Электрические схемы трансформаторных подстанций
Описание и специфика электрической схемы трансформаторной подстанции, сравнение вентильных разрядников и ограничителей перенапряжения. Расчет токов короткого замыкания, выбор электрооборудования подстанции. Координация изоляции и защита от перенапряжений.
Рубрика | Физика и энергетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 13.02.2015 |
Размер файла | 876,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Аннотация
Введение
1. Электрическая схема подстанции
1.1 Цели, задачи и стадии проектирования
1.2 Трансформаторная подстанция
1.3 Показатели и критерии надежности
2. Расчет токов короткого замыкания
3. Выбор электрооборудования подстанции
3.1 Устройство и принцип действия воздушного выключателя типа ВВБ-110 кВ
3.2 Устройство и принцип действия элегазового выключателя типа ВГУ-110У1
3.3 Устройство и технические характеристики вакуумного выключателя ВБЭ-10(6) - 31,5(40)
3.4 Краткая характеристика трансформатора тока ТФЗМ
3.5 Краткая характеристика трансформатора напряжения
НТМИ 6-10Кв
3.6 Комплектные распределительные устройства
4. Координация изоляции и защита от перенапряжений.
4.1 Координация изоляции
4.2 Защита электрооборудования от импульсов грозовых перенапряжений, набегающих с ВЛ
4.3 Сравнение РВ и ОПН
4.4 Замена вентильных разрядников на ОПН
4.5 Электрический расчет проходного изолятора на 110 кВ с бумажно-масляной изоляцией
4.6 Выбор числа изоляторов в поддерживающих гирляндах подходящей ЛЭП 110 кВ
5. Техника и правила безопасности при работе с электрооборудованием
5.1 Безопасность при работах под напряжением на воздушных линиях электропередачи
5.2 Технические мероприятия, обеспечивающие безопасность работ со снятием напряжения
5.3 Эксплуатация устройств защиты ПС от ПУМ
5.4 ТБ при обслуживании разъединителей
5.5 Техника безопасности при эксплуатации ОРУ
Заключение
Литература
Аннотация
бакалаврской работы студента группы ТВН-1-04 Шакурова Эдуарда Радиковича «Проектирование подстанции 110/6 кВ с решением задачи координации изоляции»
В данной работе:
выбрана главная схема подстанции, схемы распределительных устройств; трансформаторный подстанция изоляция перенапряжение
был произведен расчет токов короткого замыкания ;
выбрано электрооборудование подстанции;
было произведено сравнение вентильных разрядников и ОПН, их замена;
был произведен электрический расчёт ввода на 110 кВ и выбрано число изоляторов в поддерживающих гирляндах подходящей ЛЭП 110 кВ.
Данная работа содержит 8 рисунков и 14 информационных таблиц, прилагаются 4 чертежа формата А1.
Введение
Общая характеристика системы электроснабжения
Подстанцией называется электроустановка, служащая для преобразования и распределения электроэнергии и состоящая из трансформаторов (трансформаторная подстанция) и распределенных устройств напряжением
до 1000 В и выше.
Трансформаторные подстанции являются основным звеном системы электроснабжения. В зависимости от положения в энергосистеме, назначения, величины первичного и вторичного напряжений их можно подразделить на районные подстанции, подстанции промышленных предприятий, тяговые подстанции и др.
Районная подстанция выполнена как главная понизительная подстанция (ГПП) с открытым распределительным устройством (ОРУ), предназначенная для приёма электроэнергии напряжением 110 кВ и преобразования её в напряжение районной сети - 6 кВ для питания населенных пунктов. Схема электрических соединений подстанции на стороне 110 кВ выполнена по блочному принципу - “линия 110 кВ - трансформатор - токопровод 10 кВ” с короткозамыкателями, отделителями и разъединителями. Схема электрических соединений подстанции на стороне
6 кВ выполнена с одной секционированной системой шин.
Согласно технико-экономическому обоснованию на ПС установлены два трансформатора 110/6 кВ мощностью 16000кВ А типа ТДН-16000/110 кВ с автоматическим регулированием напряжения под нагрузкой.
На стороне 6 кВ предусмотрена одна секционированная система шин с оборудованием 20 линейных ячеек 6 кВ.
Питание собственных нужд ПС и цепей оперативного тока осуществляется от двух трансформаторов ТМ-100/6.
Защита оборудования ПС от грозовых волн, набегающих с линий, выполняется с помощью ограничителей перенапряжения, присоединяемых к шинам 110 и 6 кВ.
КРУН-6кВ приняты серии К-37.
Наружное освещение ПС предусмотрено светильниками типа СЗЛ-300-1 и прожекторами ПЗС-35, установленных на блоке опорных изоляторов 110 кВ и на прожекторной площадке отдельно стоящего молниеотвода, наружное освещение эксплуатационного участка - светильниками СПО-300.
Для предотвращения ошибочных действий при оперативных переключениях на ПС предусматривается электромагнитная и механическая блокировки элементов РУ 110, 6 кВ.
Защита ПС от ПУМ осуществляется молниеотводом, установленным на линейном портале 110 кВ и отдельно стоящим молниеотводом.
Оперативный ток принят переменный напряжением 220 В.
1. Электрическая схема подстанции
1.1 Цели, задачи и стадии проектирования
Проектирование электрических станций, подстанций, электрических сетей и систем заключается в составлении описаний еще не существующих объектов, предназначенных для производства, передачи и распределения электроэнергии. Эти описания в графической и текстовой форме составляют содержание проекта, т. е. совокупности документов, необходимых для создания нового энергетического оборудования и установок.
Проектирование электроэнергетических систем и их установок содержит три основных этапа:
рассмотрение перспектив развития на 15--20 лет вперед;
перспективное проектирование на период до 10 лет;
уточнение проектов на период до 5 лет.
На первом этапе составляются технико-экономические доклады (ТЭД) о развитии энергетики регионов и страны в целом. Определяются суммарная мощность нагрузки потребителей, мощности теплоэлектроцентралей (ТЭЦ), конденсационных, гидравлических, атомных и гидроаккумулирующих электростанций (КЭС, ГЭС, АЭС и ГАЭС), их размещение, состав энергоблоков, необходимый резерв.
На втором этапе разрабатываются схемы энергообъединений, определяются состав станций в каждой энергосистеме и пропускные способности межсистемных и внутрисистемных линий.
На третьем этапе уточняются и корректируются схемы развития энергетического хозяйства страны и районов, а также ведется конкретное проектирование намеченных на втором этапе и утвержденных на третьем этапе объектов: станций, подстанций, линий электропередачи и сетей. На этом же этапе проверяется техническая выполнимость плановых решений, определяются необходимые капиталовложения или проверяется достаточность намеченных капиталовложений.
Электрические станции и подстанции проектируются как составляющие единой энергетической системы (ЕЭС), объединенной энергосистемы (ОЭС) или районной электроэнергетической системы (ЭЭС).
Основные цели проектирования электрических станций, подстанций, сетей и энергосистем следующие:
1) производство, передача и распределение заданного количества электроэнергии в соответствии с заданным графиком потребления;
надежная работа установок и энергосистем в целом;
заданное качество электроэнергии;
сокращение капитальных затрат на сооружение установок;
снижение ежегодных издержек и ущерба при эксплуатации установок энергосистемы.
Первая цель определяется техническим заданием на электроснабжение потребителей определенного народнохозяйственного комплекса или административно-экономического района. Вторая и третья -- существующими техническими нормативами. Четвертая и пятая выступают в качестве экономического критерия оптимальности. Оптимальность решения при проектировании означает, что заданный производственный эффект (располагаемая мощность, отпускаемая энергия, уровень надежности и качества) получается при минимальных возможных затратах материальных и трудовых ресурсов.
Алгоритм решения задачи проектирования любой технической системы состоит из ряда проектных процедур и операций.
Техническая система, такая, как электрическая станция или подстанция, имеет, как правило, иерархическую структуру, состоящую из элементов, фрагментов и подсистем. Элемент-- это такая часть системы, выбор параметров которого осуществляют посредством простейшей операции. Например, элементами электрической станции являются электрические машины, аппараты, проводники и др.
Совокупность функционально связанных элементов называется фрагментом. Выбор фрагмента осуществляется проектной процедурой, состоящей из ряда операций. Фрагмент характеризуется не только параметрами и числом элементов, но и структурой связей элементов. Фрагментом электрической станции или подстанции является, например, распределительное устройство.
Подсистемой является обособленная часть системы, состоящая из множества фрагментов и имеющая ограниченное число связей с другими подсистемами. Подсистемами в электрической станции можно считать электроустановки собственных нужд, устройства автоматики и управления. Проектирование подсистемы состоит из ряда процедур, каждая из которых дает проектное решение отдельного фрагмента в виде проектного документа.
Совокупность проектных решений фрагментов позволяет установить возможное множество решений для подсистемы и выбрать из них оптимальное по какому-либо критерию. Комплект выбранных решений для всех подсистем дает одно из решений для всего объекта и составляет содержание проекта.
Варьируя критерии выбора оптимальных решений для подсистем и фрагментов, можно сформировать множество возможных вариантов для всей системы. Однако формирование множества и выбор оптимального решения для такой системы, как электрическая станция, возможно только с помощью системы автоматического проектирования. В настоящее время число рассматриваемых вариантов для фрагментов и подсистем ограничивается номенклатурой выпускаемого оборудования и рекомендуемых типовых решений.
Процесс проектирования электрических станций проходит четыре стадии, а именно составление
1) схемы развития отрасли,
2) проекта,
3) рабочего проекта
4) рабочей документации.
Задача создания проекта электрической станции или подстанции как элементов ЭЭС или ОЭС может ставиться и при перспективном и при конкретном проектировании. Проектирование электрических станций ведется в специализированных проектных организациях. Две последние стадии могут быть совмещены, если применяются типовые решения.
Задание на проектирование электрической станции содержится в схеме развития энергосистемы и включает в себя описание типа, местоположения, назначения станции, ее исходных параметров, топлива и источников водоснабжения, режимов работы станции, места в графике нагрузки энергосистемы и местных потребителей, схемы присоединения станции к системе и схемы самой энергосистемы. В задании указываются также плановые сроки проектирования и сооружения и очередность ввода.
Задание на проектирование подстанции энергосистемы и потребительских подстанций включает в себя аналогичную информацию и создается на основе проекта развития энергосистемы, который выполняется институтом «Энергосетьпроект».
Задание на проектирование составляет заказчик проекта (министерство, ведомство, промышленное предприятие и др.) на основании схемы развития энергосистемы и технико-экономического обоснования целесообразности планируемого строительства. Задание согласовывается с проектной организацией и генеральным подрядчиком.
Проект представляет собой совокупность документов, содержащих основные проектные решения станции или подстанции. В состав проекта входят паспорт, технико-экономическое обоснование, смета, документы на технологическую, электрическую, гидротехническую и строительную части.
Рабочий проект и рабочая документация состоят из пояснительной записки с расчетами и рабочих чертежей, по которым производятся строительно-монтажные работы. В рабочем проекте осуществляют корректировку решений в соответствии с замечаниями, полученными при утверждении проекта, уточняют параметры элементов по текущим условиям комплектования оборудования и изготовления на предприятиях. В пояснительной записке указываются важнейшие технико-экономические показатели проектируемой станции (подстанции): общий объем капиталовложений и удельные (на 1 кВт установленной мощности) капиталовложения, удельный (на единицу отпущенной электрической или тепловой энергии) расход условного топлива, годовая выработка энергии, расход энергии на собственные нужды, удельная численность персонала (штатный коэффициент), себестоимость отпущенной энергии, объем важнейших видов строительно-монтажных работ, площадь отчуждаемой территории, сборность строительных конструкций, сроки строительства и ввода очередей, оценка природоохранных свойств объектов станции.
1.2 Трансформаторная подстанция
Трансформаторные подстанции представляют собой электроустановки, предназначенные для преобразования напряжения сетей в целях экономичного распределения энергии в ближайшем районе или дальнейшей ее передачи. Они состоят из следующих частей: одного или нескольких трансформаторов (автотрансформаторов), РУ высшего напряжения, РУ пониженных напряжений (среднего и низшего), вспомогательных устройств. На подстанциях могут быть установлены синхронные компенсаторы, статические конденсаторы и шунтирующие реакторы.
Классификация подстанций затруднительна, поскольку в основу ее могут быть положены различные признаки, а именно: 1) номинальное напряжение сети высшего напряжения, определяющее в.известной мере мощность, занимаемую площадь и стоимость подстанции; 2) число ступеней пониженного напряжения; 3) число трансформаторов (автотрансформаторов) и их единичные мощности; 4) положение подстанции в сети высшего напряжения, определяющее схему РУ этого напряжения; 5) категория потребителей и многие другие.
Главную схему подстанции проектируют на основании разработанной схемы развития электрических сетей системы или схемы развития сетей района. Она должна удовлетворять следующим основным требованиям: а) надежное электроснабжение присоединенных к подстанции потребителей в нормальном и послеаварийном режимах в соответствии с их категориями; б) надежный транзит мощности через РУ высшего напряжения подстанции по межсистемным и магистральным линиям; в) экономически целесообразное значение тока к.з. на стороне среднего и низшего напряжения; г) возможность постепенного расширения подстанции; д) соответствие требованиям противоаварийной автоматики.
Трансформаторы и автотрансформаторы. Выбор между трансформаторами и автотрансформаторами для подстанций решается однозначно в зависимости от принятой системы рабочего заземления связываемых сетей. Эффективно-заземленные сети 110 кВ и выше связывают с помощью автотрансформаторов; исключение из этого правила делается только в случаях необходимости ограничения тока однофазного к.з. К обмоткам низшего напряжения автотрансформаторов могут быть присоединены незаземленные и компенсированные сети. Связь эффективно-заземленной сети с не-заземленной или компенсированной сетью (35 кВ и ниже), а также связь двух незаземленных, компенсированных сетей может быть осуществлена только с помощью трансформаторов, обмотки которых электрически не соединены. На подстанциях с высшим напряжением до 500 кВ включительно, как правило, устанавливают трехфазные трансформаторы (автотрансформаторы). Исключение может быть сделано только для подстанций очень большой мощности или при наличии ограничений по условиям транспорта. В этих случаях применяют группы из двух спаренных трехфазных трансформаторов меньшей мощности или группы из однофазных трансформаторов.
При одной группе однофазных трансформаторов предусматривают резервную фазу, которая может быть присоединена взамен поврежденного трансформатора при помощи перемычек при снятом напряжении. При двух группах однофазных трансформаторов вопрос о целесообразности установки резервной фазы решается в зависимости от наличия резервных связей по сети среднего напряжения. Замена поврежденного трансформатора резервным осуществляется путем перекатки последнего с одного фундамента на другой.
На подстанции устанавливает, как правило, не более двух трансформаторов (автотрансформаторов). На таких подстанциях при отсутствии резервных связей по сетям среднего и низшего напряжений мощность каждого трансформатора выбирают равной 0,65--0,7 суммарной максимальной нагрузки подстанции на расчетный период.
В случае повреждения одного трансформатора второй трансформатор должен обеспечить с допустимой перегрузкой нормальное электроснабжение потребителей, Здесь речь идет об аварийной перегрузке, ограниченной Лишь максимальной температурой обмотки 140°С и масла 115° С.
Чтобы уменьшить длительность аварийного состояния подстанции, применяют передвижные резервные трансформаторы мощностью до 25--32 MB-А, которые могут быть быстро доставлены на подстанцию с помощью автотранспорта и введены в работу. Время, необходимое для замены поврежденного трансформатора резервным, зависит от массы трансформатора и состояния дорог. Обычно для этого необходимо От 1 до 5 суток. На подстанциях, обеспеченных передвижным резервом, длительность аварийного состояния минимальна и число «отжитых» суток при аварийной перегрузке трансформатора не слишком велико.
Дальнейшее увеличение мощности двух-трансформаторных подстанций при увеличении нагрузки сверх принятого уровня производится, как правило, путем замены трансформаторов на более мощные. При проектировании подстанций номинальный ток коммутационных аппаратов, сечения шин в присоединениях трансформаторов выбирают, как правило, с учетом возможности замены трансформаторов более мощными.
Подстанции с одним трансформатором допускаются при условии резервирования потребителей 1-й и 2-й категорий по сетям среднего и низшего напряжения, а также для электроснабжения потребителей 3-й категории при наличии в районе передвижных резервных трансформаторов и возможности замены поврежденного трансформатора в течение не более 1 суток.
На подстанциях с высшим напряжением ПО--220 кВ и двумя
пониженными напряжениями 35 и 6--10 кВ применяют трехобмоточные трансформаторы 110--220/35/10--6 кВ.
Режим работы трансформаторов. На подстанциях с несколькими трансформаторами (автотрансформаторами) принято держать
все трансформаторы включенными, несмотря на то, что нагрузка подстанции подвержена значительным изменениям в течение суток и года. Экономия электроэнергии, которая могла бы быть получена при отключении части трансформаторов в часы минимума нагрузки, относительно невелика. В то же время частые отключения трансформаторов нежелательны, так как каждое отключение связано с перенапряжением, а каждое включение -- с появлением значительного переходного тока и соответствующих электродинамических сил в обмотках. При этом нарушается прочность крепления обмоток. Систематические Отключения и включения трансформаторов связаны с износом коммутационных аппаратов.
Регулирование напряжения.
Трансформаторы и автотрансформаторы, установленные на подстанциях, как правило, должны быть выполнены с устройствами для изменения коэффициента трансформации под нагрузкой. Исключение из этого правила может быть сделано только для небольших трансформаторов с низшим напряжением 380/220 В. На подстанциях с автотрансформаторами при наличии потребителей, присоединенных к третичным обмоткам автотрансформаторов, предусматривают установку линейных регулировочных трансформаторов для независимого регулирования напряжения на стороне низшего напряжения.
Схемы распределительных устройств высшего напряжения определяются положением подстанции в сети, напряжением сети, числом присоединений. Различают следующие типы подстанций по признаку их положения в сети высшего напряжения: подстанции узловые, проходные, присоединенные на ответвлениях и концевые. Как известно, узлом называют точку сети, в которой сходятся не менее трех линий. Предполагается при этом, что каждая линия связывает узел с источником энергии. Однако встречаются подстанции с двумя питающими линиями, к сборным шинам которых присоединено еще несколько линий, питающих подстанции того же напряжения. Такие подстанции также принято относить к числу узловых. Число узловых подстанций в системе относительно невелико. Узловые и проходные подстанции являются транзитными, поскольку мощность, передаваемая по линии, проходит через сборные шины этих подстанций.
Изучение схем РУ высшего напряжения подстанций удобно начать с рассмотрения схем узловых подстанций большой мощности. Согласно рекомендациям Норм технологического проектирования подстанций РУ 330--750 кВ следует выполнять но схемам кольцевого типа в соответствий с числом присоединений, а именно: при трех и четырех присоединениях -- соответственно по схемам треугольника или квадрата; при пяти-шести присоединениях-- по схеме трансформаторы -- шины с присоединением линий через два выключателя; при семи -- восьми присоединениях-- по схеме трансформаторы -- шины с присоединением линий по схеме 3/2; при числе присоединений свыше восьми -- по полной полуторной схеме. Перечисленные схемы относятся к одному виду и позволяют постепенно преобразовать РУ от простого к сложному по мере развития подстанции.
Распределительные устройства высшего напряжения 220 кВ при трех-четырех линиях рекомендуется также выполнять по схемам кольцевого типа. При этом линии и трансформаторы подлежат присоединению к углам треугольника или квадрата через разъединители и отделители (рис. 1.2.1).В таких схемах число выключателей получается минимальным. Недостаток их заключается в том, что линия и соответствующий трансформатор в случае повреждения в одной из этих ветвей отключаются вместе. Работа неповрежденной ветви (линии, трансформатора) может быть быстро восстановлена путем отключения соответствующего отделителя и повторного включения выключателей. Эти операции целесообразно автоматизировать.
Для РУ высшего напряжения НО--220 кВ при числе присоединений, равном семи и более, НТП рекомендуют схему с двумя системами сборных шин и обходной системой. Распределительные устройства высшего напряжения 110--220 кВ с числом присоединений до 10 и преобладанием парных линий или линий, резервированных от других подстанций, могут быть выполнены с одной секционированной системой сборных шин и обходной системой. При числе линий до четырех и трансформаторах мощностью до 63 MB-А допускается присоединение последних к сборным шинам через отделители.
. Распределительные устройства высшего напряжения проходных подстанций ПО--220 кВ на линиях с двусторонним питанием следует выполнять с одним выключателем и ремонтной перемычкой из двух нормально отключенных разъединителей. При этом трансформаторы подлежат присоединению к линии по обе стороны выключателя через разъединители и отделители (рис. 1.2.2). При такой схеме в случае повреждения линии слева или справа от рассматриваемой подстанции отключению подлежит поврежденный участок вместе с трансформатором. Работа последнего может быть быстро восстановлена после отключения разъединителя поврежденной линии и повторного включения выключателя. В случае повреждения трансформатора и отключения соответствующего участка линии поврежденный трансформатор должен быть отсоединен, а линия включена вновь.
В схемах с трансформаторами, присоединенными через отделители (рис. 1.2.1, 1.2.2), трансформаторы подлежат отключению линейными выключателями, отстоящими часто на значительном расстоянии. Передача отключающего импульса от защиты трансформатора к соответствующему выключателю может быть осуществлена по специальным линиям связи. Применение получили также схемы-с короткозамыкателями, включение которых равносильно искусственному к.з. у зажимов трансформатора.
Рис. 1.2.1. Схема РУ высшего напряжения узловой подстанции 220 кВ с присоединением трансформаторов вместе с линиями к углам квадрата.
Рис. 1.2.2. Схема РУ высшего напряжения 110--220 кВ проходной подстанции с одним выключателем.
При этом ток в линии резко увеличивается и срабатывает линейная защита, отключающая линию вместе с поврежденным трансформатором. Полное время отключения линии и трансформатора составляет 0,5--0,8 с. Оно слагается из времени срабатывания защиты трансформатора, короткозамыкателя, линейной защиты и линейных выключателей. После отключения трансформатора наступает пауза (необходимая для проверки отсутствия тока). Затем отключается отделитель, действующий относительно медленно, и повторно включается линия. Для проверки работы отделителей и короткозамыкателей при отключенном трансформаторе предусматривают разъединители с ручным управлением.
Для РУ высшего напряжения 35 кВ при числе присоединений до десяти включительно НТП рекомендуют одиночную систему сборных шин. При большем числе присоединений допускается схема с двумя системами сборных шин.
Особое место занимают двухтрансформаторные подстанции 35 -- 220 кВ, подлежащие присоединению к параллельным линиям на ответвлениях или в качестве концевых подстанций. Число таких подстанций очень велико.
Нормы технологического проектирования подстанций рекомендуют для них ряд типовых схем без выключателей:
а) блочную схему с присоединением трансформаторов к линиям через разъединители, отделители и установкой короткозамыкателей;
б) блочную схему с разъединителями, отделителями и короткозамыкателями у трансформаторов и ремонтной перемычкой из двух нормально отключенных разъединителей со стороны линий;
в) блочную схему с разъединителями, отделителями и короткозамыкателями на линиях и перемычкой с отделителем двустороннего действия у трансформаторов.
Блочная схема без перемычки целесообразна при небольшой длине линий, поскольку при этом вероятность отключения линии вместе с трансформатором относительно мала. Недостаток этой схемы заключается в том, что при повреждении и ремонте линии в работе остается один трансформатор. Электроснабжение не прерывается, но оставшийся в работе трансформатор может оказаться сильно перегруженным.
Схема с ремонтной перемычкой из разъединителей (рис. 1.2.3) обеспечивает возможность присоединения обоих трансформаторов к одной линии при ремонте второй.
рис. 1.2.3. Схема присоединения подстанции с перемычкой из разъединителей.
Схемы распределительных устройств низшего напряжения. Для РУ 6--10 кВ рекомендуют схему с одной секционированной системой сборных шин (рис. 1.2.4,). Для ограничения тока к. з. секционный выключатель при нормальной работе должен быть разомкнут. В случае отключения трансформатора секционный выключатель включается автоматически устройством АВР. При необходимости дальнейшего ограничения тока к. з. применяют трансформаторы с расщепленными обмотками низшего напряжения или токоограничивающие реакторы (простые или сдвоенные) у трансформаторов.
Рис. 1.2.4 Схема РУ 6-10 кВ - одиночная схема сборных шин, секционированная через разомкнутый выключатель.
1.3 Показатели и критерии надежности
Мерой надежности объекта является всякий алгоритм вывода суждения о наличии свойства надежности или о наличии уверенности в выполнении заданных функций в прошедшем, настоящем и будущем времени. На множестве объектов какого-либо класса мерой надежности будут алгоритмы вывода суждений о более или менее высоком уровне надежности одного объекта по сравнению с другим и определения объекта с оптимальным уровнем надежности. Мера надежности включает в себя показатели надежности и критерии (логические или аналитические выражения, связанные с алгоритмом вывода).
В качестве показателей надежности используются следующие:
время безотказной работы Ti и время восстановления п, измеряемое в часах или годах (ч или год);
среднее время безотказной работы Т и среднее время восстановления х, ч или год;
среднее значение параметра потока отказов ю и средняя интенсивность отказов К, измеряемые в годах в минус первой степени (год-1);
частота аварий и отказов определенного, k-то, вида A(k), год-1;"
вероятность отказов Q(t) и вероятность безотказной работы P(t) в заданный промежуток времени;
Q(t)+P(t) = l;
условная вероятность отказов Q(s/i) при возникновении какого-либо события (требования на срабатывание, например);
вероятность застать объект в любой момент определенного периода в работоспособном (kr -- коэффициент готовности) или неработоспособном (q -- коэффициент простоя) состоянии;
число конъюнкций (наложений отказов на состояния) N, C(k), квалифицированных как аварии;
условный недоотпуск энергии в течение года AW, коэффициент обеспеченности продукцией п и средний народнохозяйственный ущерб У от нарушения функционирования.
Логические критерии надежности записываются в виде условий безотказной работы или условий отказа объекта (системы) с помощью функций алгебры логики и логических диаграмм и относятся ко всем объектам данного класса.
Аналитические критерии надежности записываются как неравенства оценок временных, частотных и вероятностных показателей надежности и их нормативных значений. Например,
Ti>tp; Q(tP)<Qu(tP); Л(к)<Ли(к),
где tP -- расчетное время работы.
При сравнении различных объектов (или вариантов) из множества возможных в данном классе аналитические критерии надежности записываются как условие максимума или минимума показателя надежности у лучшего объекта (варианта). Аналитический критерий оптимальности решения записывается как условие экстремума целевой функции в виде приведенных затрат с учетом ущерба или в виде комплексной оценки эффективности. Судить о наличии свойства конкретного объекта выполнять данные функции можно только в конкретные моменты и периоды времени в прошлом.
Временной мерой надежности будет совокупность наработок на отказ {7"J. Усредняя оценку наработок по множеству реализации и оценивая разброс и тенденцию к изменению, можно говорить о вероятности выполнения заданных функций в ближайшем будущем P(Ti>tp). Но эта вероятность будет мерой уверенности в существовании свойства только при условии стабильности обстоятельств функционирования, состояния объекта, однородности наблюдения, достаточности объема наблюдений, справедливости гипотез о законе распределения.
Для множества объектов сравнение их по уровню надежности возможно на основе временных и частотных мер Т, Я, со, х, Л. Но оценки этих показателей по результатам эксплуатации получаются с очень большим интервалом неопределенности (например, для частоты отказов различие в оценке составляет 2--3 порядка). Прогнозирование этих показателей дает весьма условные оценки по тем же причинам, что и применение вероятностных мер. Условность временных, частотных и вероятностных мер является причиной неопределенности в оценках показателей надежности оборудования.
Говоря о надежности класса объектов, не имеют в виду ни конкретный момент времени, ни конкретный объект данного класса. Речь идет о степени уверенности в том, что при некоторых определенных условиях Z и X объект данного класса выполнит У или не выполнит У заданных функций с известной вероятностью (через Z обозначаются условия функционирования, а через X -- условия работоспособности). Если эта вероятность равна нулю или единице, то мера надежности является логической, если эта вероятность находится в интервале {0; 1}, то мера
надежности будет вероятностной.
Логическая мера надежности записывается в виде функции алгебры логики (ФАЛ) как условие достаточной работоспособности (безотказности) -- ФР или условие отказа --- ФО с помощью знаков конъюнкции Д или дизъюнкции V/ * Формирование массива ФО (или ФР) и составляет содержание первого этапа расчета надежности системы.
Переход от логической меры надежности к вероятностной -(уверенности в выполнении или невыполнении функций) возможен только при введении условных оценок вероятностей событий или состояний. Вероятностные, частотные и временные меры получаются на основе логической меры. Вследствие этого они условны, а оценки их показателей имеют большой интервал неопределенности.
Исходные данные о надежности элементов системы могут быть представлены точечными оценками средних значений показателей. В таких случаях результаты расчета надежности системы также представляются в виде точечных оценок средних значений показателей. Использование статистических оценок средних значений и среднеквадратических отклонений дает основу для применения формул теории точности при измерении неопределенности результата с помощью среднеквадратической погрешности.
При прогнозировании на экспертной основе показателей надежности нового оборудования оценки могут быть представлены верхней и нижней границей интервала неопределенности. Аналогично верхняя и нижняя границы определяются для доверительного интервала при использовании статистических данных испытаний и эксплуатации. В этих условиях неопределенность показателей надежности системы оценивается с помощью пессимистических и оптимистических оценок, полученных при подстановке соответствующих граничных значений исходных данных в полученные расчетные формулы для системы. Экспертнофакторный подход позволяет оценивать интервал неопределенности с помощью уравнения регрессии.
Наличие погрешности или интервала неопределенности в оценках показателей надежности и целевых функций приводит к ситуациям, когда вследствие малого различия в показателях сравниваемых объектов (вариантов) невозможно с уверенностью определить, какой из объектов лучше. В зону неопределенности по показателям надежности попадают наиболее надежные варианты, в зону неопределенности по приведенным затратам -- наиболее экономичные.
Оценки показателей надежности элементов электроэнергетических установок и систем, а именно среднего параметра потока отказов К или со (год-1), среднего времени восстановления т (год) или Тв. ср (ч), частоты вывода в плановый ремонт фп. р (год-1), среднего времени планового простоя тгп.Р (год), средней Длительности планового простоя в течение года /„.р (ч/год), условной вероятности отказа срабатывания устройств защиты и автоматики Q (г0. с), приводятся в широко распространенных изданиях [15, 41, 47, 61].
Иногда приводятся другие показатели надежности элементов: средняя наработка между отказами 7"(ч), интенсивность восстановления ц (ч-1), коэффициент простоя q (%), средняя наработка на отказ N0.c (цикл).
Связь между этими показателями и указанными выше выражается следующими формулами:
А = 8760/Т; Т = (8760м)-1;
Интервал неопределенности в оценках показателей может быть установлен для каждого элемента в виде максимальных и минимальных значений Amax, Amin.
В источниках приводятся доверительные верхние и нижние границы Ав, Ан, тв, тн и так далее с доверительной вероятностью а=0,9. Однако для некоторых элементов таких оценок нет.
2. Расчет токов короткого замыкания
Разработка главной схемы Подстанции
Главная схема ПС разрабатывается на основании схемы развития энергосистемы и должна:
1. обеспечивать требуемую надежность электроснабжения потребителей и перетоков мощностей по межсистемной связи в нормальном и послеаварийном режимах;
2. учитывать перспективу развития;
3. допускать возможность постепенного расширения РУ всех напряжений;
4. обеспечивать возможность проведения ремонтных и эксплутационных работ без отключения смежных присоединений.
Подстанция предназначенная для приема и распределения электрической энергии (ЭЭ) потребителям, расположенным в РТ.
ПС подключена к энергосистеме по 110кВ ВЛ. С шин 6 кВ отходит
Для обеспечения надежного питания потребителей во всех режимах работы на проектируемой ПС выбраны 2 трансформатора типа ТДН 16000/110/6,6 - 76У1.
В соответствии с нормами технологического проектирования на стороне
6 кВ принята раздельная работа трансформаторов. Все силовые трансформаторы должны иметь устройство автоматического регулирования напряжения под нагрузкой (РПН)
Расчет нагрузок на ПС.
Максимальная нагрузка на всех уровнях напряжения определяется по выражениям:
МВА
где: n- количество линий;
Pн.max- максимальная нагрузка одной линии;
Kодн- коэффициент одновременности, принимаем Kодн=0.8;
сosц- коэффициент мощности.
Произведем расчет нагрузки:
МВА
МВА
Выбор Силовых Трансформаторов.
Мощность Т выбирается так, чтобы при отключении одного из них на время ремонта или замены второго, оставшийся в работе, с учетом допустимой перегрузки резерва по сетям среднего напряжения (СН) и низкого напряжения (НН), обеспечил питание нагрузки, т. е. исходя из условия:
, МВА.
Выбираем ТС:
16000 МВА
Выбираем трансформатор типа ТДН 16000/110/6,6 Данные приводим в табл.
Тип автотрансформатора:
Данные о типах выбранных трансформаторов приведены в таблице 2.1.
Таблица 2.1
Тип трансформатора |
Номинальная мощность, МВА |
Потери кВт ХХ КЗ |
% |
||||
ВН,кВ |
НН,кВ |
Uкз |
Iхх |
||||
ТДН 16000/110/6,6 |
115 |
6,6 |
18 |
85 |
10,5 |
0,7 |
|
Производим проверку выбранных Т в нормальном и аварийном режимах (при отключении одного Т) по условию:
-в нормальном режиме
-в аварийном режиме
,
где Кз - коэффициент загрузки.
Для Т: 15,06/2*10,54=0,7
15,06/10,54=1,4
Расчет токов трехфазного КЗ.
Для проверки аппаратов и проводников по режиму КЗ на электродинамическую и термическую стойкость и высоковольтных выключателей по отключающей способности необходимо определить следующие токи КЗ:
Iпо- начальный периодический ток КЗ (кА);
iу- ударный ток КЗ (кА)
Inф, iaф- периодическая и апериодическая составляющие тока КЗ для момента времени ф (кА)
ф- время размыкания контактов.
Расчет производим в следующем порядке:
На основании структурной схемы с учетом принятого режима работы трансформаторов составляется расчетная схема, в которой показываются основное оборудование и источник (Т, Т, энергосистема и связь с энергосистемой- ЛЭП) и приводятся их параметры.
На U= 6кВ принята раздельная работа СТ в целях ограничения токов КЗ в соответствии с НТП ПС.
Составляем схему замещения (смотри рисунок 2.1 ) для всех элементов расчетной схемы. Производим расчет сопротивлений в относительных единицах относительно базовой мощности, которую принимаем Sб=1000 МВА.
Рисунок 2.1
Производим расчет сопротивлений элементов схемы в относительных единицах:
Х1=Хс*Sб/Sсист=1,8*1000/1200=1,5 о.е.
Х2=Х3=Х0*L*Sб/Uср=0,28*30*1000/13225=0,64 о.е.
Х4=Х5=Uк/100*Sб/Sнт=10,5/100*1000/16=6,56 о.е.
Производим преобразование схемы замещения относительно точек КЗ:
т. К1: U= 110 кВ
Х6=(Х1+Х2)/2=1,07 о.е.
т. К2: U= 6 кВ
Х7=Х6+Х5=1,07+6,56=7,63 о.е.
Расчетная таблица токов трехфазного КЗ. Таблица 2.2
очка КЗ |
К1 |
К2 |
|
Базовая мощность Sб (МВА) |
1000 |
||
Среднее напряжение Uср (кВ) |
115 |
6,6 |
|
Источники |
Система |
||
Ном. Мощность источников Sном (МВА) |
1200 |
||
Результирующие сопротивления Xрез (е.о.) |
1,07 |
7,63 |
|
Базовый ток (кА) |
5,02 |
87,5 |
|
ЭДС источника Е`` |
1,0 |
||
(кА) |
4,7 |
11,47 |
|
Куд |
1,608 |
1,56 |
|
Та |
0,02 |
0,02 |
|
(кА) |
10,7 |
25,3 |
|
(кА) |
6,02 |
10,5 |
|
1 |
1 |
||
(кА) |
4,7 |
11,47 |
|
(с) |
0,035 tсв=0,025 |
0,025 tсв=0.015 |
|
0,17 |
0,29 |
||
(кА) |
1,13 |
4,7 |
tс.в.- собственное время отключения (без времени, затраченного на гашение дуги).
Сводная таблица результатов расчетов токов КЗ.
Таблица 2.3
Точка КЗ |
Uср (кВ) |
Источник |
Токи трехфазного КЗ (кА) |
|||||
Iп0 |
Iпф |
iаф |
iуд |
|||||
К1 |
115 |
система |
4.7 |
4.7 |
1.13 |
10.7 |
7.77 |
|
К2 |
6.6 |
11.47 |
11.47 |
4.7 |
25.3 |
20.9 |
Выбор аппаратов и проводников
Определение расчетных условий для выбора аппаратов и проводников по продолжительным режимам работы.
- на стороне 110 кВ
А
где - следуйщая мощность СТ или АТ по шкале ГОСТа.
А
- на стороне 6 кВ
А
А
Выбор высоковольтных выключателей (ВВ) и разъединителей (РЗ) на всех напряжениях.
На стороне ВН 110 кВ СТ:
Расчетные токи продолжительного режима в цепи 110 кВ Т:
Iнорм.= 54,6 А
Imax= 113,4 А
Расчетные токи КЗ на шинах 110 кВ:
Iп0= 4,7 iуд=10,7
Iпф= 4,7 iaф=1,13
Тепловой импульс на шинах 110 кВ:
4,7*4,7(0,155+0,02)=3,87 кА2 сек
0,1+0,055
Выбираем по [12] высоковольтный выключатель для наружной установки типа ВГУ-110-40У1
Привод высоковольтного выключателя: откл - пневматическое
вкл - пружинное
Выбираем по [12] разъединитель для наружной установки типа
РНДЗ-1-110/1250Т1
Привод разъединителя ПРН-110У1
Сравнение расчетных и каталожных данных.
Таблица 2.4
Расчетные данные |
Справочные денные |
||
ВГУ-110-40У1 |
РНДЗ-1-110/1250Т1 |
||
Uуст.=110 |
Uном=110 кВ |
Uном=110кВ |
|
Imax=113,4 |
Iном= 2000 А |
Iном=2000А |
|
Iпф=4,7 |
= 40 кА |
- |
|
iаф=1,13 |
Iaном= 56,6 |
- |
|
Iп0=4,7 |
Iдин=40кА |
- |
|
iуд=10,7 |
iдин=102 кА |
- |
|
Вк=3,87кА2 сек |
=3200 |
=4800 |
На стороне НН 6 кВ СТ:
Расчетные токи продолжительного режима в цепи 6 кВ Т:
Iнорм.=1000 А
Imax=2076,9 А
Расчетные токи КЗ на шинах 6 кВ:
Iп0=11,47 кА iуд=25,3 кА
Iпф=11,47 кА iaф=4,7 кА
Тепловой импульс на шинах 6 кВ:
11,47*11,47(0,125+0,02)=19,076 кА2 сек
0,17+0,025
Выбираем по [1] высоковольтный выключатель для внутренней установки типа ВБЭ-10(6)-31,5(40)
Привод высоковольтного выключателя электромагнитный.
Сравнение расчетных и каталожных данных.
Таблица 2.5
Расчетные Данные |
Справочные денные |
|
Uуст.=6кВ |
Uном=10(6) кВ |
|
Imax=2076,9 |
Iном=3150 А |
|
Iпф=11,47 |
=31.5(40) кА |
|
iаф=4,7 |
iа ном=58 |
|
Iп0=11,47 |
Iдин=31,5(40) кА |
|
iуд=25,3 |
iдин=80 кА |
|
Вк=19,076кА2 сек |
= |
Выбор проводников в основных цепях ПС.
На напряжения 110 кВ выбираем гибкие сталеалюминевые провода; на напряжение 6 кВ - жесткие алюминиевые шины.
В цепях отходящих линий 6 кВ - силовые кабели. Для крепления шин на 6 кВ выбираем опорные изоляторы.
Выбор сборных шин и токоведущих частей на U 110 кВ в цепи
Таблица.2.6
Условия выбора |
Сборные шины 110 кВ и токоведущие части от ТДН-16000/110/6,6 до сборных шин 6 кВ |
|
Imax<Iдоп |
Согласно п.1.3.28 ПУЭ сборные шины и ошиновка в пределах ОРУ выбирается по нагреву (по допустимому току наиболее мощного присоединения) Imax=113,4 А, Iнорм=54,6А |
|
Тип проводника, его параметры[2] c.428 |
АС300/39 Iдоп=690 А, d=24мм, r0=1,2см |
|
Проверка шин на схлестывание, электродинамическую стойкость |
Не производится, т.к. Iпо=4,7кА<20 кА |
|
Проверка шин на термическое действие тока КЗ |
Не производится, т.к. шины выполнены голыми проводами на открытом воздухе |
|
Проверка по условиям коронирования 1.07 Е < 0.9 Е0 Дср= |
Выбор сборных шин и ошиновки на ПС.
Сборные шины 6,6 кВ и токоведущие части СШ 6,6.
Таблица.2.7
Условия выбора |
Согласно п.1.3.28 ПУЭ сборные шины и ошиновка в пределах ЗРУ выбираются по нагреву (по допустимому току наиболее мощного присоединения). |
|
Imax < Iдоп Тип проводников |
Imax=2076,9А Однополосные шины расположены «плашмя» ША Iдоп=2410 (2289) А b=80 мм, h=10 мм, q=800 мм2, l=2м, а=0,5м |
|
Проверка шин на термическую стойкость при КЗ по условию: qmin < qвыбр |
мм qmin=47.995<800 Значение С см.[12], стр. 192 |
|
Проверка шин на электродинамическую стойкость по условию: МПа |
Gрасч=8,36 мПа 8,36 < 75 Условие выполняется |
Выбор изоляторов.
Выбор опорных и проходных изоляторов внутренней установки для крепления жестких сборных шин 6 кВ.
Выбираем опорный изолятор ИО-10-3,75У3 на напряжение 6кВ с минимальной разрушающей силой на изгиб Fразр=3750кН, высота изоляторов Hиз=120 мм. Проверяем изолятор на механическую прочность. Максимальная сила, действующая на изгиб:
где принято расстояние между фазами а=0,5 м, пролет между изоляторами l=2 м.
Поправка на высоту шины:
где b - ширина для полосовых шин
Таким образом, изолятор ИО-10-3,75У3 проходит по механической прочности.
3. Выбор электрооборудования подстанции
3.1 Устройство и принцип действия воздушного выключателя типа ВВБ-110 кВ
Iном.=2000 А, Iоткл. =31,5 кА,
Сопротивление контура полюса = не более 80 мкОм,
Сопротивления одного элемента = 100 Ом.
Характеристики выключателя, снятые при номинальном, минимальном и максимальном рабочих давлениях при простых операциях и сложных циклах, должны соответствовать данным завода изготовителя. Количество операций и сложных циклов, выполняемых каждым выключателем, устанавливается согласно табл.3.1.1.
Таблица 3.1.1Условия и число опробований выключателей при наладке.
Операция или цикл |
Давление при опробовании |
Напряжения на выводах |
Число операций и циклов |
|
1. Включение |
Наименьшее срабатывание |
Номинальное |
3 |
|
2. Отключение |
То же |
То же |
3 |
|
3. ВО |
« |
» |
2 |
|
4. Включение |
Наименьшее рабочее |
« |
3 |
|
5. Отключение |
То же |
» |
3 |
|
6. ВО |
« |
» |
2 |
|
7. Включение |
Номинальное |
« |
3 |
|
8. Отключение |
То же |
» |
3 |
|
9. ОВ |
« |
» |
2 |
|
10. Включение |
Наибольшее рабочее |
0,7 номинального |
2 |
|
11. Отключение |
То же |
То же |
2 |
|
12. ВО |
« |
Номинальное |
2 |
|
13. ОВО |
» |
То же |
2 |
|
14. ОВО |
Наименьшее для АПВ |
« |
2 |
Устройство и принцип действия воздухонаполненного выключателя типа ВВБ-110 (выключатель воздушный баковый для номинального напряжения 110 кВ) научно-производственного объединения (НПО) «Электроаппарат»). Выключатель рассчитан на давление воздуха 2 МПа. Гасительное устройство с двумя разрывами заключено в стальной бачок, изолированный от земли с помощью колонны фарфоровых изоляторов. Объем бачка рассчитан на две операции отключения. Расход воздуха пополняется из ресивера и общестанционной магистрали сжатого воздуха по изолирующему воздуховоду. Давление в бачке поддерживается близким к номинальному. В бачок встроены вводы 6 из эпоксидной смолы, наружные части которых защищены фарфоровыми покрышками. Неподвижные контакты укреплены на вводах, а подвижные в виде ножей на металлической траверсе, которая, в свою очередь, жестко связана со штоком. Неподвижные контакты со встроенными контактными ламелями находятся внутри металлических сопл, направляющих воздух в процессе отключения к выхлопному клапану (его также называют дутьевым клапаном). Контактная траверса и тарелка выхлопного клапана приводятся в движение поршневыми устройствами, действие которых согласовано. Клапаны управления поршневыми устройствами расположены внизу и находятся под потенциалом земли. Основные разрывы дугогасительного устройства шунтированы резисторами с вспомогательными контактами для отключения сопровождающего тока. Резисторы укреплены в бачке на вводах. Вспомогательные контакты помещены под резисторами. Клапаны управления этими контактами вынесены наружу. Для равномерного распределения напряжения между разрывами в положении «отключено» предусмотрен делитель напряжения емкостного типа .
В процессе отключения поршневое устройство привода поднимает тарелку выхлопного клапана . Поднимается также контактная траверса, и контакты размыкаются. Дуги, образующиеся на контактах, перебрасываются на концы неподвижных контактов и вспомогательные электроды . Они гасятся в потоке воздуха, вытекающего из бачка через сопла и выхлопной клапан. После погасания дуг выхлопной клапан закрывается, а траверса с ножами остается в верхнем отключенном положении. Промежуток между контактами обеспечивает достаточную электрическую прочность при давлении 2 МПа. Вспомогательные контакты размыкаются приблизительно через 0,035 с после размыкания главных контактов, и возникшие между ними дуги гасятся потоком воздуха вытекающего в атмосферу через внутренние полости контактов. После погасания дуг вспомогательные контакты остаются разомкнутыми. При включении выключателя контактная траверса опускается поршневым устройством. Ножи входят в прорези в верхней части сопл, и контакты замыкаются. Предварительно замыкаются вспомогательные контакты.
Поршневые устройства и , приводящие в движение контактную траверсу и выхлопной клапан, расположены в зоне высокого потенциала. Соответствующие клапаны управления расположены в шкафу управления и находятся под потенциалом земли. Они связаны с поршневыми устройствами изолирующим воздуховодом , расположенным внутри опорной колонны. Номинальный ток отключения выключателей серии ВВБ составляет 31-35 кА. Время отключения 0,08 с (4 периода).
3.2 Устройство и принцип действия элегазового выключателя типа ВГУ-110У1
Iном = 2000 А
Iоткл = 40 кА
Элегаз (SF6 -- шестифтористая сера) представляет собой инертный газ, плотность которого превышает плотность воздуха в 5 раз. Электрическая прочность элегаза в 2-- 3 раза выше прочности воздуха. При давлении 0,2 МПа электрическая прочность элегаза сравнима с прочностью масла.
В элегазе при атмосферном давлении может быть погашена дуга с током, в 100 раз превышающим ток, отключаемый в воздухе при тех же условиях. Исключительная способность элегаза гасить дугу объясняется сильным сродством его с электронами. Молекулы газа улавливают электроны дугового столба и образуют относительно неподвижные отрицательные ионы. Потеря электронов делает дугу неустойчивой, и она легко гаснет. В струе элегаза, т. е. при газовом дутье, поглощение электронов из дугового столба происходит еще более интенсивно.
В элегазовых выключателях гасительное устройство помещено в герметизированный заземленный бак с проходными изоляторами и встроенными трансформаторами тока. Бак заполнен элегазом при давлении 0,4--0,6 МПа. Применение получили автопневматические дугогасительные устройства, в которых газ в процессе отключения сжимается поршневым устройством и направляется в зону дуги. Таким образом, элегазовый выключатель представляет собой замкнутую систему (без выброса газа наружу). Он во многом схож с баковым масляным выключателем, однако в нем отсутствуют горючие материалы и масса его значительно меньше массы масляного выключателя.
Поршень и полый контакт неподвижны. Цилиндр с соплом из фторопласта и розеточным контактом перемещаются по горизонтальной оси с помощью пневматического привода. соответствует положению «включено», контакты замкнуты. В . процессе отключения цилиндр перемещается приводом вправо. При этом газ в полости сжимается, контакты размыкаются и между ними образуется дуга. По выходе вспомогательного электрода из внутренней полости контакта газ начинает вытекать через эту полость. Если отключаемый ток мал (порядка нескольких десятков ампер), поток газа через внутреннюю полость контакта достаточен для гашения дуги при относительно небольшой ее длине в течение приблизительно 10 мс. При отключении тока к. з. гашение дуги происходит по выходе контакта из сопла, когда вследствие увеличивающе...
Подобные документы
Электрическая схема подстанции. Расчет токов короткого замыкания. Выбор электрооборудования подстанции. Защита электрооборудования от импульсов грозовых перенапряжений, набегающих с ВЛ. Расчет проходного изолятора на 110 кВ с бумажно-масляной изоляцией.
дипломная работа [950,9 K], добавлен 04.09.2010Расчет нагрузки и выбор главной схемы соединений электрической подстанции. Выбор типа, числа и мощности трансформаторов. Расчет токов короткого замыкания. Выбор электрических аппаратов и проводников. Релейная защита, расчет заземления подстанции.
курсовая работа [1,1 M], добавлен 17.12.2014Расчеты электрической части подстанции, выбор необходимого оборудования подстанций. Определение токов короткого замыкания, проверка выбранного оборудования на устойчивость к воздействию токов короткого замыкания. Расчеты заземляющего устройства.
курсовая работа [357,3 K], добавлен 19.05.2013Структурная схема опорной тяговой подстанции, расчет ее мощности. Определение рабочих токов и токов короткого замыкания. Выбор токоведущих частей, изоляторов, высоковольтных выключателей, ограничителей перенапряжения. Выбор и расчет типов релейной защиты.
дипломная работа [1,1 M], добавлен 15.06.2014Производственная мощность проектируемой электрической подстанции. Выбор числа и мощности трансформаторов. Расчет токов короткого замыкания. Максимальная токовая защита от перегрузки автотрансформаторов. Компоновка основного электрооборудования подстанции.
дипломная работа [661,4 K], добавлен 01.07.2015Разработка однолинейной схемы коммутации трансформаторной подстанции. Расчет активных и реактивных мощностей потребителей. Выбор типа понижающих трансформаторов. Расчет максимальных рабочих токов, сопротивлений элементов цепи короткого замыкания.
курсовая работа [1,4 M], добавлен 07.05.2015Структурная схема тяговой подстанции. Определение трансформаторной мощности. Разработка схемы главных электрических соединений подстанции. Методика и принципы вычисления токов короткого замыкания, токоведущих частей и выбор необходимого оборудования.
курсовая работа [467,9 K], добавлен 24.09.2014Разработка однолинейной схемы коммутации трансформаторной подстанции. Суточные графики нагрузок предприятий различных отраслей промышленности. Расчёт максимальных рабочих токов основных присоединений подстанции. Расчет параметров короткого замыкания.
дипломная работа [4,0 M], добавлен 25.01.2015Обоснование целесообразности реконструкции подстанции. Выбор мощности трансформаторов трансформаторной подстанции. Расчет токов короткого замыкания и выбор основного оборудования подстанции. Расчетные условия для выбора электрических аппаратов.
дипломная работа [282,5 K], добавлен 12.11.2012Определение расчетных нагрузок и выбор силовых трансформаторов. Расчет токов короткого замыкания. Выбор электрических схем первичных соединений подстанции. Выбор ограничителей перенапряжения. Выбор ячеек закрытого распределительного устройства.
курсовая работа [167,2 K], добавлен 16.03.2017Выбор числа и мощности силовых трансформаторов. Проверка коэффициентов их загрузки. Разработка и обоснование принципиальной электрической схемы подстанции. Расчет токов короткого замыкания. Выбор и проверка основного электрооборудования. Выбор изоляторов.
курсовая работа [615,2 K], добавлен 12.06.2011Выбор числа и мощности силовых трансформаторов. Расчет токов короткого замыкания и их ограничение. Определение структурной схемы. Разработка главной схемы подстанции. Выбор и проверка электрических аппаратов, кабелей и электроизмерительных приборов.
курсовая работа [3,5 M], добавлен 22.09.2014Тип подстанции и ее нагрузка. Разработка понизительной подстанции. Выбор силовых трансформаторов, расчёт токов короткого замыкания. Составление схем замещения. Выбор электрической схемы распределительного устройства подстанции. Типы релейной защиты.
курсовая работа [3,9 M], добавлен 27.08.2012Обоснование главной схемы подстанции. Проверка электрооборудования на стойкость в режиме короткого замыкания. Собственные нужды ГПП-19. Релейная защита и автоматика. Надёжность схемы электроснабжения. Электробезопасность на подстанции, молниезащита.
дипломная работа [2,8 M], добавлен 02.12.2012Выбор и обоснование главной схемы электрических соединений подстанции. Расчет токов короткого замыкания. Выбор коммутационных аппаратов, сборных шин и кабелей. Контрольно-измерительные приборы. Схемы открытого и закрытого распределительных устройств.
курсовая работа [369,6 K], добавлен 22.09.2013Обоснование главной схемы электрических соединений подстанции. Выбор трансформаторов собственных нужд. Расчет токов короткого замыкания. Выбор коммутационной аппаратуры на стороне напряжения 220 кВ. Контрольно-измерительные приборы для цепей схемы.
курсовая работа [605,5 K], добавлен 23.06.2016Выбор числа и мощности силовых трансформаторов и сечений проводов питающих высоковольтных линий. Разработка принципиальной электрической схемы подстанции. Расчет токов короткого замыкания. Проверка электрических аппаратов и токоведущих частей подстанции.
курсовая работа [498,0 K], добавлен 24.11.2012Расчет электрической части подстанции: определение суммарной мощности потребителей, выбор силовых трансформаторов и электрических аппаратов, устройств от перенапряжения и грозозашиты. Вычисление токов короткого замыкания и заземляющего устройства.
контрольная работа [39,6 K], добавлен 26.11.2011Расчет мощности и выбор соответствующего оборудования для трансформаторной электрической подстанции двух предприятий - потребителей энергии первой и третьей категории. Определение мощности и числа трансформаторов, расчет токов короткого замыкания.
курсовая работа [413,2 K], добавлен 18.05.2012Выбор структурной схемы и расчёт реактивной нагрузки проектируемой подстанции. Выбор мощности и типа трансформатора, схемы питания собственных нужд. Расчёт токов короткого замыкания и электрической схемы замещения. Выбор токоведущих частей для цепей.
курсовая работа [453,8 K], добавлен 26.01.2014