Естественнонаучные основания стереохронодинамики

Естественные модели категорий топологии, размеров и размерностей в категориях топологии, механизмов влияния природы процессов на размерности миров. Модели поведения локальных деформаций в среде под влиянием изменений размерностей физических миров.

Рубрика Физика и энергетика
Вид научная работа
Язык русский
Дата добавления 03.02.2014
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

7.2 Мир деформаций

Теория упругости [11] знает всего ПЯТЬ типов деформации тел: сжатие, растяжение, сдвиг, изгиб и кручение, которые известными преобразованиями не сводятся друг к другу. Вместе с этим, в механике [12] известны многочисленные наглядные примеры тесной взаимосвязи, сопутствия друг другу сжатия и растяжения (рис. 11), сдвига и изгиба (рис. 12), сдвига и кручения и т. п. Из этих примеров самоочевидна своеобразная иерархия такого сопутствия:

Рис. 11 Рис. 12

1. Сжатию сопутствует растяжение.

2. Сдвигу сопутствуют сжатие и растяжение.

3. Изгибу сопутствуют сжатие, растяжение и сдвиг.

4. Кручению сопутствуют сжатие, растяжение, сдвиг и изгиб.

Действительно, обозначая компоненты нормальных напряжений в некоторой точке деформируемой среды через , а тангенциальных через , можно записать известное выражение для тензора напряжений [7] из которого наглядно видно влияние всех компонент напряжений:

(6).

Как известно [13], уравнение поверхности нормальных напряжений в некоторой точке деформированной среды в прямоугольной системе координат можно выразить:

(7)

В частных случаях [8] такая поверхность может принимать один из показанных на рис.13 (сфера), рис.14 (тор) и рис.15 (скрученный тор) видов:

Рис. 13 Рис. 14 Рис. 15

Другими словами, очередные виды деформаций связаны с новыми возможностями, появлением новых свойств деформируемого объекта, как это свойственно процессу увеличения размерности мира [9]. Следовательно, мир деформаций мы вправе представить в качестве многомерного пространства, в котором «дополнительное» свойство представляет собой дополнительную способность данной деформации, как это показано на рис. 16. При этом, присваивая каждому новому виду деформации дополнительное направление, мы должны будем кручению «присвоить» все три измерения. На основании изложенного представляется обоснованной своеобразная иерархия деформаций:

1. Сжатие. 2. Растяжение. 3. Сдвиг. 4. Изгиб. 5. Кручение.

Рис. 16

В связи с изложенными соображениями здесь уместно вспомнить из теории упругости так называемые «УСЛОВИЯ СОВМЕСТНОСТИ ДЕФОРМАЦИЙ» Сен-Венана [12], которые определяют непрерывность среды. Как это мы обнаружили в работе [9], главный принцип ТОПОЛОГИИ - НЕПРЕРЫВНОСТЬ является отражением главного свойства нашего МИРА - НЕПРЕРЫВНОСТИ его СУБСТАНЦИИ. Таким образом, количественное увеличение дополнительных направлений (свойств, способностей, возможностей…) приводит к появлению новых качественных признаков, величин, параметров…Сопоставляя этот наш атрибутивно - субстанциональный взгляд на категории размерности с известными эмпирическими положениями об объективности лишь двух видов материи (вещества и поля) и с отсутствием в природе «просто» движения в пустоте как смещения относительно «абсолютного» пространства, приходится признать, что для всех материальных объектов в виде полей или вещественных тел предполагается общая среда, в которой и локализованы все материальные объекты (тела и поля), взаимодействуя между собой по установленным законам.

История физики со времен Аристотеля многократно приходила к идее об эфире - некоей субстанции, в которой протекают все наблюдаемые нами процессы. Не повторяя здесь хронологию этих гипотез, отошлю читателя к авторам, уже в XX веке выдвинувших свои подобные гипотезы, которые так и не стали продуктивными теориями, так как не смогли преодолеть известные противоречия гипотезы эфира. Отсылая читателя к полным текстам трудов упомянутых мыслителей, я здесь процитирую лишь по одной ключевой в данном направлении мысли каждого из упомянутых авторов:

«…Пространство - единство, в котором форма образована частицами, расположенными по поверхности объёма, вырезанного ими из пустоты, а содержание представляет собой густоты и частицы, заполняющие этот объём…» (См. [14], стр. 45 и далее).

«…Таким образом, по совокупности всех требований наилучшим образом свойствам микромира удовлетворяет газоподобная среда…» (См. [15], стр. 46 и далее).

«…классическая динамика и квантовая механика представляют собой две дополнительные процедуры атомной теории…» (См. [16], стр.18 и далее).

«…Таким образом, глобула - это элементарная единица макрообъёма газа и жидкости, в которой сочетается единство массы, энергии и пространства, а также, как увидим ниже, электрических зарядов…» (См. [17], стр.10 и далее).

С целью выяснения объективных причин тех систематических неудач многочисленных вариантов гипотез эфира мне придётся, учитывая мизерный тираж издания, процитировать себя из упомянутой статьи [9]: «В 1935 году Нильс Бор в работах по квантовой физике пришел к гносеологическому выводу, что явления в микромире представляются понятными на механическом уровне. В частности, его «планетарная» модель, построенная на механическом равновесии сил электрических между электронами на орбитах и протонами в ядре атома и центробежными силам инерции движения электронов по орбитам, дополненная квантовым принципом, оказалась не только понятной даже для неспециалистов, но и наиболее продуктивной в атомной физике. Несмотря на многочисленные дополнения и изменения этой модели за вековую историю развития атомной физики, она оказалась не только самой объективной, но весьма продуктивной моделью атома. Соответствие этому принципу Бора, например, в генетике для объяснения механизма наследственности в живых организмах путём материальных носителей - хромосом позволило удивительно просто и полно понять эти совсем немеханические процессы в биологии, послужило мощным импульсом в развитии нового направления в биологии - генетики и т. п. Оставляя читателя за воспоминаниями из истории науки многочисленных фактов торжества принципа Бора, здесь необходимо лишь подчеркнуть его универсальность, которую можно использовать в качестве критерия объективности: соответствие научного вывода принципу Бора свидетельствует об объективности этого вывода.».

7.3 Поведение в мире деформаций

Назовём ДЕФОНОМ окрестность деформированной среды вокруг ЛОКАЛЬНОЙ ДЕФОРМАЦИИ в точке О с указанными компонентами нормальных и тангенциальных напряжений, поверхности которых показаны выше на рис. 6 рис. 7 и рис. 8. Ясно, что субстанция в мире деформаций обладает физическими свойствами, на которые мы не имеем никаких оснований распространять традиционные в физике наши представления (о плотности, температуре, вязкости, упругости и т. п.), поэтому вынуждены здесь пока этот вопрос оставить открытым. Можно лишь предположить пока, что эти свойства близки к свойствам физического вакуума, примерные представления о которых мы имеем по результатам инструментальных исследований ближнего космического пространства: температура близка к абсолютному нулю, вязкость соответствует сверхтекучести при сверхнизких температурах и т. п. При этом из отмеченного выше свойства совместности деформаций (см. рис. 4 по п. 2) ясно, что плотность субстанции в таком ДЕФОНЕ сжатия больше плотности субстанции в его окрестности, что можно графически представить некоторой зависимостью

, (8)

где от точки О, как это показано на рис. 17.

Рис. 17 (ВНУТРЕННИЙ или ВНЕШНИЙ), что непосредственно связано с радиусом кривизны соответствующей поверхности

Так как поведение таких ДЕФОНОВ определится направлениями указанных напряжений, то в этом вопросе должна быть полная определенность, обязывая нас рассмотреть его более подробно. Здесь уместно вспомнить, что понятие НАПРАВЛЕНИЯ в ГЕОМЕТРИИ определяется величиной УГЛА - величины, которая появляется лишь в двумерных мирах - поверхностях (радиан) и в трёхмерных мирах (стерадиан). При этом, если для если для однозначности величины плоского УГЛА необходимо указание его знака (правый - по часовой стрелке или левый - против часовой стрелки относительно заданного РЕПЕРА - линии), то для однозначности величины УГЛА пространственного ещё необходимо указание и его ориентации относительно поверхности.

Для иллюстрации отмеченного обстоятельства воспользуемся результатами топологических исследований векторных полей на поверхностях [18] и др. Представим себе простейший такой сфероидный ДЕФОН сжатия в окрестности точки О как на рис. 18, тогда на рис. 19 получим изображение векторных полей нормальных (рис. 19-а) и тангенциальных(рис. 19-б) компонент напряжения в смежной со сфероидом окрестности, которые по определению ортогональны друг другу (см. рис. 19). (рис. 89-а) и б) по [18])

Рис. 18 (рис. 88 по [18]) Рис. 19 (рис. 89-а) и б) по [18])

Вместе с этим, два подобных ДЕФОНА, расположенные вблизи друг от друга, окажутся с противоположных сторон любой поверхности, которые всегда могут быть представлены замкнутыми в бесконечности по несобственной линии вокруг любого из ДЕФОНОВ, как это наглядно показано на рис. 20, на котором - след пограничной поверхности между окрестностями ДЕФОНОВ и , имеющих характеристики и соответственно. Ясно, что радиус кривизны этой поверхности для ДЕФОНОВ и будет иметь противоположные знаки. Из отмеченных обстоятельств сразу следует необходимость сближения двух соседних таких ДЕФОНОВ - СФЕРОИДОВ сжатия, что равнозначно притяжению, как это показано на рис. 20, оставляя пока открытым вопрос о величине такого тяготения.

Рис. 20 (рис.186 по [18])

Разумеется, направления полей нормальных и тангенциальных компонент напряжения в смежных с другими нашими простейшими ДЕФОНАМИ окрестностями, имеющих поверхности тороида (рис.14) и скрученного тороида (рис.15) необходимо рассмотреть с этих позиций также подробно. Из одного того факта, что в отличие от односвязного сфероида тороид (см. рис.14) является двухсвязным [18], сразу следует вывод об отсутствии центральной симметрии векторного поля нормальных плоскости тороида, осевую симметрию, позволяя представить изменение векторного поля нормальных компонент напряжения, опуская математические преобразования, проделанные автором ранее [19], как на рис. 21, на котором обозначены штриховыми линиями n и - n предельные уровни значений векторного поля нормальных компонент напряжения.

Рис. 21 Компонент напряжения, присущих сфероиду (см. рис. 18), приобретая в полярной плоскости, ортогональной экваториальной

Из отмеченных обстоятельств снова следует вывод о необходимости сближения двух соседних таких ДЕФОНОВ-ТОРОИДОВ сжатия, что равнозначно притяжению, подобно притяжению ДЕФОНОВ-СФЕРОИДОВ на рис.20, но величина такого тяготения ДЕФОНОВ-ТОРОИДОВ находится в зависимости не только от расстояния между ними, но и от относительной друг друга пространственной ориентации: в экваториальных плоскостях их взаимодействие подчиняется центральной симметрии, подобно взаимодействия ДЕФОНОВ - СФЕРОИДОВ (см. рис.20), а в полярной плоскости взаимодействие ДЕФОНОВ-ТОРОИДОВ сжатия подчиняется осевой симметрии, также здесь оставляя пока вопрос о величине такого тяготения открытым. При этом здесь важно отметить действие отмеченной особенности взаимодействия ДЕФОНОВ-ТОРОИДОВ в отличие взаимодействия ДЕФОНОВ - СФЕРОИДОВ лишь, как это ясно из графической зависимости на рис. 21, на расстояниях между ДЕФОНАМИ-ТОРОИДАМИ, сравнимыми с их собственными размерами.

Представить строение, но не механизм образования ДЕФОНА- скрученного ТОРОИДА (см. рис.15) из ДЕФОНА-ТОРОИДА (см. рис.14), ДЕФОНА - СКРУЧЕННОГО ТОРОИДА возможно по рис. 22-а), рис. 22-б) и рис.22-в), на которых показаны ДЕФОН- ТОРОИД (см. рис. 22-а) целый, ДЕФОН-ТОРОИД разрезан нормальной к его экватору плоскостью по А-В и торцы разреза развернуты относительно друг друга на 1800 (см. рис. 22-б), так что точки А2 и В1 поверхности ДЕФОНА-ТОРОИДА поменялись положением, то есть А2 заняла положение В1, а В1 заняла положение А2, в результате образуя ДЕФОН-СКРУЧЕННЫЙ ТОРОИД (см. рис. 22-в).

Рис. 22-а) Рис. 22-б) Рис. 22-в

В действительности образование ДЕФОНА-СКРУЧЕННОГО ТОРОИДА возможно представить как процесс движения окружности вокруг некоторой точки деформируемой среды по внешней оси - замкнутой траектории при вращении этой окружности относительно траектории движения центра этой окружности до замыкания траектории - являющейся осью ТОРОИДА. Как мы видели выше (см. рис.16), деформации кручения сопутствуют все остальные виды деформации: и сжатие, и растяжение, и сдвиг, и изгиб. Поэтому особый практический интерес для нас представляет та зависимость

(8)

плотности от расстояния внутри самого ДЕФОНА-СКРУЧЕННОГО ТОРОИДА и в его окрестностях, как это нами было установлено для ДЕФОНА - СФЕРОИДА (см. рис. 17), и также зависимость векторного поля нормальных компонент напряжения в его окрестности, как это мы выше обнаружили для ДЕФОНА-ТОРОИДА (см. рис.14).

Рис. 23

В соответствии с отмеченными «УСЛОВИЯМИ СОВМЕСТНОСТИ ДЕФОРМАЦИЙ» Сен-Венана [7] совершенно понятно, что при кручении ДЕФОНА-ТОРОИДА (см. рис. 15-б) его поверхностный слой испытывает растяжение, которое при необходимости можно даже вычислить, сравнив длины винтовой линии от А1 до В2 или от А2 до В1 с длиной соответствующего экватора тороида (см. рис. 15-а). Данное обстоятельство приводит к необходимости деформации растяжения в ближайшей СКРУЧЕННОМУ ДЕФОНУ-ТОРОИДУ (см. рис. 15-в) окрестности как рис. 23. Кроме того, рассматривая упругие напряжения на самой поверхности такого скрученного тороида, показанные на рис. 24, где линии напряжений на поверхности скрученного тороида между и , также между и , наглядно показанные на рис. 25, непременно приведут вследствие статической реакции к свертыванию этого СКРУЧЕННОГО ДЕФОНА-ТОРОИДА, которую в плане можно изобразить на рис. 26, а представить его реальный вид снизу на рис. 27 и реальный вид сбоку на рис. 28.

Рис. 24 Рис. 25 Рис. 26

Рис. 27 Рис. 28

Другими словами, СКРУЧЕННЫЙ ДЕФОН-ТОРОИД образует своеобразную асимметричную СКОБУ, в окрестностях которой сопутствующие деформации образуют также асимметричную область, в пределах которой значения и направления нормальных и тангенциальных компонент напряжения отображают эту асимметричность окрестностей с различных сторон относительно СКОБЫ СКРУЧЕННОГО ДЕФОНА-ТОРОИДА. Из отмеченных обстоятельств снова следует вывод об асимметричности взаимодействия между собой СКОБ СКРУЧЕННОГО ДЕФОНА-ТОРОИДА и с другими ДЕФОНАМАМИ в зависимости не только от расстояний, но и от относительной друг друга пространственной ориентации. Кроме того, учитывая выше отмеченное обстоятельство, что понятие НАПРАВЛЕНИЯ в ГЕОМЕТРИИ определяется величиной и знаком УГЛА, приходится признать определяющее влияние на величину и направление взаимодействия также и НАПРАВЛЕНИЯ КРУЧЕНИЯ СКРУЧЕННЫХ ДЕФОНОВ-ТОРОИДОВ, которых может быть два: ПРАВОЕ или ЛЕВОЕ. Таки образом, оставляя пока вопрос о величине такого взаимодействия открытым, необходимо отметить важный вывод, что изменение размерности в мире деформаций приводит к изменению качества непрерывной субстанции (ЭФИРА), в частности, в мире деформаций это изменение от вида к виду деформации заключается в изменении симметрии взаимодействия ДЕФОНОВ между собой, сопоставляя которые с эмпирически известными взаимодействиями можно отметить соответствие этих взаимодействий известным типам симметрии [20]:

1.Центрально-симметричное взаимодействие - притяжеие.

2.Центрально-осевая симметрия взаимодействия:

2-1. Асимметричное взаимодействие в статике:

2-1-1. Отталкивание одноименных,

2-1-2. Притяжение разноименных.

3. Асимметричное взаимодействие в движении:

3-1-1. Отталкивание разноименных,

3-1-2. Притяжение одноименных.

4. Сцепление ДЕФОНОВ:

4-1.Сцепление ДЕФОНОВ со СКРУЧЕННЫМИ ДЕФОНАМИ:

4-1-1.Сцепление ДЕФОНОВ с правыми ДЕФОНАМИ,

4-1-2.Сцепление ДЕФОНОВ с левыми ДЕФОНАМИ.

4-2.Сцепление СКРУЧЕННЫХ ДЕФОНОВ между собой:

4-2-1.Сцепление правых ДЕФОНОВ между собой,

4-2-2.Сцепление левых ДЕФОНОВ между собой,

4-2-3.Сцепление правых ДЕФОНОВ с левыми.

Сопоставляя теперь обнаруженные выше виды взаимодействий в МИРЕ ДЕФОРМАЦИЙ с эмпирически известными взаимодействиями можно отметить соответствие этих взаимодействий известным в физике ПОЛЯМ:

1. ТЯГОТЕНИЕ ТЕЛ (ГРАВИТАЦИЯ) - Центрально-симметричное взаимодействие.

2. КУЛОНОВСКОЕ ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ - Асимметричное взаимодействие в статике.

3. МАГНИТНОЕ ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРИЧЕСКИХ ТОКОВ (МАГНИТНОЕ НАТЯЖЕНИЕ) - Центрально-осевая симметрия взаимодействия - Асимметричное взаимодействие в движении.

4. МОЛЕКУЛЯРНЫЕ СИЛЫ - сцепление СКРУЧЕННЫХ ДЕФОНОВ.

5. ЯДЕРНЫЕ СИЛЫ - Сцепление ДЕФОНОВ.

При этом распространение колебаний в окружающем МИРЕ ДЕФОРМАЦИЙ (ЭФИРЕ, содержащем ДЕФОНЫ) подчиняется законам ИЗЛУЧЕНИЯ.

4. Условие стабильности и виды взаимодействий в мире деформаций:

Исходя из отмеченного выше свойства совместности деформаций (см. рис. 4 по п. 2) ясно, что зависимости плотности эфира в ДЕФОНЕ и его окрестностях по (8), представленные нами выше на рис. 10 и рис. 16, смогут существовать лишь в стационарных условиях, когда внешние причины поддерживают указанные величины и направления полей нормальных и тангенциальных компонент напряжения, показанных выше на рис. 12. Так как мы пока не указали никаких таких причин поддержания условия по (8) , то ожидать выполнения взаимодействий по известным типам симметрии [20] у нас нет никаких оснований. Другими словами, при отсутствии внешних причин для сохранения условия по (5) наши ДЕФОНЫ должны распространиться на всю окрестность, то есть расшириться до исчезновения полей нормальных и тангенциальных компонент напряжения. Подобную ситуацию образно описал ещё Дж.А. Уилер [21]: «…Представим себе тёмные пятна, передвигающиеся по поверхности озера в поле зрения наблюдателя, смотрящего с высокой башни. О н изучает их движение достаточно тщательно, чтобы вывести уравнения движения и закон эффективных сил, действующих между этими «пятнами». Кроме того, из других исследований ему известны законы гидродинамики жидкости в озере. В один прекрасный день, воспользовавшись новым биноклем большей разрешающей силы, он увидит, что «пятна» вообще не являются чуждыми объектами. Они являются вихрями в среде, свойства которой он уже знает. Тогда он возвращается к уравнения гидродинамики и выводит из них законы движения завихрений и их взаимодействия. Это даёт гораздо более глубокое понимание увиденного…» Подобно Дж.А. Уилеру посмотрим сверху на реку. Для этого наблюдения прекрасно подходит наша Ангара: на поверхности реки турбулентности постоянно образуют завихрения, воронки и тому подобные образования струй потока реки. Теперь продолжим наблюдение Дж.А. Уилера, прослеживая за одним определенным таким новообразованием на поверхности потока: вот возник вихрь, маленький завиток струй с маленькой ямочкой внутри и чёткими границами, далее он «плывёт» по течению, расширяясь, контуры его теряются, плавно переходя в поверхность потока, а далее это новообразование уже невозможно различить на поверхности потока, оно «исчезло»?! Однако, на поверхности реки снова возникают другие турбулентные «объекты» - вихри, которые так же плывут, расширяются, размываясь в потоке, и так непрерывно по всей поверхности потока реки! Посмотрим же теперь на поверхность стоячей воды, например, в ближайшем пруду, даже в заливе реки, но там на поверхности воды мы не увидим никаких «объектов» турбулентности, никаких завихрений, поэтому там и исчезать, размываться нечему.

Ситуацию сохранения стационарности условия (5) возможно представить, например, при расширении окружающей исследуемые ДЕФОНЫ окрестности по аналогии расширения самих ДЕФОНОВ. Из данного обстоятельства можно заключить, что самосохранение условия стабильности взаимодействия ДЕФОНОВ обязано расширению окружающей среды вместе с расширением самих ДЕФОНОВ! Это значит, что свойство расширения окружающей ДЕФОНЫ среды (эфира) является АТРИБУТОМ данной среды, содержащей данные ДЕФОНЫ, то есть неотъемлимым свойством данного МИРА ДЕФОРМАЦИЙ (ЭФИРА). Другими словами, ДЕФОНЫ по описанному выше представляют собой подсистемы некоего внешнего по отношению к ним НАД-ДЕФОНА что может быть логически продолжено неопределенно многократно, как, например, это наглядно показано на рис. 22-а), рис.22-б) и рис. 22-в), а реально может быть осуществлено в расширяющемся из одно центра О мире, пример которого показан на рис.23, на котором ДЕФОНЫ A B и C размерами d на расстоянии D друг от друга, например, по оси абсцисс, сохраняют отношение этих параметров в различных положениях, пронумерованных индексами 1, 2 и 3 соответственно.

Рис.29-а) Рис. 29-б Рис. 29-в

Геометрия такого процесса известна и описана в винтовом исчислении [22] Котельникова А.П., к сочинениям которого я здесь отсылаю читателя. Лучевое пространство по - Котельникову А.П. [22] практически реализуется в известном «красном» смещении, сущность которого можно иллюстрировать словами Стивена Хокинга из его «Краткой истории времени» [23], один абзац со стр. 62 ниже сканирован для предотвращения кривотолков и недоразумений:

Рис. 30

Таким образом, в лучевом пространстве расширяющегося мира ДЕФОНЫ с плотностью эфира по (8), представленные выше на рис. 10 и рис. 16, в сущности являются волнами-частицами, которые в 1924 году Луи де-Бройль открыл для микромира [24], а в 1986 году Чечельницкий А. М. [25] обнаружил для мегамира: «…С позиций представлений о волновой Вселенной в рамках концепции волновой астродинамики установлены довольно точные значения физических характеристик межпланетной среды - космической плазмы, подтверждаемые данными наблюдений….». В продолжение и подтверждение этих соображений необходимо здесь отметить длинный ряд эмпирических и экспериментальных результатов, которые на протяжении всего XX века находились под пристальным вниманием физиков мира, доклады некоторых только на одной Конференции в честь 100-летия А. Эйнштейна «Проблемы физики: классика и современность» в 1979 году здесь без цитирования можно назвать: «Понятие Геометрии» Акицуку Кавагути [26], «Эйнштейн и обснование квантовой теории» Франка Кашлюн [27], «Доклад о парадоксе Эйнштейна-Подольского-Розена» Жан-Пьера Вижье [28] и др. При внимиательном рассмотрении с изложенных позиций можно обнаружить, что известные парадоксы и внутренние противоречия КВАНТОВОЙ МЕХАНИКИ, СТО и ОТО, других современных теорий [23], [24], [25] - являются ЭМПИРИЧЕСКИМИ И ЭКСПЕРИМЕНТАЛЬНЫМИ ОСНОВАНИЯМИ изложенных выше идей и принципов СТЕРЕОХРОНОДИНАМИКИ (СХД). Так, напри мер, парадокс ЭПР в сущности является отражением на квантово-механическом уровне опыта Козырева Н. А по упреждению положения звезды [29] и др.

7.4 Выводы

Таким образом, на основании всех тех естественнонаучных моделей, изложенных в работах автора [7], [8], [9], [10], [14] и др. с учётом эмпирических выводов и экспериментальных результатов физиков [21], [22], [23], [24], [25] и др. после А. Эйнштейна можно отметить следующие объективные основания СТЕРЕОХРОНОДИНАМИКИ - физической теории, способной создать математическую модель пространства-времени, которая будет обладать необходимой и достаточной гибкостью при описании всех свойств пространства-времени, включая обширные области современных физических явлений:

I. Все материальные объекты в виде полей или вещественных тел представляют собой общую непрерывную среду - физический эфир, в котором и локализованы все материальные объекты (тела и поля), взаимодействуя между собой по установленным законам. При этом за размерность мира мы вправе принимать число независимых свойств данного мира, то есть число его атрибутов, присущих ему по определению.

II. Главным атрибутом нашего мира является его расширение во всех направлениях, образуя лучевое пространство скоростей.

При этом в соответствии с периодической системой миров проявление масштабов и темпов этого расширения выглядит особенным в зависимости от природы мира (физика, химия, биология, психология, социология, а также промежуточные и смежные миры.) В пояснение этого замечания отошлю читателя в алгебраическую топологию [30], которая знает огромное множество замкнутых линий с различными числами узлов, позволяющие представить себе соответствующие ДЕФОНЫ, иллюстрировать которые можно, например, рисунком 31 (Рисунки на стр. 267 по [30]).

Рис. 31 (Рисунки на стр. 267 по [30])

III. В пространстве скоростей нашего мира непрерывно образуются, взаимодействуют между собой по установленным законам и постепенно по мере расширения мира распадаются локальные деформации - ДЕФОНЫ.

При этом, вещественные тела, являясь комплексами таких ДЕФОНОВ - локальных деформаций представляют собой локальные уплотнения среды, то есть при взаимодействии между собой образуют волновые процессы в непрерывной среде физического эфира.

IV. В мире деформаций взаимодействия ДЕФОНОВ между собой осуществляется посредством полей напряжений сопутствующих деформаций в окрестностях ДЕФОНОВ, сопоставление которых с эмпирически известными взаимодействиями можно классифицировать по известным типам симметрии:

1. ТЯГОТЕНИЕ ТЕЛ (ГРАВИТАЦИЯ) - Центрально-симметричное взаимодействие.

2. КУЛОНОВСКОЕ ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ - Асимметричное взаимодействие в статике.

3. МАГНИТНОЕ ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРИЧЕСКИХ ТОКОВ (МАГНИТНОЕ НАТЯЖЕНИЕ) - Центрально-осевая симметрия взаимодействия - Асимметричное взаимодействие в движении.

4. МОЛЕКУЛЯРНЫЕ СИЛЫ - сцепление СКРУЧЕННЫХ ДЕФОНОВ.

5. ЯДЕРНЫЕ СИЛЫ - Сцепление ДЕФОНОВ.

V. При этом распространение колебаний в окружающем МИРЕ ДЕФОРМАЦИЙ (ЭФИРЕ, содержащем ДЕФОНЫ) подчиняется законам ИЗЛУЧЕНИЯ.

Таким образом, в соответствии с нашим выводом о полноте аксиоматики физических теорий на основании изложенных естественнонаучных наглядных моделей СТЕРЕОХРОНОДИНАМИКИ [31], для нашего 4-х мерного мира необходимо положить в основу ПЯТЬ фундаментальных аксиом, главной из которых является наша принципиально новая ПАРАДИГМА об атрибутивно - субстанциональной ПРИРОДЕ нашего мира, изложенных выше: I, II, III, IV, V.

Литература

1. Вайскопф В. Физика в двадцатом столетии. М., «Атомиздат», 1977.

2. Логунов А.А. «Релятивистская теория гравитации и новые представления о пространстве-времени // Вестник МГУ. Физика. Астрономия. т. 27, вып. 6, 1986, стр.3 и далее.

3. Дирак П.А. Воспоминания о необычайной эпохе, пер. с англ. М., «Наука», 1990, стр.178 и др.

4. Вертинский П.А. Финитность и сингулярность в понятии размерности пространства // VМНС, Красноярск, 2002.

5. Пригожин И.Р. и Стенгерс И. Порядок из хаоса. Новый диалог человека с природой. М., «Прогресс», 1986, стр. 275, 364 и др.

6. Мандельброт Б. Фрактальная геометрия природы. М.: ИКИ, 2002, с. 46, 144, 326.

7. Вертинский П.А. Естественнонаучные модели содержания категорий топологии // Сб.IX МНС, Красноярск,2006.

8. Вертинский П.А. Естественные модели размеров и размерностей в категориях топологии //Сб. X МНС, Красноярск, 2007.

9. Вертинский П.А. Естественные модели механизмов влияния природы процессов на размерности миров // Сб. XI МНС, Красноярск, 2008.

10. Вертинский П.А. К вопросу о полноте аксиоматики физических теорий // Вестник ИРО АН ВШ РФ№ 1(4), Иркутск, 2004.

11. Седов Л.И. Механика сплошной среды. М., «Наука», 1976, т. I, стр. 63 и др., т. II, стр. 317.

12. Блох В.И. Теория упругости. Изд. ХГУ, Харьков, 1964, стр. 201 и др.

13. Кривошапко С.Н., Иванов В.Н., Халаби С.М. Аналитические поверхности: материалы по геометрии 500 поверхностей и информация к расчёту на прочность тонких оболочек. М.: Наука, 2006, стр.97 и др.

14. Панин Д.М. Собрание сочинений в 4 т. Т. 2-й. Теория густот. М.: «Радуга», 2001 г., стр. 45.

15. Ацюковский В.А. Общая эфиродинамика. Моделирование структур вещества и полей на основе представлений о газонаполненном эфире. М.: Энергоатомиздат, 1990. стр.46 и др.

16. Гризинский М.О природе атома. // Поиск математических закономерностей Мироздания: физические идеи, подходы, концепции. Избранные труды ФПВ-2000, Новосибирск, НИИ им. С.Л. Соболева СО РАН, 2001, стр. 9-16.

17. Базиев Д.Х. Основы единой теории физики. М., «Педагогика», 1994.

18. Болтянский В.Г. и Ефремович В.А. Наглядная топология. М., «Наука», 1982.

19. Вертинский П.А. Оптимизация электромеханических систем методами магнитодинамики // Сб. V «Сибресурс», Иркутск 2002.

...

Подобные документы

  • Общая характеристика и главные отличия периодической системы измерения величин и системы единиц СИ. Примеры, способы и формулы перехода от размерностей международной системы (СИ) к размерностям периодической системы (АС) измерения физических величин.

    реферат [66,1 K], добавлен 09.11.2010

  • Основная идея использования метода анализа размерностей. Понятие о безразмерных величинах. Основные понятия теории подобия. Метод масштабных преобразований. Первая теорема Ньютона. Критерий Нуссельта, Фурье, Эйлера. Подобие нестационарных процессов.

    реферат [570,2 K], добавлен 23.12.2014

  • Классификация квантоворазмерных гетероструктур на основе твердого раствора. Компьютерное моделирование физических процессов в кристаллах и квантоворазмерных структурах. Разработка программной модели энергетического спектра электрона в твердом теле.

    дипломная работа [2,2 M], добавлен 21.01.2016

  • Анализ уравнения движения математического маятника. Постановка прямого вычислительного эксперимента. Применение теории размерностей для поиска аналитического вида функции. Разработка программы с целью нахождения периода колебаний математического маятника.

    реферат [125,4 K], добавлен 24.08.2015

  • Построение и исследование математической модели реактивной паровой турбины: назначение, область применения и структура системы. Описание физических процессов, протекающих в технической системе, её основные показатели: величины, режимы функционирования.

    курсовая работа [665,8 K], добавлен 29.11.2012

  • Способы построения программы в программной среде MatLab. Формулы, необходимые для математического моделирования физической модели. Построение графической модели колебания струны с жестко закрепленными концами. Создание физической модели колебания.

    лабораторная работа [307,7 K], добавлен 05.01.2013

  • Разработка платы ГИМС. Материалы для подложки, плёночных элементов и плёночных проводников. Конструкция плёночных элементов, описание методики их расчета. Расчёт топологических размеров элементов. Выбор размера платы, разработка топологии платы.

    курсовая работа [38,6 K], добавлен 04.12.2007

  • Теория нуклеации пересыщенного пара. Скорость образования зародышей новой фазы. Экспериментальные методы исследования процессов нуклеации. Пример поверхности скорости нуклеации для системы пентанол-вода. Траектория экспериментов для расширительной камеры.

    курсовая работа [552,8 K], добавлен 23.02.2012

  • Создание математической модели трехконтурной электрической схемы в среде табличного процессора Excel. Система уравнений для расчета контурных токов. Схема электрической цепи. Влияние изменения параметров схемы тяговой сети на токи тяговых подстанций.

    контрольная работа [60,2 K], добавлен 14.12.2010

  • Системы физических величин и их единиц, роль их размера и значения, специфика классификации. Понятие о единстве измерений. Характеристика эталонов единиц физических величин. Передача размеров единиц величин: особенности системы и используемых методов.

    реферат [96,2 K], добавлен 02.12.2010

  • Реферативное описание одного из этапов истории эволюции Вселенной. Определение физической величины по ГОСТ 8.417-2002. Основные изменения физической величины при изменении фундаментальных физических констант. Описание эталона и эталонной установки.

    контрольная работа [517,7 K], добавлен 20.04.2019

  • Принципы численного моделирования влияния пор на физико-механические свойства материалов. Разработка элементной модели углепластика, содержащей дефект в виде поры на границе волокно-матрица. Построение такой модели в программном комплексе ANSYS.

    дипломная работа [4,5 M], добавлен 21.09.2017

  • Фазовые переходы второго рода. Компьютерное моделирование критического поведения, влияние на него дефектов структуры. Модель Гейзенберга, алгоритм Вульфа. Коротковременная динамика, уточнение критической температуры. Расчет критических индексов.

    дипломная работа [876,3 K], добавлен 07.02.2011

  • Инструменты и методы создания объектов в среде Elcut, решение задачи и визуализации результатов расчета. Распределение токов в проводящей среде. Создание геометрической модели, состоящей из электродов, один из которых имеет потенциал "+1В", другой "-1В".

    лабораторная работа [175,6 K], добавлен 26.06.2015

  • Основы ядерной энергетики. Способы получения энергии. Способы организации реакции горения, цепные реакции. Взаимодействие нейтронов с ядерным веществом, реакция деления ядер. Жизненный цикл нейтронов.

    курсовая работа [20,6 K], добавлен 09.04.2003

  • Формулировка математической модели для описания процессов тепло- и массообмена в теплообменниках-испарителях в условиях теплопритока с учетом реальных свойств рабочего тела, листинг программного комплекса для математического моделирования этих процессов.

    отчет по практике [41,8 K], добавлен 15.09.2015

  • История появления статистических методов в познании, а также развитие теории вероятностей. Детерминизм процессов природы в современной науке. Последствия открытия закона сохранения и превращения энергии. Сущность проблемы "тепловой смерти Вселенной".

    контрольная работа [27,7 K], добавлен 21.11.2009

  • Проектирование и моделирование топологии широкополосного трансформатора сопротивлений на четвертьволновых отрезках линии передачи в микрополосковом исполнении. Синтез трансформатора сопротивлений в распределенном электрическом элементном базисе.

    курсовая работа [1,0 M], добавлен 26.05.2019

  • Построение стационарной модели тепло-массопереноса для различных условий теплоотвода через стенку реактора, а также разработка программы для исследования теплообмена в псевдоожиженном слое. Математические модели теплообмена в псевдоожиженном слое.

    курсовая работа [116,5 K], добавлен 10.12.2013

  • Проблемы теории суперструн. Периодическая система измерения физических величин, расчет их размерности на основании "пи-теоремы". Зависимость между физическими величинами с точностью до постоянного безразмерного множителя, ее соответствие законам физики.

    реферат [73,8 K], добавлен 05.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.