Теория относительности
Исторические сведения и понятия абсолютного и относительного механического движения у Ньютона. Неинерциальные системы отсчёта и силы инерции, астрономические и земные измерения скорости света. Механический и электродинамический принцип относительности.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 29.09.2014 |
Размер файла | 656,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Следовательно для изменения углов a----и--b--от момента времени t=t1 до момента времени t=t2 имеем следующие очень простые формулы:
Из этих формул нетрудно получить общеизвестный закон аберрации. Пусть свет от звезды идёт по направлению, строго перпендикулярному направлению движения Земли. Первый момент времени t=t1 возьмём таким, чтобы фронт световой волны находился на столь большом удалении от Земли, чтобы для скорости эфира в точках этого фронта можно было считать, что предполагаем, что Земля движется в положительном направлении оси x с постоянной скоростью u . Второй момент времени t=t2 возьмём в тот самый момент, когда волновой фронт дошёл до Земли, тогда
Следовательно, фронт, идущий от звезды плоской волны, поворачивается по приближению к Земле таким образом, что угол, составленной его нормалью с осью х, станет равным где u -- скорость движения Земли, с -- скорость света в покоящемся эфире. См. рис.
Наблюдателю на Земле будет казаться, что звезда сместилась на небе в сторону направления движения Земли на угол аберрации равный .
В 1880 г. Стокс опубликовал важное дополнение к изложенной нами сейчас работе 1845 г. Он обратил внимание на то, что в работе 1845 г. он проследил лишь за изменениями направления нормали к фронту волны, по мере распространения волны от звезды до Земли. Когда эфир покоится, траектории волновых нормалей совпадают с траекториями лучей. Когда эфир движется, с заданным полем скоростей, траектории волновых нормалей и траектории лучей перестают совпадать.
Обозначим через n -- единичный вектор нормали в некоторой точке фронта волны в момент времени t и через s -- единичный вектор направления луча в этой точке волнового фронта, рассматриваемого в момент времени t . Пусть a,--b -- углы вектора нормали n с осями x, y, причём все эти углы мало отличаются от прямых
Стокс считает, что где v(u,u,w) -- поле скоростей эфира в рассматриваемой точке волнового фронта в момент времени t. Следовательно: или окончательно Приращение этих углов за инте Выше мы показали, что
так что окончательно
Принимая гипотезу Стокса о потенциальности поля скоростей эфира, таким образом, заключаем, что правые части приведенных равенств равны нулю.
Итак, изменение направления луча по мере распространения равно нулю; лучи света в увлекаемом Землей эфире - приближенно прямолинейные.
2.8 Механический принцип относительности. Инвариантность относительно преобразований Галилея
Галилей еще в XVII в. сформулировал принцип относительности в механике, или механический принцип относительности.
Механический принцип относительности. Механические явления во всех инерциальных системах отсчета происходят совершенно одинаково. Нельзя с помощью механических экспериментов, производимых в движущейся инерциальной системе отсчета, определить скорость ее движения (если не производить наблюдений тел из системы отсчета, относительно которой мы хотим определить скорость движения).
Покажем, что уравнения механики математически записываются совершенно одинаково во всех инерциальных системах отсчета. Для простоты рассмотрим движение материальной точки, т. е. тела, размерами которого можно пренебречь в рассматриваемой ситуации. Пусть это движение описывается в двух каких-нибудь инерциальных системах - в “покоящейся” системе K и в “движущейся” системе K'. Пусть в начальный момент времени декартовы оси этих систем совпадали и пусть система K движется вдоль оси x с постоянной скоростью v.
Координаты точки M, отсчитываемые относительно движущейся и относительно покоящейся систем отсчета K и K' связаны следующими формулами преобразования:
которые называют формулами преобразования Галилея. Время при преобразованиях Галилея никак не преобразуем, так что следует положить, что .
Эту формулу тоже будем относить к формулам преобразования Галилея.
Рассмотрим движение материальной точки M массы m относительно той и другой систем, происходящее, к примеру, вдоль оси x, под действием некоторой заданной силы F (действующей только вдоль оси x). Тогда в системах K и K' имеем следующие уравнения движения: которые математически совершенно одинаковы (инвариантны). При этом одно уравнение получается из другого с помощью преобразований Галилея. Действительно, согласно этим преобразованиям:
так как очевидно dv/dt = 0 (скорость v постоянна).
Самыми фундаментальными объектами в физике являются точки и волны. Поэтому интересно посмотреть, а будет ли инвариантно относительно преобразований Галилея волновое уравнение, скажем, для простоты, одномерное волновое уравнение (уравнение Даламбера) для плоских волн, распространяющихся вдоль оси x. Пусть u = u(x, t) - волновая функция и c - скорость волны. Тогда имеем уравнение
Совершим в нем преобразование Галилея, другими словами - перейдем от независимых переменных x, t к переменным x', t', считая, что неизвестная волновая функция u теперь выражена в переменных x', t', т. е.
где
Таким образом,
Следовательно,
Далее,
Следовательно,
Подставим полученные выражения для вторых производных в исходное волновое уравнение. Тогда получим, что
или
Как видим, получили совсем не Даламбера, а другое уравнение (в которое входит v).
Таким образом, мы доказали, что одномерное волновое уравнение не инвариантно относительно преобразований Галилея.
Остановимся на выяснении физического смысла полученного результата. Для определенности представим себе обычные звуковые волны в воздухе. Они являются малыми возмущениями плотности и давления малых частиц воздуха, и в так называемом акустическом приближении (когда амплитуды этих возмущений малы) описываются волновым уравнением Даламбера когда речь идет о плоских волнах, распространяющихся вдоль оси x.
Это уравнение, однако, математически описывает звуковую волну только в покоящемся воздухе. Если мы хотим описать звуковую волну в движущемся воздухе (движущемся равномерно прямолинейно со скоростью v вдоль оси x в отрицательном направлении оси x в лабораторной системе отсчета), то мы должны использовать не приведенное волновое уравнение, а только что выведенное более сложное уравнение
Таким образом, волновое уравнение для звука в движущейся среде отличается по виду от волнового уравнения для звука в покоящейся среде. И нет ничего удивительного в том, что волновое уравнение не инвариантно относительно преобразований Галилея. Мы неявно предположили, что исходная система K - это система отсчета, в которой среда (воздух) покоится.
Поясним сказанное подробнее. Пусть у нас имеется тело, движущееся со скоростью v вдоль оси x и пусть в этом теле распространяется волна в положительном или отрицательном направлении оси x.
Рассмотрим волну, распространяющуюся в положительном направлении оси x. Относительно взятой системы отсчета она имеет скорость cдв = c + v. Таким образом, если форма волны в нулевой момент времени дается функцией f(x), которая может быть взята произвольной, то в момент времени t она будет описываться функцией
Найдем вид уравнения, которому удовлетворяет эта функция. Очевидно
Поэтому функция u удовлетворяет следующему уравнению которое можно представить в виде
Подействуем на это уравнение справа и слева дифференциальным оператором
и получим уравнение
Следовательно, раскрывая скобки, имеем уравнение
члены со смешанной производной, пропорциональные c, взаимно сокращаются. Разделив на c2, окончательно приходим к уравнению
которое в точности совпадет с уравнением, полученным выше.
Рассмотрим теперь волну, распространяющуюся в отрицательном направлении оси x. Относительно нашей системы отсчета волна будет двигаться со скоростью cдв = c - v.
Если форма волны в нулевой момент времени t = 0 дается функцией g(x), которая может быть совершенно произвольной, то в момент времени t она будет описываться функцией
Найдем вид уравнения, которому удовлетворяет эта функция. Очевидно
Поэтому имеем уравнение которое можно записать в следующем виде
Подействуем на это уравнение справа и слева дифференциальным оператором и получим уравнение
Следовательно, раскрывая скобки, имеем уравнение
члены со смешанной производной, пропорциональные c, взаимно сокращаются. Разделив на c2, окончательно приходим к уравнению
т. е. в точности к такому уравнению, которое мы получили для волны, распространяющейся в положительном направлении оси x.
Интервал времени t, t+dt, когда dz= - cdt, таким образом равно
2.9 Электродинамический принцип относительности. Инвариантность относительно преобразований Лоренца
Оказывается, одномерное волновое уравнение все же остается инвариантным при переходе от системы отсчета К к системе отсчёта К', но если воспользоваться не преобразованиями Галилея, а так называемыми преобразованиями Лоренца, которые имеют вид:
Теперь не только координата Х, но и время Т преобразуются. Докажем инвариантность. Снова рассмотрим функцию
где =V/C. Тогда, дифференцируя её по t, получим
Следовательно,
Далее, дифференцируя по t, получаем
Следовательно,
Подставим полученные выражения для вторых производных в исходное волновое уравнение Даламбера
Получим тогда уравнение
Таким образом, приходим к уравнению слагаемые со смешанным вторым производным в обеих частях равенства сокращаются. Окончательно получаем уравнение
Следовательно, приходим к уравнению
т. е. в точности к исходному одномерному волновому уравнению Даламбера.
Итак, приходим к заключению, что волновое уравнение Даламбера инвариантно относительно преобразований Лоренца. Это важное математическое открытие в своё время сделал Лоренц, который, однако, рассматривал не просто одноиерное волновое уравнение, а уравнения Максвелла, которые можно считать усложненным трехмерным “волновым уравнением”- для поперечных электромагнитных волн. Именно это математическое открытие позволило Лоренцу в 1904 г. Объяснить отрицательный результат экспериментов первого и второго порядков по V/C по обнаружению скорости V поступательного движения относительно эфира.
Отметим здесь ещё одну интересную возможную физическую интерпретацию полученного математического результата - с инвариантостью волнового уравнения относительно преобразований Лоренца.
Для большей определённости снова рассмотрим звуковые волны в воздухе в акустическом приближении. Эти волны можно рассматривать как самостоятельные физические объекты, ника не связанные со средой - воздухом, колебаниями которого они на самом деле являются. Среда теперь - совершенно другой физический объект, даже иной физической природы. Звуковые волны существуют сами по себе, безо всякой среды. И этот новый физический объект -“ волны“ - поэтому совершенно естественно должен одинаково описываться во всех инерциальных системах отсчета, так как инерциальные системы отсчета не только механически, но и физически должны быть полностью равноправными.
В отношении звуковых волн в воздухе такая физическая интерпретация вполне возможна, но только о рамках акустического приближения, т. е. для волн очень малой (даже бесконечно малой) амплитуды. В случае звуковых волн конечной и большой амплитуды такая, казалось бы, самая простая и естественная интерпретация, разумеется, неправильна.
В специальной теории относительности обсуждаются не звуковые, а электромагнитные волны. Средой, подобной воздуху, для звуковых волн здесь является, правда, пока ещё экспериментально не открытая особая гипотетическая среда, называемая эфиром. Но эфир экспериментально не обнаружен, и вообще в настоящее время в современной фундаментальной физике электромагнитного поля ещё многое остаётся неясным. Поэтому можно считать, как это делают в настоящее время, описанную физическую интерпретацию единственно приемлемой, как это провозгласил Эйнштейн в 1905 г. , что эфира в природе не существует.
Как выше отмечалось, оптические и электродинамические эксперименты, проведённые на Земле с целью обнаружения и измерения поступательной скорости V Земли первого и второго порядков малости по величине V/C=10^-4, дали отрицательный результат. В частности, отрицательный результат дал и эксперимент Майкельсона-Морли с двухплечевым интерферометром. Никаких эффектов влияния поступательной скорости движения Земли все эти эксперименты не выявили. Скорость Земли в указанных эксперпиментах измерить не удалось.
Таким образом, к концу Х|Х века в результате всех этих экспериментальных неудач удалосьобобщить механический принцип относительности Галилея на электромагнитные ( в том числе и оптические ) явления и провозгласить общефизический принцип относительности, который иногда называют принципом относительности Эйнштейна.
Электродинамический принцип относительности.
Все физические явления во всех инерциальных системах отсчета протекают одинаково. Нельзя с помощью каких-либо физических экспериментов в движущейся инерциальной системе тосчета определить скорость ее движения, если не производить наблюдений тел из системы отсчета, относительно которой мы хотим определить скорость движения.
Математическое свойство инвариантности относительно преобразований Лоренца основных уравнений электродинамики - уравнений Максвелла использовалось Лоренцем в 1895 г. И в 1904 г. Для объяснения, почему с помощью электродинамических экспериментов нельзя определить скорость поступательного движения Земли в эффектах первого и второго порядков малости ( 1895 г. ) и вообще во всех эффектах (1904 г. ).
2.10 Обсуждение понятия скорости тела и построения полей времени в покоящейся и движущейся системах отсчета
Казалось бы, понятие скорости тела, как пройденного пути за определенный промежуток времени:
настолько ясно, что не требует вообще никаких пояснений. Конечно, если тело движется неравномерно, то надо вводить в рассмотрение мгновенную скорость, но не об этом сейчас речь. Вместе с тем в связи с данным определением скорости необходимо, однако, обсудить весьма существенный физический вопрос.
Чтобы лучше представить себе ситуацию, рассмотрим конкретный эксперимент, проводимый для измерения скорости тела. Пусть имеется движущееся тело и пусть оно в какой-то момент времени проходит или пролетает через то место N, где мы сами сейчас находимся. Засечём этот момент t1 на имеющемся у нас измерителе времени - часам.
Предположим, что мы находимся в месте N и наблюдаем из этого места за нашим движущимся телом. Через некоторое время, скажем в момент времени t2, зарегистрованным по нашим часам, тело проходит через другое место M, расстояние до которого S2-S1 от нашего места N, мы можем измерить заранее. Тогда скоростью тела мы назовем отношение
Вроде бы всё совершенно ясно. Но это не так. Мы должны учесть, что когда мы увидели, что тело проходит через место M, мы на самом деле просто зарегистрировали световой сигнал, приходящий к нам из места M, свидетельствующий о совпадении тела и места M. Так как сигнал распространяется с некоторой конечной скоростью С, то мы должны это учесть и ввести поправку на время распространения сигнала от места M до места N, т. е. поправку на время запаздывания.
Таким образом, мы должны в формуле для скорости V взять не момент t2, непосредственно экспериментально наблюдаемый и зафиксированный по нашим часам, а момент и скоростью тела должны на самом деле назвать величину, которая лишь незначительно больше величины V, если тело движется не слишком быстро.
Так как скорость света C очень большая ( С=300000 км /c ), то рассматриваемая поправка, конечно, будет для реально наблюдаемых движении тел на Земле чрезвычайно малой.
Однако она становится тем больше, чем дальше удалено место М от места N и чем скорее движется тело. Если скорость V тела будет близка к скорости света, то поправка будет очень большой.
Именно эта поправка в определении скорости тела и учитывается в специальной теории относительности.
Здесь следует сказать, что наше субъективное ощущение об окружающем нас мире в некоторый данный момент времени, действительно субъективно и неправильно. Дело в том, что удаленные предметы мы видим такими, какими они были в более ранние моменты времени, чем видимые нами близкие от нас предметы.
Скажем, мы видим на улице “одновременно” идущих людей, здания, Солнце. Но ведь, на самом деле, Солнце мы видим не в тот момент, в который мы на него смотрим, а в момент примерно на 8, 5 минут раньше (так как время распространения света от Солнца до Земли составляет примерно 8 мин. 20 сек. ). А если мы “одновременно” взглянем в телескоп на удаленные от нас звезды и галактики, то галактики на саммом деле сейчас мы видим в такие моменты, когда мы ещё и сами не родились, и даже ещё не появилась наша Земля и наша Солнечная система.
Таким образом, обсуждая понятие скорости движущегося тела, нам надо обязательно разобраться, что мы понимаем под временем в различных местах пространства. Чтобы экспериментально исследовать перемещение тела в пространстве с течением времени, лучше всего иметь локальные согласованные друг с другом измерители времени - часы, расставленные во всех точках пространства. Тогда совсем не нужно будет думать о поправках в отсчётах времени, скоростях световых сигналов и т. д. Множество локальных времен в различных точках системы отсчета образует то, что мы будем называть полем времени.
Построим сначала поле времени в “ покоящейся “ системе отсчета К. Для этого в начале отсчета О организуем “ производство ” совершенно одинаковых, идентичных, измерителей времени - часов, ход которых, по возможности, одинаков. Затем эти измерители времени достаточно осторожно разнесём по различным точкам пространства M, N, ….
Если бы все эти часы мы сначали синхронизовали ( выставили бы на них одинаковые показания времени ), а затем разнесли по различным точкам пространства, то показания часов, помещенных в различных точках, мы могли бы и назвать временем в системе отсчета К.
Так поступать, однако, нельзя. Чтобы перенести часы, например из точки «О» в точку М, мы должны сначала эти часы в точке О ускорить, затем передвинуть, а затем замедлить для остановки в точке М. При ускоренном и замедленном движениях при этом ход часов обязательно нарушится и в показания времени будет введена неконтролируемая ошибка.
Поэтому поступим так, как поступил Эйнштейн в работе 1905 г. Будем все часы синхронизировать не в начале координат, до их разнесения, а лишь после того, как мы уже их разнесли и установили в разных точках пространства системы отсчета К.
Синхронизацию проведем при помощи бесконечно коротких световых сигналов, которые будем испускать из начала координат О. В момент времени t = 0, фиксируемый по часам в точке О, мы испустим из точки О сигнал по направлению к точке М, и зарегистрируем момент прихода этого сигнала в точку М по часам в этой точке М и, наконец, выставим на часах в точке М время
,
где r - расстояние между точками N и M. Величиной скорости c при этом мы просто зададимся, т. е. возьмем в качестве нее любое положительное число.
Очевидно, что если теперь, с помощью синхронизированных описанным способом локальных часов, мы будем измерять скорость используемых для синхронизации импульсных световых сигналов, то получим естественно значение c, причем эта скорость окажется изотропной, т. е. не зависящей от выбора направления в пространстве.
Однако надо отчетливо понимать, что это не измерение скорости света, так как само понятие времени мы установили с помощью световых сигналов и значением скорости света с мы просто задались.
Вместе с тем, для краткости, будем называть величину с - «скоростью света»(более точно, скоростью света в системе отсчета К ).
Теперь в точности таким же образом, с помощью импульсных световых сигналов, установим поле времени в «движущейся системе отсчета К.
Конечно, можно было бы построить поле времени в системе отсчета К и другим способом. Мы могли бы, например, рассудить следующим образом. Гипотетическая электромагнитная среда - эфир, колебаниями которой является свет, покоится в системе отсчета К, поэтому в системе отсчета К мы имеем свет в покоящейся среде. В системе отсчета К имеем свет в движущейся среде, а поэтому скорость светового импульса, испущенного, например, в положительном направлении оси x в системе отсчета К равна не с, а c - , а в отрицательном направлении оси x равна c + , где - скорость движения системы К относительно системы К. Но так сейчас мы поступать не будем, а просто примем, что в системе отсчета К световые импульсы распространяются в точности так же, как в системе К. В этом заключено однако серьезное физическое предположение. При построении поля времени в системе отсчета К используем то же самое число с, что и в системе отсчета К. Последнее по существу условное допущение, следуя работе Эйнштейна 1905 г. , иногда неправильно называют «законом постоянства скорости света в инерциальных системах отсчета». Как мы видим, это вовсе не закон, а говоря словами Пуанкаре, «плод совершаемого неосознанного условного соглашения».
2.11 Кинематический вывод преобразований Лоренца
Приступим теперь к кинематическому выводу преобразований Лоренца. Объектом нашего рассмотрения будет так называемое мгновенное точечное событие, т. е. событие, происходящее в очень малом месте пространства и за очень короткий промежуток времени. Например, из некоторой точки N в фиксированный момент времени t = t0 испустим импульсную сферическую бесконечно тонкую световую волну.
Уточняем - испускаем не периодическую гармоническую волну, а очень короткий световой импульс. Испускание светового импульса в момент времени t = t0 в точке N и есть пример мгновенного точечного события. Разумеется, мгновенные точечные события могут быть какие - угодно.
Приведем еще один пример. Твердый стержень AB пусть движется в положительном направлении оси x.
Мгновенным точечным событием теперь можно считать событие, заключающееся в совпадении, например, левого конца A стержня с фиксированной точкой N оси x. Другим мгновенным точечным событием является совпадение в какой-то момент времени правого конца B с фиксированной точкой M на оси x.
Теперь, одно и то же какое-нибудь мгновенное точечное событие будем изучать с помощью наблюдений его в двух инерциальных системах отсчета K и K, или в двух системах координат, движущихся равномерно и прямолинейно относительно друг друга - «покоящейся» системы К и «движущейся» системы K, - движущейся со скоростью вдоль оси x относительно покоящейся системы отсчета, причем в обеих этих системах координат размещены локальные часы, синхронизированные так, как мы разъяснили выше.
Пусть x, y, z, t - координаты и время нашего мгновенного точечного события, отсчитанные в системе отсчета К. Пусть x, y, z, t - координаты и время нашего мгновенного точечного события, отсчитанные в системе отсчета К.
Ради простоты дальше будем рассматривать только координаты x и x, считая что всегда y = y и z = z. Тогда в системах отсчета К и К координаты одного и того же мгновенного точечного события будут x, t и x, t соответственно, причем «координатой» будем называть не только координату x, а координату и время - x, t.
Так как эти числа относятся к одному и тому же событию (существующему в природе вне зависимости от наличия или отсутствия систем отсчета К и К), то очевидно должны существовать однозначные математические зависимости вида x = (x, t), t = (x, t).
Формулы указанных зависимостей будем называть формулами преобразования координат мгновенного точечного события (любого) от системы отсчета K системе отсчета К.
Наша конечная цель - найти вид функций и в приведенных формулах преобразования. Чтобы это сделать, обратимся к так называемым основным, исходным для нас, соотношениям, которые мы сейчас сформулируем.
Рассмотрим три следующих мгновенных точечных события. Опишем их сначала в системе отсчета К. Пусть в точке x1 оси x в момент t1 мгновенно был испущен короткий световой импульс в положительном направлении оси x. Пусть в момент времени t2 этот импульс оказался в точке x2 оси x, в которой он зеркально отразился и стал двигаться в отрицательном направлении оси x. Пусть, наконец, в момент времени t3 этот световой импульс снова оказался в исходной точке, так что x3 = x1.
Посмотрим теперь на три указанных мгновенных точечных события с точки зрения системы отсчета K. Мы увидим, что в точке x1 в момент времени t был испущен в положительном направлении оси x короткий световой импульс, который в момент времени t2 достиг точки x2, отразился в ней и в момент времени t3 оказался в точке x3, причем теперь x3 x1.
Согласно описанным выше процедурам построения полей времени в системах отсчета K и K имеем следующие очевидные соотношения в системе отсчета K: x3 = x1 и в системе отсчета K:
Точка x1 = x3 на оси x системы отсчета K движется со скоростью в отрицательном направлении оси x, если ее наблюдать в системе отсчета K.
Мы сформулировали шесть основных соотношений, исходя из которых мы теперь найдем вид функций и .
Нахождение функции . Составим функциональное уравнение для определения функции . Представим три соотношения для системы отсчета K в следующем виде:
Вычитая первое соотношение из третьего, получаем
Используя второе соотношение, отсюда приходим к равенству
Следовательно,
или
Таким образом, видим, что функция удовлетворяет следующему функциональному уравнению:
В этом уравнении величины x1, t1, x2, t2, x3, t3, однако, не независимы, а связаны нашими основными соотношениями для системы отсчета K. Учтем наличие этих соотношений и оставим независимыми только следующие три величины: x1, x2 и t1. Величины x3, t2 и t3 можно выразить через указанные независимые величины. Действительно, из первого соотношения получаем следовательно,
Далее, из второго соотношения имеем, а следовательно, мы воспользовались выражением для t2 и условием x3 = x1.
Таким образом, получаем следующее окончательное функциональное уравнение для определения функции :
которое должно выполняться для произвольных значений x1, x2 и t1.
Приступим к решению полученного функционального уравнения. Начнем с того, что продифференцируем это уравнение по x2. Получим тогда соотношение, которое будем называть продифференцированным функциональным уравнением на общую двойку можно сократить все три слагаемые (производная от последнего, третьего слагаемого в исходном функциональном уравнении равна нулю, так как оно не зависит от
). В полученном дифференциальном уравнении положим теперь и . Тогда придем к следующему дифференциальному уравнению:
Общее решение полученного очень простого дифференциального уравнения легко найти, если перейти к переменным и и показать, что в новых переменных это уравнение имеет вид
Так получаем, что общее решение рассматриваемого дифференциального уравнения имеет вид
где F -- пока произвольная функция.
Найдем вид этой функции. Для этого подставим полученную формулу для в наше дифференциальное функциональное уравнение. Получим тогда следующее функциональное уравнение:
После элементарных алгебраических преобразований, отсюда получаем, что
Или
Так как при произвольных аргументы функций в правой и левой частях равенства различны и могут принимать совершенно произвольные значения, то приходим к заключению, что
а следовательно,
F
где -- некоторые постоянные, которые нам еще предстоит найти.
Итак, мы показали, что исходная функция имеет следующий вид:
где -- некоторые пока не определенные постоянные.
Нахождение функции . Найдем теперь аналогичным образом функцию . Три основных соотношения для системы отсчета представим в виде:
Вычитывая первое соотношение из третьего и сравнивая результат со вторым соотношением, получаем уравнение
т. е. уравнение
Видим, что функция удовлетворяет следующему функциональному уравнению:
в котором величины не независимые, а связаны нашими основными соотношениями для системы отсчета К. Используя эти соотношения, оставим независимыми только следующие три величины и. Величины и выразим через указанные величины:
Таким образом, приходим к следующему основному функциональному уравнению для искомой функции:
которое выполняется при произвольных значениях и.
Приступим к решению полученного функционального уравнения. Начнем с того, что продифференцируем его по :
производная последнего, третьего слагаемого в исходном функциональном уравнении равна нулю, так как оно не зависит от . Положим теперь в выведенном уравнении, и тогда придем к дифференциальному уравнению
или уравнение
Легко найти общее решение последнего дифференциального уравнения. Для этого надо перейти только к новым независимым переменным
и показать, что в новых переменных уравнение имеет вид
Таким образом получаем общее решение нашего дифференциального уравнения:
в котором -- пока произвольная функция.
Найдем вид этой функции. Подставим полученное выражение для функции в продифференцированное функциональное уравнение. Получим тогда соотношение
или соотношение
Так как аргументы у фукций в правой и левой частях равенства при произвольных значениях
и совершенно произвольны, то получаем, что
а следовательно,
где -- пока неопределенные постоянные.
Определение констант . Мы получили, что формулы преобразований координат и времен произвольного мгновенного точечного событияв инерциальных системах отсчетаиимеют вид
Для нахождения констант привлечем дополнительное требование.
Требование 1. Предположим, что общие начала отсчета координат и времени в системах отсчета K и согласованы таким образом, что мгновенное точечное событие с координатами 0, 0 в системе отсчета K имеет в системе отсчета координаты 0, 0 ( тоже нулевые координаты), и наоборот.
Применяя вышеприведенные формулы преобразования к событию 0, 0 получаем, что и поэтому формулы преобразования координат мгновенно точечного события приобретают следующий вид:
Теперь неопределенными остались только константы и .
Учтем теперь то обстоятельство, что формулы преобразования мы получили как следствия наших шести основных соотношений. Подставим поэтому полученные простые формулы обратно в эти исходные основные соотношения и установим ограничения на значения констант и . Имеем:
Таким образом, приходим к заключению, что константы и равны друг другу:
=
и поэтому формулы преобразования координат мгновенного точечного события имеют следующий вид:
где -- пока что неопределенная постоянная.
Разрешим теперь эти формулы преобразования относительно и . Имеем уравнения
Следовательно,
и поэтому
Полученные формулы сопоставим с формулами преобразования:
которые получаются с помощью рассуждений, совершенно аналогичных приведенным выше, но с заменой систем отсчета K и друг на друга. Следует при этом только учесть, что система отсчета K движется относительно системы отсчета не в положительном, а в отрицательном направлении оси с некоторой положительной скоростью (положительной), определенной в системе отсчета K. Здесь -- некоторое пока неизвестное нам число.
Сравнивая друг с другом приведённые пары формул преобразований, приходим к заключению, что имеют место следующие четыре равенства:
из которых непосредственно заключаем, что
u' = u
и что величины --a и --a' удовлетворяют соотношению
Таким образом, мы показали, что имеются следующие формулы преобразований координат x, t----и----x', t` мгновенного точечного события в системах отсчета K и K':
И
где величины a' и----a связаны вышеуказанным соотношением.
Чтобы найти числа a' и----a,--выставим ещё одно требование. Обратим внимание, что пока мы до конца не условились о выборе основных единиц измерения длинны и времени в системах отсчета K и K '. Разумеется, отчасти этот выбор уже был выше ограничен требованием, чтобы скорость света в обеих системах отсчёта давалась одним и тем же числом c, которое мы учли, т. е. мы уже согласовали отчасти единицы измерения скоростей в системах K и K'. Но единица скорости есть только отношение единиц длины и времени. Поэтому остаётся произвол в выборе единицы измерения либо длины, либо времени. Фиксируем теперь окончательно этот произвол с помощью следующего требования.
Требование 2. Длины l и l' двух покоящихся в системах отсчёта K и K' стержней одинаковой собственной длинны l0 (измеренной в этих системах отсчёта, в которых каждый из этих стержней покоится), измеренные, соответственно, в системах отсчёта K и K', относительно которых эти стержни движутся одинаковы.
Возьмём стержень длинны l0, покоящийся в “движущейся” системе отсчёта K'. Пусть он лежит на оси x' и его левый конец пусть имеет координату x'A, а правый - координату x'B
x'A - x'B = l0.
Из мерим длину этого стержня в “покоящейся” системе отсчёта K. Пусть в одинаковые моменты времени tA и tB ( tA = tB ) левый и правый концы стержня, движущегося в системе отсчёта K, имели координаты xA и xB. (События A и B соответственно). Нам надо составить разность xA - xB = l, чтобы найти длину движущегося со скоростью u стержня, длина которого равна l0 в покоящейся системе координат.
Согласно уже выведенным формулам преобразований координат и времён мгновенных точечных событий, имеем соотношения:
x'B = a (x'B - u--tB),
x'A = a (x'A - u--tA).
Вычтем x'A из x'B и учтём условие tA = tB. Тогда получим
l0 = x'B -------x'A = a (xB - xA) = a--l.
Таким образом, имеем соотношение
l = l0 / a.
Если теперь, наоборот, взять стержень длины l0 , расположенный в “неподвижной” системе отсчёта K , и измерить его длину l' в “движущейся” системе отсчёта K' , то для этой длины, рассуждая аналогично, получаем соотношение
l' = l0 / a'.
Потребуем теперь, чтобы l' = l. Тогда мы придём к равенству a' = a--, а следовательно, с учётом выведенного соотношения
к равенствам
Знак минус перед корнем не подходит, так как не удовлетворяет очевидному требованию, что a = 1 при u--= 0, когда мы имеем формулы тождественных преобразований.
Длина движущегося стержня, как видим, меньше его собственной длины l0. Движущийся стержень как бы сокращается вдоль направления своего движения. Однако это не истинное, а кажущееся сокращение, более точно, это исключительно кинематический эффект, целиком обязанный принятому определению локального поля времени в движущейся системе отсчёта.
Итак, мы вывели с помощью исключительно кинематических рассуждений следующие формулы преобразований:
которые называют формулами преобразований Лоренца.
В заключение заметим, что кроме кажущегося, чисто кинематического сокращения длинны движущегося стержня в рассматриваемой кинематике, основанной на описанных выше процедурах построения полей времени в системах отсчёта K и K', имеется ещё и эффект кажущегося замедления хода движущихся часов.
Пусть мы имеем часы, неподвижные в “движущейся” системе K', находящиеся в точке x'A = x'B. Пусть в них произошел один период колебаний, начавшийся в момент времени t'A (событие A) и окончившийся в момент времени t'B (событие B), так что t'B - t'A--= t_ , где t_ - период колебаний часов в “собственной” системе отсчёта
(где они покоятся). Обозначив через xA, xB, tA и tB координаты событий A и B в системе отсчёта K, получаем
Вычитая второе равенство из первого для кажущегося периода колебаний t--часов, определённого в “движущейся” системе K' имеем следующую формулу
так как x'A = x'B. Следовательно, окончательно получаем формулу
для кажущегося, т. е. кинематического, замедления хода движущихся часов.
2.12 Кинематический вывод преобразований Галилея
Введём теперь, рассуждая совершенно аналогично тому, как мы это делали при выводе формул преобразований Лоренца, формулы преобразований Галилея, изменив процедуры построения полей времени в инерциальных системах отсчета K и K '.
Построение полей времени в системах отсчета K и K '. Будем теперь считать, что в системе отсчёта K среда, возбуждениями которой является свет, покоится. Тогда относительно системы отсчёта K' эта Среда будет двигаться со скоростью u в отрицательном направлении оси x'.
Процедуру построения локальных времён и синхронизации часов в системе отсчёта K оставим прежней. Но процедуру построения локальных времён в системе отсчёта K' изменим. При синхронизации часов, помещённых в точке M но оси x' с координатой x'M>0, с помощью короткого импульсного светового сигнала, выпущенного из начала координат x' = 0 в начальный момент времени t' = 0, в момент прихода сигнала в точку M, на часах в точке M теперь поставим не время r/c, где r - расстояние между O и M, а время
r.
c--+--u
Аналогично поступим с точкой M на оси x' с координатой x'M<0. В ней на часах в момент прихода сигнала поставим время
r.
c-----u
Основные соотношения. Рассмотрим снова три мгновенных точечных события. В системе отсчёта K они выглядят следующим образом. В точке x1 на оси x в момент t'1 пусть испускается короткий световой импульс в положительном направлении оси x. В момент t'2 пусть он приходит в точку x2 на оси x, отражается в ней и в момент t'3 возвращается в точку x1, так что x1 = x3.
Согласно принятым процедурам построения полей времени в системах отсчета K и K ', имеем теперь следующие шесть основных соотношений:
Нахождение функций j и y. Составим сначала функциональное уравнение для функции ?. Имеем
Вычтем первое соотношение из третьего и результат сравним со вторым соотношением. Получим тогда уравнение
Или
то есть
С учётом соотношений
отсюда приходим к следующему окончательному функциональному уравнению для определения вида функции j:
которое удовлетворяется при любых значениях независимых переменных и x1, x2 и t1. Чтобы разрешить это функциональное уравнение, продифференцируем его по x2 и получим из него продифференцированное функциональное уравнение:
Положим в этом уравнении. x1 = x2 = x & t1 = t. Придем к уравнению
так что имеем очень простое дифференциальное уравнение
Или
для определения вида функции .
Общее решение последнего уравнения имеет вид
где F - произвольная функция. Подставим эту формулу в приведенное
выше продифференцированное функциональное уравнение. Учтем,
что
и поэтому получим соотношение
Так как
то приходим к следующему уравнению
справедливому при любых значениях x1, x2, t1. Аргументы функций в правой и левой частях принимают произвольные значения при произвольных
x1, x2, t1. Следовательно,
а потому, игнорируя получаем
где- некоторые пока не определенные постоянные.
Составим теперь функциональное уравнение для функции. Имеем
где G - произвольная функция. Вычитая первое уравнение из третьего уравнения и сравнивая полученный результат со вторым уравнением, получаем соотношение Следовательно,
Или
Отсюда непосредственно приходим к следующему основному функциональному уравнению для функции :
Разрешим это уравнение, для чего сначала продифференцируем его по x2. Тогда получим уравнение Полагая в этом последнем уравнении и, приходим к дифференциальному уравнению
или совсем простому уравнению
Следовательно,
Подставив эту формулу для в приведенное выше продифференцированное функциональное уравнение. Получим Следовательно,
Так как величины совершенно произвольны, то аргументы
функций G в правой и левой частях могут принимать совершенно произвольные значения. Поэтому
а следовательно,
где - пока произвольные постоянные.
Определение констант Мы получили следующие формулы
преобразования координат и времен мгновенного точечного события:
Найдем константы
начнем с того, что выставим требование о согласовании начал отчетов координат и времени в обеих системах отсчета и .
Требование 1. Событие, имеющее координаты 0, 0 в системе отсчета , имеет координаты 0, 0 в системе отсчета , и наоборот. Следовательно, в приведенных формулах , и формулы преобразования приобретают следующий вид :
Приведенные формулы преобразования мы получили как следствия наших шести основных соотношений. В них входят пока не определенные нами величины и.
Подставив эти формулы преобразования обратно в исходные шесть соотношений, мы можем найти ограничения на константы и. Так собственно говоря и получается. Действительно, имеем равенства
Как видим, чтобы эти равенства выполнялись, необходимо потребовать, чтобы константы и были равны друг другу :
Таким образом, искомые формулы преобразования координат мгновенного точечного события имеют вид
где - пока не определенная константа.
Как и в случае преобразований Лоренца, воспользуемся тем, что у нас имеется произвол в выборе единиц измерения либо длинны, либо времени в обеих системах отсчета и . Чтобы фиксировать указанный произвол, выставим дополнительное требование.
Требование 2. Длина l движущегося в системе стержня, покоящегося в системе , ориентированного вдоль оси и имеющего в этой системе длину , т. е. .
Рассмотрим движущийся стержень, все время покоящийся в системе отсчета между точками от с координатами и .
Пусть в одинаковые локальные моменты времени в системе отсчета
K левый конец стержня совпал с точкой оси x, с координатой(событие A), (событие B). Тогда
Вычитая второе равенство из первого, с учетом условия получаем
и так как согласно требованию 2, то приходим к заключению, что
Итак, мы вывели с помощью исключительно кинематических рассуждений, аналогичных использованным Эйнштейном при выводе формул преобразований Лоренца, формулы преобразований Галилея :
2.13 Гипотеза эфира и гипотеза четырехмерного мира
Подведем итог нашим рассуждениям. Исходя из условных в принципе процедур построения полей времени в «неподвижной» и «движущейся» системах отсчета, используя очевидные дополнительные требования о согласовании единиц измерения длинны и времени в обеих рассматриваемых системах отсчета, мы вывели как преобразования Лоренца, так и преобразования Галилея.
При этом мы следовали основным идеям кинематического рассуждения из работы Эйнштейна 1905 г. ( усилив их только рассмотрением функциональных уравнений).
Таким образом, вывод Эйнштейна, сделанный им в работе 1905 г. , о ложности ньютоновской концепции абсолютного времени Ньютона следует считать необоснованным. Также не обосновано и утверждение, что он якобы доказал, что светоносного эфира не существует, что электромагнитные волны существуют сами по себе без какой-либо среды (в отличие от всех других известных нам физических волн).
Конечно, несмотря ни на что, мы можем принять утверждения Эйнштейна попросту за некую (пока, правда, существующими экспериментами еще не доказанную) научную гипотезу. Но одновременно мы должны считаться и с другой гипотезой классической физики - что светоносная среда (эфир) существует, что электромагнитные волны являются возмущениями эфира, что механическая абсолютная система отсчета - это система отсчета, в которой мировой эфир покоится.
Выбор того или иного локального поля времени в движущейся системе отсчета (ньютонова или эйнштейнова ) является, по-видимому, вообще полностью чисто условным и диктуется исключительно соображениями удобства проведения тех или иных физических рассуждений. В классической механике удобно «ньютоново», а в теории элементарных частиц - «эйнштейново» время.
Выбор той или иной концепции количественного времени, как утверждал Пуанкаре еще в 1898 г. , т. е. за 7 лет до работы Эйнштейна 1905г. , подобен выбору той или иной системы геометрических координат в трехмерном пространстве, скажем, прямоугольной декартовой или сферической. Только от конкретной задачи зависит, какая из этих систем координат удобнее и полезнее.
Сформулируем таким образом, альтернативные фундаментальные физические гипотезы.
Гипотеза эфира. Существует особая физическая среда - эфир, заполняющая пространство, возмущенными колебаниями которого являются электромагнитные волны (включая оптические, радио, телевизионные и т. д. волны). Система отсчета, в которой эта среда покоится, является физической абсолютной системой отсчета. Она, разумеется, единственна и уникальна по всем физическим свойствам. Класс систем отсчета, движущимся относительно абсолютной равномерно прямолинейно с постоянными скоростями, образует класс инерциальных систем отсчета. В этом классе систем отсчета механические, электродинамические и др. физические явления математически и физически описываются наиболее просто.
...Подобные документы
Предпосылки создания теории относительности А.Эйнштейна. Относительность движения по Галилею. Принцип относительности и законы Ньютона. Преобразования Галилея. Принцип относительности в электродинамике. Теория относительности А.Эйнштейна.
реферат [16,0 K], добавлен 29.03.2003Принцип относительности Г. Галилея для механических явлений. Основные постулаты теории относительности А. Эйнштейна. Принципы относительности и инвариантности скорости света. Преобразования координат Лоренца. Основной закон релятивистской динамики.
реферат [119,5 K], добавлен 01.11.2013Экспериментальные основы специальной теории относительности, ее основные постулаты. Принцип относительности Эйнштейна. Относительность одновременности как следствие постоянства скорости света. Относительность пространственных и временных интервалов.
презентация [1,8 M], добавлен 23.10.2013Сущность принципа относительности Эйнштейна, его роль в описании и изучении инерциальных систем отсчета. Понятие и трактовка теории относительности, постулаты и выводы из нее, практическое использование. Теория относительности для гравитационного поля.
реферат [14,5 K], добавлен 24.02.2009Принцип относительности Галилея. Связь между координатами произвольной точки. Правило сложения скоростей в классической механике. Постулаты классической механики Ньютона. Движение быстрых заряженных частиц. Скорость распространения света в вакууме.
презентация [193,4 K], добавлен 28.06.2013Анализ принципов относительности Галилея и Эйнштейна. Астрономический и лабораторный метод измерения скорости света. Преобразование Лоренца и его следствия. Релятивистская механика. Взаимосвязь массы и энергии покоя. Использование ядерных реакций.
презентация [8,7 M], добавлен 13.02.2016Изучение ключевых научных открытий Альберта Эйнштейна. Закон внешнего фотоэффекта (1921 г.). Формула связи потери массы тела при излучении энергии. Постулаты специальной теории относительности Эйнштейна (1905 г.). Принцип постоянства скорости света.
презентация [1,1 M], добавлен 25.01.2012Обобщение закона тяготения Ньютона. Принцип эквивалентности сил инерции и сил тяготения. Потенциальная энергия тела. Теория тяготения Эйнштейна. Положения общей теории относительности (ОТО). Следствия из принципа эквивалентности, подтверждающие ОТО.
презентация [6,6 M], добавлен 13.02.2016Тахион как гипотетическая частица, движущаяся со сверхсветовой скоростью. Преобразования Лоренца как следствие инвариантности скорости света. Вид релятивистского уравнения для определения энергии тахиона. Теория относительности как математическая теория.
статья [297,9 K], добавлен 09.12.2013Понятие механического движения. Прямолинейное равномерное и неравномерное движение. Законы криволинейного движения. Основы классической динамики, законы Ньютона. Силы в природе и движения тел. Пространство и время, специальная теория относительности.
контрольная работа [29,3 K], добавлен 04.08.2011Инерциальные системы отсчета. Классический принцип относительности и преобразования Галилея. Постулаты специальной теории относительности Эйнштейна. Релятивистский закон изменения длин промежутков времени. Основной закон релятивистской динамики.
реферат [286,2 K], добавлен 27.03.2012Характеристика законов Ньютона и законов сил в механике. Инерциальные системы отсчета. Принцип относительности Галилея. Принцип суперпозиции. Фундаментальные взаимодействия. Система частиц. Центр масс (центр инерции). Алгоритм решения задач динамики.
презентация [3,0 M], добавлен 25.05.2015Опыт Майкельсона и крах представлений об эфире. Эксперименты, лежащие в основе специальной теории относительности. Астрономическая аберрация света. Эффект Доплера, связанный с волновыми движениями. Принцип относительности и преобразования Лоренца.
курсовая работа [214,7 K], добавлен 24.03.2013Гравитационные силы как один из видов фундаментальных сил. Теория тяготения Ньютона. Законы Кеплера и космические скорости. Тождественность инерциальной и гравитационной масс как основа общей теории относительности Эйнштейна. Теория наблюдения Коперника.
презентация [39,7 M], добавлен 13.02.2016Общая теория относительности с философской точки зрения. Анализ создания специальной и общей теорий относительности Альбертом Эйнштейном. Эксперимент с лифтом и эксперимент "Поезд Эйнштейна". Основные принципы Общей Теории Относительности (ОТО) Эйнштейна.
реферат [42,9 K], добавлен 27.07.2010Развитие представления о пространстве и времени. Парадигма научной фантастики. Принцип относительности и законы сохранения. Абсолютность скорости света. Парадокс замкнутых мировых линий. Замедление хода времени в зависимости от скорости движения.
реферат [21,5 K], добавлен 10.05.2009История создания общей теории относительности Эйнштейна. Принцип эквивалентности и геометризация тяготения. Черные дыры. Гравитационные линзы и коричневые карлики. Релятивистская и калибровочная теории гравитации. Модифицированная ньютоновская динамика.
реферат [188,4 K], добавлен 10.12.2013Определение эквивалентности между общей теорией относительности и теорией абсолютного параллелизма. Роль тензора кручения в теории абсолютного параллелизма, подтверждение его разложения на три части. Телепараллелизм, не имеющий принципа эквивалентности.
дипломная работа [565,3 K], добавлен 17.11.2014Преобразования Галилея и Лоренца. Создание специальной теории относительности. Обоснование постулатов Эйнштейна и элементов релятивистской динамики. Принцип равенства гравитационной и инертной масс. Пространство-время ОТО и концепция эквивалентности.
презентация [329,0 K], добавлен 27.02.2012Основные положения специальной теории относительности. Проведение расчета эффекта искривления пространства на этапе математического описания гравитационного взаимодействия. Сравнительное описание математической и физической моделей гравитационного поля.
статья [42,4 K], добавлен 17.03.2011