

То есть при отображении объекта размерностью n1 в координатной системе n2, когда модель объекта теряет ряд своих признаков или свойств, а когда, то модель объекта приобретает несуществующие у самого объекта признаки или свойства. Распространяя этот вывод согласно Г. Кантору по всем направлениям, можно увидеть естественное содержание дробных размерностей, которые реально проявляются в фрактальной геометрии природы по Мандельброту, характеризуя многочисленные процессы в природе, технике и технологии, когда, протекают процессы обратимые, количество свойств миров уменьшается, дополнительные признаки объектов в таких мирах вырождаются. Фрактальная геометрия Б. Мандельброта, как мы выше видели [8], обнаружила, что такое увеличение числа размерности может происходить постепенно, в виде определенного процесса, который определяет установленную там [8] нами степень изменения размерности.

6. Естественные модели механизмов влияния природы процессов на размерности миров

Оставляя пока открытым вопрос о конкретном содержании «дополнительного свойства» и особенностях взаимодействия для каждого из миров, этот вывод можно легко теперь иллюстрировать, используя нашу классификацию миров, что представлено на рис.4, рис.5, рис.6 и рис.7, в свою очередь подтверждая уже отмеченную нами ранее [7] иерархию миров различной природы.

Действительно, самые простые физические взаимодействия с помощью дополнительного свойства порождают более высокоорганизованные химические миры, которые в свою очередь с помощью нового дополнительного свойства порождают миры биологические, способные с помощью нового дополнительного свойства породить миры психической природы, создающих возможность взаимодействиям подняться на вершину иерархии - социум.

Рис. 4 Рис. 5

Рис. 6 Рис. 7

Привлекая все наши знания о материальной природе, по аналогии здесь можно отметить ПЯТЬ видов взаимодействий (миров):

1. Физическое взаимодействие тел (частиц) - Физические миры…

2. Химическое взаимодействие атомов в молекулах - Химические миры…

3. Биологическое взаимодействие молекул в клетках - Биологические миры…

4. Психическое взаимодействие клеток-нейронов в живом организме - Психические миры… (МЫШЛЕНИЕ).

5. Социальное взаимодействие индивидуумов в сообществе Социальные миры… (ОБЩЕСТВО).

Особое внимание здесь на себя обращает обстоятельство, что все типы взаимодействий не оставляют места пустоте, предполагается общая среда…,то есть нет в природе «просто» движения в пустоте как смещения относительно «абсолютного» пространства…, фактически подтверждая наш атрибутивно-субстанциональный взгляд на категорию размерности.

Как известно из ТРИЗ [9], МАТХЭМ - правильнее М (А) ТХЭМ - то есть ПЯТЬ основных уровней решения технических задач в НТП, где уровень А - акустический (вибрация) привнесен для «благозвучности» из соображений произношения, так как уровень АКУСТИЧЕСКИЙ уже включается в уровень М - механический. Строго говоря, если включать промежуточные, то есть пограничные уровни, то следовало бы также упомянуть термохимические (пламя), электрохимические (электролиз), электромагнитные уровни…

Рис. 8

По аналогии с правилом «МАТХЭМ» из ТРИЗ [9] в периодизации миров имеются пограничные (промежуточные) - переходные миры: физико-химические, биохимические, биопсихические (физиология?), социально-психические… Подобному анализу необходимо подвергнуть Рис. 8 миры физические и химические, где понятие эволюции выглядит «нелогично», так как мы привыкли к наглядным примерам эволюции, то есть принимаем за развивающиеся только такие процессы, которые протекают у нас «на глазах», в поле нашего зрения. Поэтому сказанные соображения легко представить обобщенно как на рис. 8 и рис. 9.

Рис. 9

Из этих выводов можно сделать заключения, что по мере возрастания уровня иерархии миров соответственно возрастает и сложность миров соответствующей природы. Наглядно этот вывод легко иллюстрируется сравнением миров физических с мирами химическими, разнообразие которых превосходит разнообразие миров физических на много порядков! Ещё более убедительно сравнение миров химических с мирами биологическими, в свою очередь по своему разнообразию превосходящие миры химические на много порядков!

Рис. 9 Продолжая такое сравнение по сложности и разнообразию до миров психических и социальных, можно лишь подчеркнуть то обилие будущих открытий в этих мирах, которые уже множество раз поражало человеческое воображение своей неисчерпаемостью! Представляется принципиально возможным понимание механизма не только классификации миров (ПЕРИОДИЧЕСКАЯ система миров по [7]), но и механизма порождения более низким миром более высокого, то есть объективно неизбежное порождение мирами ФИЗИЧЕСКИМИ ХИМИЧЕСКИХ миров, возникновение в недрах ХИМИЧЕСКИХ миров БИОЛОГИЧЕСКИХ миров, образование в мирах БИОЛОГИЧЕСКИХ миров ПСИХИКИ и, наконец, создание мирами ПСИХИЧЕСКИМИ миров СОЦИАЛЬНЫХ!

Рис. 10

В этом свете понятна необходимость и переходных этапов в эволюции миров, промежуточных звеньев в систематике, которые необходимо учитывать при идентификации видов, типов и т. п. (Ср., например, в биологических мирах земноводные - последняя ступень рыб или первая ступень пресмыкающихся, аналогичные Рис. 10 примеры во всех остальных ступенях). Возможной иллюстрацией к сказанному соображению можно теперь представить один из вариантов первичной первичной СИСТЕМАТИКИ в биологии как на рис. 10. Таким образом, на приведенных наглядных примерах мы снова убеждаемся, что всякий раз увеличение размерности путём добавления нового направления- свойства создаёт новый мир с новыми величинами, объектами, имеющих свои единицы измерения.

Другими словами в реальных многомерных мирах возможно существование и развитие различных объектов одинаковой размерности, но различной природы: возможны, например, трёхмерные миры в физике, в химии, в биологии и т. п. Более того, возможны многомерные миры одинаковой размерности в мирах одной природы, например, пятимерные миры в психологии, социологии (сообщества с различными культурами и др.!), в биологических мирах (пресноводные и морские рыбы…) При абстрактном геометрическом подходе, то есть при изотропности всех направлений многомерные геометрии не могут породить реального многообразия миров!

Таким образом, так как по определению размерность - суть атрибут категории, её неотъемлимое свойство, то наравне с самой категорией размерность подвержена всем законам эволюции, в том числе и эволюции по S-образному закону. Исходя из всеобщего характера S - образного закона эволюции систем (ПЯТЬ этапов), необходимо распространять его и на сами категории, то есть признать справедливыми промежуточные этапы каждой из основных категорий, так как они сами являются очередным этапом ИЕРАРХИИ категорий:

I. Континуумы (ПЯТИ этапов):

1. Континуумы -А.

2. Континуумы -Б.

3. Континуумы -В.

4. Континуумы -Г.

5. Континуумы -Д (Множеств (ПЯТИ этапов) и т. п. !)

II. Множества (многообразий ПЯТИ этапов).

III.Многообразия (пространств ПЯТИ этапов).

IV.Пространства (миров ПЯТИ этапов конкретной природы).

V. Миры (взаимодействий ПЯТИ этапов конкретной природы):

1. Физические миры. (Пяти этапов!).

2. Химические миры. (5-й этап - Органические миры).

3. Биологические миры. (5-й этап Психические миры).

4. Психические миры. (5-й этап Социальные миры).

5. Социальные миры. (Пяти этапов!).

7. Наглядные модели поведения локальных деформаций в среде как результат изменений размерностей физических миров под внешним влиянием

7.1 Возникновение проблемы

Как показано в работе автора [9], в качестве определения понятия размерности мира мы вправе принять число независимых свойств данного мира, то есть число его атрибутов, присущих ему по определению.

Более того, в работе автора [10] показана обоснованная возможность распространения этого взгляда и на полноту аксиоматики теорий. Действительно, полная система фундаментальных аксиом в основаниях естественнонаучных теорий должна содержать количество адекватных аксиом на единицу больше по отношению к размерности пространства решаемых теорией задач. Действительно, классическая электродинамика в действительности была основана на трех аксиомах [10], поэтому могла решать лишь плоские задачи, то есть для нее оказалось невозможным решение задач в трехмерном пространстве (“электромагнитный парадокс”, взаимодействие тороидальных обмоток, взаимодействие длинных соленоидов и др.) Магнитодинамика заменила неадекватную аксиому

(4)

на адекватную

(5)

и оказалась способной успешно решать трехмерные задачи на основе четырех адекватных аксиом. Классическая гидродинамика была основана на трех аксиомах - уравнениях Эйлера [10], не учитывала теорему об электрогидравлическом кумулятивном эффекте, поэтому не могла видеть решения трехмерных задач по суперпозиции ударных волн, рассматривая движение гидропотока и потока ударных волн независимо. Электрогидродинамика добавила к трем уравнениям Эйлера - аксиоматической основе классической гидродинамики теорему об электрогидравлическом кумулятивном эффекте, предопределив основания из четырех адекватных аксиом, что и позволило ей решать трехмерные задачи в виде электрогидравлических систем. Физика конденсированных сред накопила множество экспериментальных результатов, из которых мы систематизировали три наиболее фундаментальные и положили их в основания ликвикристаллодинамики [5], что позволило нам решать новые плоские задачи по применению электромеханического эффекта в жидкокристалических веществах. В этой связи здесь уместно вспомнить аналогию с Геометрией Эвклида [9], пятый постулат о параллельных прямых которой на протяжении многих веков не вписывался в стройное здание элементарной геометрии, пока Геометрии Лобачевского и Бойяи не открыли выход в четырёхмерное пространство - время, востребованное Минковским для СТО. В сущности, пятый постулат в трёхмерной Геометрии Эвклида не был востребован, так как Геометрия Эвклида возникла и широко применялась для адэкватного решения трёхмерных пространственных задач. Для этого по Клейну необходимо и вполне достаточно четырёх фундаментальных аксиом! В техническом черчении (на основе начертательной геометрии) аналогично невозможно по одной проекции объёмной детали получить изображение всей детали, для такой цели требуется в стандартных (простейших) условиях минимум две проекции детали, а в общем случае необходимы все три проекции, хотя каждая из этих проекций получается из общего вида всей детали путём соответствующего проецирования… При этом здесь необходимо отметить следующее важное обстоятельство. Так как каждая сформировавшаяся, состоявшаяся научная теория, которая уже на практике показала свою адэкватность и продуктивность, основывается на своих фундаментальных принципах (аксиомах, постулатах…), число которых на единицу превосходит размерность пространства, адэкватно решаемых теорией практических задач, то с позиций этой полной теории возможно получение любой из её фундаментальных аксиом в виде частного следствия, то есть путём уменьшения количества аксиом, выходящих за пределы данного частного феномена. Например, закон всемирного тяготения И. Ньютона содержит в себе законы Кеплера в качестве частных случаев, но получить выражение этого закона тяготения из одного или любой пары законов Кеплера невозможно, хотя из закона тяготения каждый закон Кеплера выражается в качестве частного случая. Аналогичный пример с законом Клайперона-Клаузиуса-Менделеева и законами Бойля-Мариотта, Гей-Люссака и Шарля и др.

...

Подобные документы

  • Общая характеристика и главные отличия периодической системы измерения величин и системы единиц СИ. Примеры, способы и формулы перехода от размерностей международной системы (СИ) к размерностям периодической системы (АС) измерения физических величин.

    реферат [66,1 K], добавлен 09.11.2010

  • Основная идея использования метода анализа размерностей. Понятие о безразмерных величинах. Основные понятия теории подобия. Метод масштабных преобразований. Первая теорема Ньютона. Критерий Нуссельта, Фурье, Эйлера. Подобие нестационарных процессов.

    реферат [570,2 K], добавлен 23.12.2014

  • Классификация квантоворазмерных гетероструктур на основе твердого раствора. Компьютерное моделирование физических процессов в кристаллах и квантоворазмерных структурах. Разработка программной модели энергетического спектра электрона в твердом теле.

    дипломная работа [2,2 M], добавлен 21.01.2016

  • Анализ уравнения движения математического маятника. Постановка прямого вычислительного эксперимента. Применение теории размерностей для поиска аналитического вида функции. Разработка программы с целью нахождения периода колебаний математического маятника.

    реферат [125,4 K], добавлен 24.08.2015

  • Построение и исследование математической модели реактивной паровой турбины: назначение, область применения и структура системы. Описание физических процессов, протекающих в технической системе, её основные показатели: величины, режимы функционирования.

    курсовая работа [665,8 K], добавлен 29.11.2012

  • Способы построения программы в программной среде MatLab. Формулы, необходимые для математического моделирования физической модели. Построение графической модели колебания струны с жестко закрепленными концами. Создание физической модели колебания.

    лабораторная работа [307,7 K], добавлен 05.01.2013

  • Разработка платы ГИМС. Материалы для подложки, плёночных элементов и плёночных проводников. Конструкция плёночных элементов, описание методики их расчета. Расчёт топологических размеров элементов. Выбор размера платы, разработка топологии платы.

    курсовая работа [38,6 K], добавлен 04.12.2007

  • Теория нуклеации пересыщенного пара. Скорость образования зародышей новой фазы. Экспериментальные методы исследования процессов нуклеации. Пример поверхности скорости нуклеации для системы пентанол-вода. Траектория экспериментов для расширительной камеры.

    курсовая работа [552,8 K], добавлен 23.02.2012

  • Создание математической модели трехконтурной электрической схемы в среде табличного процессора Excel. Система уравнений для расчета контурных токов. Схема электрической цепи. Влияние изменения параметров схемы тяговой сети на токи тяговых подстанций.

    контрольная работа [60,2 K], добавлен 14.12.2010

  • Системы физических величин и их единиц, роль их размера и значения, специфика классификации. Понятие о единстве измерений. Характеристика эталонов единиц физических величин. Передача размеров единиц величин: особенности системы и используемых методов.

    реферат [96,2 K], добавлен 02.12.2010

  • Реферативное описание одного из этапов истории эволюции Вселенной. Определение физической величины по ГОСТ 8.417-2002. Основные изменения физической величины при изменении фундаментальных физических констант. Описание эталона и эталонной установки.

    контрольная работа [517,7 K], добавлен 20.04.2019

  • Принципы численного моделирования влияния пор на физико-механические свойства материалов. Разработка элементной модели углепластика, содержащей дефект в виде поры на границе волокно-матрица. Построение такой модели в программном комплексе ANSYS.

    дипломная работа [4,5 M], добавлен 21.09.2017

  • Фазовые переходы второго рода. Компьютерное моделирование критического поведения, влияние на него дефектов структуры. Модель Гейзенберга, алгоритм Вульфа. Коротковременная динамика, уточнение критической температуры. Расчет критических индексов.

    дипломная работа [876,3 K], добавлен 07.02.2011

  • Инструменты и методы создания объектов в среде Elcut, решение задачи и визуализации результатов расчета. Распределение токов в проводящей среде. Создание геометрической модели, состоящей из электродов, один из которых имеет потенциал "+1В", другой "-1В".

    лабораторная работа [175,6 K], добавлен 26.06.2015

  • Основы ядерной энергетики. Способы получения энергии. Способы организации реакции горения, цепные реакции. Взаимодействие нейтронов с ядерным веществом, реакция деления ядер. Жизненный цикл нейтронов.

    курсовая работа [20,6 K], добавлен 09.04.2003

  • Формулировка математической модели для описания процессов тепло- и массообмена в теплообменниках-испарителях в условиях теплопритока с учетом реальных свойств рабочего тела, листинг программного комплекса для математического моделирования этих процессов.

    отчет по практике [41,8 K], добавлен 15.09.2015

  • История появления статистических методов в познании, а также развитие теории вероятностей. Детерминизм процессов природы в современной науке. Последствия открытия закона сохранения и превращения энергии. Сущность проблемы "тепловой смерти Вселенной".

    контрольная работа [27,7 K], добавлен 21.11.2009

  • Проектирование и моделирование топологии широкополосного трансформатора сопротивлений на четвертьволновых отрезках линии передачи в микрополосковом исполнении. Синтез трансформатора сопротивлений в распределенном электрическом элементном базисе.

    курсовая работа [1,0 M], добавлен 26.05.2019

  • Построение стационарной модели тепло-массопереноса для различных условий теплоотвода через стенку реактора, а также разработка программы для исследования теплообмена в псевдоожиженном слое. Математические модели теплообмена в псевдоожиженном слое.

    курсовая работа [116,5 K], добавлен 10.12.2013

  • Проблемы теории суперструн. Периодическая система измерения физических величин, расчет их размерности на основании "пи-теоремы". Зависимость между физическими величинами с точностью до постоянного безразмерного множителя, ее соответствие законам физики.

    реферат [73,8 K], добавлен 05.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.