Электрические схемы трансформаторных подстанций

Описание и специфика электрической схемы трансформаторной подстанции, сравнение вентильных разрядников и ограничителей перенапряжения. Расчет токов короткого замыкания, выбор электрооборудования подстанции. Координация изоляции и защита от перенапряжений.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 13.02.2015
Размер файла 876,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Исследования показали, что более эффективным является гасительное устройство аналогичной конструкции, но с двусторонним дутьем. Выключатель с таким усовершенствованным гасительным устройством удовлетворяет требованиям, предъявляемым к выключателю ПО кВ с отключаемым током 31,5 кА. Отключение обеспечивается при скорости восстанавливающегося напряжения 5 кВ/мкс. Гашение дуги происходит при расстоянии между контактами около 100мм. Длительность горения дуги составляет 20--25 мс. В отличие от воздушных выключателей отключение происходит бесшумно.

При ремонте выключателя и вскрытии баков необходимо сберегать газ с целью дальнейшего его использования, так как стоимость газа относительно высока. Для этого служат вакуумный насос, запасный резервуар для газа и компрессор. Перечисленные элементы установлены на монтажной тележке. С помощью компрессора газ из выключателя перемещают в запасный резервуар. Компрессор позволяет снизить давление в баке до 100 Па, т. е. позволяет удалить из бака почти весь газ. После этого могут быть открыты дверцы в баке для доступа к гасительному устройству. Заполнение бака газом производится в следующем порядке. Дверцы бака закрывают и с помощью вакуумного насоса удаляют из бака воздух. Давление в баке снижают до 100 Па. После этого бак наполняют газом из запасного резервуара.

Элегаз не ядовит, однако продукты его распада под действием дуги ядовиты. Поэтому при ремонте выключателей принимают меры предосторожности: вскрытие бака, и выемку гасительного устройства производят в противогазах.

Первый отечественный элегазовый выключатель 110 кВ предназначен и соответствующим образом выполнен для комплектного герметизированного РУ с газовой изоляцией. Аналогичные устройства предполагается выпускать для напряжения 220 кВ и выше.

3.3 Устройство и технические характеристики вакуумного выключателя ВБЭ-10(6) - 31,5(40)

Вакуумные выключатели внутренней установки предназначены для коммутации электрических цепей переменного тока частотой 50 Гц с номинальным напряжением 10 (6) кВ в нормальном и аварийном режимах б системах с изолированной или компенсированной нейтралью.

Выключатели соответствуют требованиям ГОСТ 687-78, ГОСТ 18397-86, КУЮЖ.674152.001 ТУ КУЮЖ. 674152.024 ТУ.

Выключатели поставляются на все КРУ - строительные предприятия России, Украины, Польши, а также широко используются для замены масляных и маломасляных выключателей, отработавших свой ресурс, по программе Ретрофит во всех КРУ и КСО прежних лет выпуска.

Поставка осуществляется согласно опросного листа (см. www.kontakt-saratov.ru)

Табл. 3.3.1 Технические характеристики выключателя.

Наименование параметров

ВБЭ - 10 - 20

ВБЭ - 10 - 31,5 (40)

Номинальное напряжение, кВ

10

10

Номинальный ток, А

630-1600

630-3150

Номинальный ток отключения, кА

20

31,5(40)

Сквозной ток короткого замыкания;

- ток электродинамической стойкости, кА

51

80(102)

- ток термической стойкости, кА

20

31,5(40)

- время протекания тока термической стойкости, с

3

3

Номинальное напряжение цепей пост, тока

110:220

110:220

питания привода, В перем. тока

220

220

Токи потребления электромагнита включения

-пост.,А

80-40

95;50

-перем.,А

40

45

Токи потребления электромагнита отключения --пост.,А

0,9;0.45

3:1,5

-перем.,А

2

2

Собственное время включения, с

0,1

0,1

Собственное время отключения, с

0,04

0,04

Диапазон рабочих температур окр.среды, °С Ресурс по коммутационной стойкости:

+50/-60

+50/ -60

- при номинальном токе, циклов ВО - при номинальном токе отключения, циклов ВО

50000 100

50000 100

Ресурс по механической стойкости, циклов ВО

50000

50000

Масса, кг, не более

120

150

3.4 Краткая характеристика трансформатора тока ТФЗМ

1. Расшифровка условного обозначения трансформаторов тока: Т- трансформатор тока; Ф - в фарфоровой покрышке;

3-с сердечником для защиты от замыканий на землю. М - модернизированный.

2. Трансформатор тока предназначен для наружной установки в открытых распределительных устройствах для передачи сигнала измерительной информации измерительным прибором, устройствам защиты и управления.

3. Выводы первичной обмотки обозначаются Л1 и Л2, выводы вторичной обмотки И1 и И2.

4. Верхняя цилиндрическая часть трансформатора представляет собой расширитель для масла, который обеспечивает компенсацию температурных изменений объема масла.

5. Трансформатор заполнен трансформаторным маслом. Уровень масла контролируется по маслоуказателю. При температуре масла 20*С уровень масла находится против красной черты маслоуказателя или в средней его части. На каждые 10 *С повышения или понижения температуры уровень масла соответственно повышается или понижается у трансформатора на класс напряжения:

33-110кВ - на 10мм

132-500кВ - на 25мм

6. Воздухосушитель или дыхательный клапан предназначен для сообщения внутренней полости трансформатора с наружным воздухом без попадания пыли и влаги. Верхняя часть стеклянного цилиндра воздухоосушителя заполнена силикагелем-индикатором, который при насыщении влагой меняет свою окраску на розовый цвет.

7. Коробка вторичных выводов закрыта крышкой. Табличка с паспортными данными трансформатора, электрическими схемами и техническими данными вторичных обмоток расположена на цоколе.

8. Через масловыпускной патрубок производится слив и отбор проб масла.

9. Основные технические данные:

Тип трансформатора

Напряжение Uhom, кВ

Напряжение

наибольшее

рабочее Шр, кВ

Номинальный

ток первичный, А

Номинальная предельная

кратность обмоток для

защиты, Кном

ТФЗМ-35

35

40,5

15-3000

18-28

ТФЗМ-110

110

126

50-2000

20-30

ТФЗМ-220

220

252

300-2000

12-25

10.У трансформаторов предназначенных для работы с двумя и тремя коэффициентами трансформации, предусмотрена возможность переключений на первичной обмотке путем соединения шин наружными или внутренними перемычками. На вторичной стороне путем присоединения к необходимым выводам вторичной обмотки.

11.Трансформатор тока отправляемый с предприятия-изготовителя, соединен перемычками на наибольший первичный ток.

Критерии и пределы безопасного состояния и режимов работы трансформаторов тока.

1. При эксплуатации трансформатора тока необходимо контролировать уровень масла,

состояние силикагеля воздухосушительного фильтра, отсутствие течи масла, отсутствие нагрева контактов.

2. Цоколь трансформатора должен быть заземлен.

3. Во время работы трансформатора тока вторичные обмотки его должны быть всегда

замкнуты на приборы или закорочены, так как на разомкнутой вторичной обмотке высокое напряжение.

Порядок подготовки к пуску, порядок пуска и обслуживание трансформатора тока во время нормальной работы и аварийных режимах.

1. После окончания монтажа, наладки и испытания трансформатора проверить наличие записей служб о готовности к включению.

2. Проверить выполнение всех заземлений на трансформаторе.

З. Проверить соединение маслоуказателъного стекла о крышкой трансформаторе тока (которое обеспечивает выравнивание потенциалов).

4. Проверить уровень масла в маслоуказательном стекле, наличие силикагеля в воздухосушительном фильтре, отсутствие течи масла.

5. Не задействованные вторичные обмотки трансформатора тока должны быть закорочены. З.б. Осмотр трансформатора тока производить на подстанциях с постоянным оперативным персоналом ежедневно, без постоянного оперативного персонала не реже одного раза в месяц.

7. При возникновении аварийных режимов с трансформатором необходимо немедленно поставить в известность диспетчера ОДС и действовать согласно местной инструкции по ликвидации аварийных ситуаций. К аварийным режимам относятся:

- снижение уровня масла, течь масла из трансформатора

- изменение цвета силикагеля с голубого на розовый

- нагрев контактов

8. Течь масла из трансформатора может происходить из-за нарушение уплотнений между цоколем и покрышкой, между покрышкой и маслорасширителем в местах сочленения деталей маслоуказателя, а также в местах выхода выводов первичной обмотки Л1 и Л2. Если имеется течь масла в маслоуказательном стекле, трансформатор должен быть отключен.

9. При изменении цвета силикагеля с голубого на розовый необходимо сообщить дефект в группу ПС и диспетчеру ОДС ПЭС.

10. При нагреве контактов и невозможности отключение трансформатора тока, необходимо

принять меры к снятию нагрузки с него.

11. При отключении вторичных обмоток от цепей приборов и защит необходимо предварительно замкнуть накоротко вторичные обмотки во избежание их повреждения.

Порядок допуска к осмотру, ремонту и испытаниям трансформатора тока.

1. Вывод в ремонт трансформатора тока должен быть оформлен и ОДС или ЦДС согласно принадлежности оборудования.

2. Перед началом работ на трансформаторе тока необходимо выполнить организационные и технические мероприятия по созданию безопасных условий труда.

3.При выполнении капитальных ремонтов трансформаторов пользоваться картой или проектом производства работ.

Требования по безопасности труда, взрыво- и пожаробезопасности при эксплуатации трансформатора тока.

1. Персонал обслуживающий трансформатор тока, должен быть ознакомлен с настоящей инструкцией, хорошо знать устройство, принцип действия и специфические особенности конструкции трансформатора тока, а также должен пройти соответствующий инструктаж.

2. Эксплуатация трансформатора тока должна производиться в соответствии с настоящей инструкцией, а также "Правил устройства электроустановок", "Правил технической эксплуатации электрических станций и сетей Российской Федерации", "Межотраслевых правил по охране труда (правила безопасности)", "Правил пожарной безопасности для энергетических предприятий" и инструкции завода изготовителя.

3. Подъем трансформатора тока осуществлять за четыре подъемных кольца, находящихся на цоколе.

4. При замене масла включение трансформатора тока под напряжение может производиться не ранее чем через 24 часа.

5. При возникновении постороннего шума в трансформаторе, снижении уровня масла, размыкания вторичной обмотки, трансформатор тока должен быть отключен.

6. В местах установки трансформатора тока не допускается наличие промасленного грунта, поросли и сухой травы.

7. Пролитое масло и другие горючие жидкости следует немедленно убрать. Промасленные обтирочные материалы складывать в специальный закрытый металлический ящик.

3.5 Краткая характеристика трансформатора напряжения НТМИ 6-10кВ

Трансформаторы напряжения предназначены для питания электрических измерительных приборов (цепей защиты) сигнализации.

Конструкция трансформаторов состоит из магнитопровода, выполненного из электротехнической стали ,обмоток с их изоляцией, отводов и др. конструктивных деталей, служащих для соединения отдельных частей в единую конструкцию.

Трансформаторы напряжения в зависимости от исполнения могут иметь две вторичные обмотки из которых одна (основная)предназначена для питания приборов и цепей защиты, а другая(дополнительная)для питания цепей защитных устройств и контроля изоляции сети.

Исполнение и тип трансформатора, значения напряжения, число обмоток, классы точности, мощности в классах точности, а также предельные мощности трансформаторов напряжения указываются в эксплуатационной документации.

Нулевую точку первичной обмотки необходимо заземлить для правильной работы схемы. При замыкании на землю одной из фаз магнитный поток данной фазы будет равен нулю. Следовательно, во вторичной обмотке этой фазы напряжение будет равно нулю и вольтметр этом фазы покажет ноль.

Если бы нулевая точка не была заземлена, распределение магнитных потоков при замыкании фазы на землю осталось бы таким же как и при нормальной работе (режима)и Вольтметры не изменили бы свои показания.

Нулевая точка основной вторичной обмотки и одна точка вспомогательной обмотки заземляется по правилам безопасности. На случай пробоя изоляции обмотки высшего напряжения на одну из вторичных обмоток.

Порядок подготовки к пуску (включению). Остановка (отключение) и обслуживание во время нормальной работы и в аварийных режимах.

Перед включением необходимо произвести внешний осмотр с целью выявления возможных повреждений при транспортировке или установке.

При осмотре следует убедиться в отсутствии повреждений бака, фарфора, обмотки, в достаточности уровня и отсутствия масла, наличии пломб и пр.

1. Проверить отсутствие течи масла через уплотнения и в местах сварки. Включение трансформаторов с течью масла недопустимо.

2. Проверить уровень масла в баке. Уровень масла в баке на ТН 6-10кВ должен быть на 20- 25мм ниже уровня крышки, на ТН-35-220кВ не ниже З/4 уровня масломерного стекла.

3. Проверить целостность фарфора вводов, контактных болтов, шпилек магнитопровода.

4. Проверить сопротивление изоляции прессующих болтов по отношению к корпусу ТН, которое должно быть не ниже 1Мом. 5.Удалить консервирующую смазку. б.При наличии воздухоосушительного фильтра убедиться, что селикагель не изменил своего голубого цвета на розовый.

При изменении окраски заменить селикагель.

Отобрать пробу масла для определения пробивного напряжения и проведения химического анализа.

Пробивное напряжение масла должно быть не менее:

З0кв. для тр-ов напряжением до 15кВ.

35кВ. для тр-ов напряжением до 35кВ.

45кВ. для тр-ов напряжением до 220кв.

В масле должны отсутствовать следы воды. Проба масла отбирается при температуре не ниже 5°С

Примечание:

Для трансформаторов до 20кВ. включительно проба масла не отбирается и допускается полная замена трансформаторного масла при браковочных результатах испытаний изоляции. Если после отбора пробы масла уровень масла ниже указанного, то произвести доливку до требуемого уровня.

Включение трансформатора после доливки допускается не ранее, чем через 24ч,

Измерить сопротивление изоляции мегомметром с напряжением 1000В. Сопротивление изоляции обм.ВН при температуре 20 С должно быть не ниже 1000 Мом для 6-10кВ. для остальных трансформаторов согласно «Нормам испытаний электрооборудования», -Измерить электрическое сопротивление обмоток по постоянному току. -Проверить полярность обмоток.

В процессе эксплуатации у НТМИ 6-10кВ. при снижении сопротивления изоляции ниже 1000 МOм заменить трансформаторное масло, а при необходимости произвести сушку обмоток.

Подлежат сушке трансформаторы напряжением 6кВ. и выше, если отсутствовало масло или оно было ниже установленного уровня в баке.

Сушка активной части трансформаторов может быть проведена по одному из следующих методов:

а) в специальном вакуум шкафе с электрическим обогревом;

б) методом дутья с помощью воздуходувки;

в )в камере с электрическим обогревом ,с применением принудительной или естественной тяги.

Об окончании сушки судят по кривой изменения сопротивления изоляции обмоток. Сушка должна продолжаться до тех пор пока сопротивление в нагретом состоянии (85-100)°С не достигает постоянной величины, которая должна оставаться неизменной в течении, по крайней мере (8- 12ч.)

Температура обмоток должна определяться методом сопротивления или термопарой. При наличии механических повреждений бака или измерением будет выявлен обрыв или плохой контакт, активная часть подлежит выемке из бака и ремонту. Трансформатор должен быть надежно заземлен.

Включение трансформатора в сеть допускается производить толчком на полное напряжение .

В процессе эксплуатации не допускается работа трансформатора при снижении уровня масла, при наличии течи масла, накопления пыли на крышке бака, шинах и вводах. При наличии течи масла трансформатор напряжения должен быть отключен. Необходимо вести визуальное наблюдение с соблюдением правил безопасности за состоянием контактов и т.д.Во время работы исправный трансформатор издает умеренный, равномерно гудящий звук, без резкого шума и треска.

Защита трансформаторов напряжения при самопроизвольных смещениях нейтрали осуществляется активным сопротивлением 25 Ом, постоянно включенным в цепь обмотки разомкнутого треугольника трансформатора напряжения.

Запрещается эксплуатация трансформатора напряжения 6-10 кВ. без выше указанного сопротивления .Активное сопротивление должно быть рассчитано на длительное протекание тока до 4 -5 А.

Это сопротивление устанавливается непосредственно у трансформатора напряжения и подключается к обмотке 3Uo без предохранителей. В сетях, где наблюдаются дательные феррорезонансные колебания, когда постоянно Подключенное активное сопротивление 25 Ом. не предотвращает возникновение или не ограничивает до безопасной величины самопроизвольное смещение нейтрали, надо принять автоматическое подключение в цепь обмотки 3Uo еще одного сопротивления- 25 Ом. в результате чего полное активное сопротивление уменьшается в 2 раза, т.е. до 12,5 Ом.

Автоматическое подключение дополнительного сопротивления 25 Ом. производится только тогда, когда в обмотке появляются токи опасной величины, протекающие по сопротивлению в нейтрали трансформатора напряжения, что наблюдается редко.

В сети с компенсацией емкостных токов (установлены ДГК) самопроизвольные смещения нейтрали возникнуть не могут.

Поэтому какие-либо оперативные действия или применение других мер защиты не требуется.

На подстанциях 110-220кВ. для предотвращения перенапряжений от самопроизвольных смещений нейтрали оперативные действия должны начинаться с заземления нейтрали трансформатора, включаемого на ненагруженную систему шин с трансформаторами напряжения НКФ 110-220кВ.

Перед отделением от сети ненагруженной системы шин с НКФ 110-220кВ.Нейтраль питающего транcформатора должна быть заземлена.

Оперативные действия воздушными выключателями должны проводится так, чтобы НКФ не оказались присоединенными к питающим шинам через конденсаторы, шунтирующие контактные разрывы отделителей воздушных выключателей.

В сетях б-35кВ. в случае необходимости должны применяться меры по предотвращению самопроизвольных смещений нейтрали.

При появлении земли в сети б-10 кВ. немедленно приступить к ее отысканию и устранению. Разземлить нейтраль (где есть заземляющий нож в нейтрали обмотки 10кВ.) или отключить НТМИ-10кВ.

Порядок допуска к осмотру, ремонту и испытаниям оборудования.

Осуществляется соответствующим оперативным персоналом на основании существующих Межотраслевых правил по охране труда при эксплуатации электроустановок.

1. После окончания монтажа, наладки и испытания трансформатора проверить наличие записей служб о готовности к включению.

2. Проверить выполнение всех заземлений на трансформаторе.

З. Проверить соединение маслоуказателъного стекла о крышкой трансформаторе тока (которое обеспечивает выравнивание потенциалов).

4. Проверить уровень масла в маслоуказательном стекле, наличие силикагеля в воздухосушительном фильтре, отсутствие течи масла.

5. Не задействованные вторичные обмотки трансформатора тока должны быть закорочены.

6. Осмотр трансформатора тока производить на подстанциях с постоянным оперативным персоналом ежедневно, без постоянного оперативного персонала не реже одного раза в месяц.

7. При возникновении аварийных режимов с трансформатором необходимо немедленно поставить в известность диспетчера ОДС и действовать согласно местной инструкции по ликвидации аварийных ситуаций. К аварийным режимам относятся:

- снижение уровня масла, течь масла из трансформатора

- изменение цвета силикагеля с голубого на розовый

- нагрев контактов

8. Течь масла из трансформатора может происходить из-за нарушение уплотнений между цоколем и покрышкой, между покрышкой и маслорасширителем в местах сочленения деталей маслоуказателя, а также в местах выхода выводов первичной обмотки Л1 и Л2. Если имеется течь масла в маслоуказательном стекле, трансформатор должен быть отключен.

9. При изменении цвета силикагеля с голубого на розовый необходимо сообщить дефект в группу ПС и диспетчеру ОДС ПЭС.

10. При нагреве контактов и невозможности отключение трансформатора тока, необходимо принять меры к снятию нагрузки с него.

11. При отключении вторичных обмоток от цепей приборов и защит необходимо предварительно замкнуть накоротко вторичные обмотки во избежание их повреждения.

Требования по межотраслевым правилам по охране труда при эксплуатации трансформатора напряжения НТМИ 6-10 кВ.

1. Осмотры, испытания трансформаторов напряжения производятся в соответствии с существующими Межотраслевыми правилами по охране труда при эксплуатации электроустановок, «Правилами пожарной безопасности» при замене трансформаторного масла и сушке изоляции обмоток.

2. Испытания ТН производит бригада, в которой производитель работ должен иметь группу по электробезопасности - IV, член бригады группу - III, охрана группу - II. Работы выполняются по наряду-допуску, персонал должен иметь запись в удостоверении «Испытание оборудования с повышенным напряжением».

3. Для устранения возможности появления на отключенном, для производства работ, на участке электроустановки, напряжения за счёт обратной трансформации, трансформаторы напряжения, связанные с этим участком, следует отключить и со стороны напряжения ниже 100В с вывешиванием плаката : «Не включать - работают люди». (на рубильнике автомата, на предохранителе и т.д.)

4. При несчастном случае принимаются следующие меры безопасности:

отключение электроустановки, освобождение пострадавшего от воздействия Тока, оказания первой помощи пострадавшему, сообщение вышестоящему персоналу.

5. Испытательный трансформатор заполненный трансформаторным маслом является взрывоопасным, необходимо производить тех.осмотры перед началом работ на обнаружение подтёков и трещин. При возгорании отключить электроустановку и приступить к тушению порошковыми огнетушителями.

3.6 Комплектные распределительные устройства

При номинальном напряжении 6--35 кВ масса и габариты аппаратов, используемых для распределения электроэнергии между потребителями, относительно невелики. Это позволяет изготовлять распределительные устройства (РУ) или отдельные их элементы (ячейки) полностью в заводских условиях. Распределительные устройства, изготовляемые укомплектованными блоками для монтажа на месте эксплуатации, называют комплектными распределительными устройствами (КРУ).

Принятая классификация КРУ предусматривает разделение их на устройства внутренней и наружной установки, а также по ряду других признаков, в том числе по климатическим условиям работы, по конструктивному исполнению, типу коммутационного аппарата, условиям обслуживания.

Состав ячеек КРУ может быть различным. В зависимости от главного элемента различают ячейки с выключателями, с трансформаторами напряжения, с кабельными или воздушными вводами и т. д. Число вариантов исполнения каждого из упомянутых типов ячеек может достигать 8--10. Например, ячейки с высоковольтным выключателем могут различаться типом выключателя, наличием или отсутствием трансформаторов тока, заземляющего разъединителя, кабельной разделки, направлением вывода нагрузки и т. д. Так, отечественные КРУ серии КРУ-2-10 класса напряжения 10 кВ имеют 21 вариант схем ячейки с выключателем. Все возможные схемы исполнения ячеек КРУ этого типа приводятся в соответствующих технических описаниях и справочниках в виде так называемых сеток схем.

Рассмотрим основные черты конструкции одного из наиболее совершенных отечественных КРУ типа КЭ-10, выпускаемого Ровенским заводом высоковольтной аппаратуры (РЗВА). КРУ типа КЭ-10 предназначены для работы на подстанциях общепромышленного назначения, а также при частых коммутационных операциях. Сетка схем главных цепей КРУ КЭ-10 включает в себя 48 вариантов схем. Шкафы КРУ подразделяются на шкафы с выключателями, разъединителями, предохранителями силовыми, трансформаторами напряжения, трансформаторами собственных нужд, разрядниками, а также на шкафы глухих вводов и кабельных сборок (всего 27 типоисполнений). Как и все отечественные КРУ внутренней установки классов напряжения 6--10 кВ, они предназначены для работы с одинарной системой сборных шин.

Сведения о ячейках КЭ-10 двух вариантов исполнения на номинальные токи отключения 20 и 31,5 кА, с электродинамической стойкостью 52 и 81 кА соответственно. Ячейки КЭ-10 обладают наименьшей среди отечественных КРУ шириной (750 мм) и имеют твердое изоляционное покрытие всех токоведущих элементов высокого напряжения.

Все элементы ячейки размещены внутри металлического шкафа, состоящего из каркаса, выдвижного элемента и релейного шкафа. Каркас, представляющий собой покрытый металлическими листами сборный корпус, разделен стальными перегородками толщиной 2 мм на отсеки, в том числе отсек сборных шин, отсек выдвижного элемента, отсек отпаек сборных шин и отсек линейных шин. Это позволяет локализовать в пределах одного шкафа возможные повреждения при возникновении электрической дуги.

Сборные шины выполняются из алюминиевых и медных полос. а в тропическом исполнении -- только из медных.

В отсеке линейных шин размещены линейные шины и отпайки. проходящие в отсек выключателя через проходные изоляционные втулки или через втулки трансформаторов тока. В зависимости от схемы главных цепей в линейном отсеке устанавливается до трех трансформаторов тока. Предусмотрена также установка заземляющего устройства, включение которого невозможно при замкнутом выключателе.

Отсек сборных шин закрыт сверху свободно открывающейся крышкой с жалюзи. Сборные шины устанавливаются в специальных пазах изоляционных опор.

Крепление отпаек в отсеке отпаек сборных шин выполнено поворотным, что дает возможность очищать нижнюю часть опоры от пыли.

При компоновке шкафов с кабельными вводами в средней; части шкафа организуется кабельный отсек. Конструкция KРУ позволяет подключать до четырех кабелей сечением 3X240 мм в шкафу с выключателем и до десяти аналогичных кабелей в шкафу кабельных сборок.

Отсек выдвижного элемента предназначен для размещения тележки с электромагнитным выключателем, штепсельным разъединителем, трансформатором напряжения или другим элементом.

В варианте исполнения ячейки на выдвижном элементе размещен электромагнитный выключатель типа ВЭ-10, подключаемый к схеме КРУ с помощью разъемных контактов. Изоляция разъемных контактов выполнена горшкового типа и обеспечивает разделение отсека кабельной сборки и отсека выключателя.

При одностороннем обслуживании (доступ к шкафу только с лицевой стороны) и двухрядном расположении ячеек достигнутая в конструкции малая глубина всей ячейки и выдвижного элемента позволяют обеспечить необходимую ширину прохода 1,8 м при общей ширине помещения РУ, равной 6 м, что меньше, чем для других типов отечественных КРУ.

Защитная и сигнализационная аппаратура ячейки расположена внутри релейного шкафа. В зависимости от числа элементов в схеме вспомогательных соединений релейные шкафы КРУ КЭ-10 выпускаются в двух типоисполнениях высотой 715 и 900 мм, причем в последнем случае общая высота ячейки увеличивается до 2585 мм.

Основными элементами релейного шкафа является сварной каркас с дверью и подвижная тележка с установленной на ней аппаратурой защиты и управления. Для удобства обслуживания каретка имеет возможность выдвигаться из шкафа и поворачиваться на 90°. Подсоединение релейного шкафа и тележки выполнено с помощью гибких проводов и разъемных контактов по 20 цепей в каждом. На двери релейного шкафа размещены счетчики электроэнергии, блоки указательных реле, а также другая аппаратура, в том числе устанавливаемая и по специальному требованию заказчика.

На базе ячеек типа КЭ-10 освоен выпуск шкафов КРУ типа КМ-10. Их отличие от базового варианта заключается в установке на выдвижном элементе маломасляных выключателей колонкового типа серии ВК-Ю, и технические данные практически совпадают с КРУ базового варианта.

Рассмотрим варианты исполнения ячеек с выключателем КРУ классов напряжения 7,2--24 кВ фирмы ВВС (Швейцария) типов ВВ и ВА. Они могут отличаться один от другого не только схемами главных цепей, но и наличием или отсутствием металлической перегородки между отсеком сборных шин и отсеком выключателя, возможностью использования в РУ с одинарной или двойной системой сборных шин и т. д.

Основным вариантом является тип ВВ1. Его важнейшие особенности: использование в качестве сборных шин одинаковых труб для всех классов напряжения; доступ к кабельному вводу с передней стороны ячейки, что позволяет устанавливать ее у стены здания (возможность одностороннего обслуживания), идентичность разъемов подключения выключателя к сборным шинам или к кабельному вводу, что дает возможность при необходимости менять их местами.

Ячейка типа ВА1 отличается от ВВ1 наличием металлических перегородок, образующих отсеки сборных шин, выключателя и кабельного ввода. Она снабжена подвижными металлическими заслонками, прикрывающими отверстия высоковольтных вводов. При необходимости компоновки схемы РУ с двойной системой сборных шин требования максимальной надежности и безопасности привели к созданию варианта типа ВА2. Устройство состоит из двух шкафов типа ВА1, установленных задними стенками вплотную один к другому. Единственным отличием является высоковольтный проходной изолятор, установленный в задней стенке.

Ограничения, накладываемые строительными условиями по вводу кабеля в ячейку или сверху, обусловили создание КРУ других вариантов, которые нуждаются в обслуживании и со стороны задней стенки шкафа и могут быть использованы при кабельной подводке с обеих сторон. Стремление к унификации изделий и увеличению серийности при изготовлении КРУ Приводит к постоянному уменьшению числа вариантов исполнения, например, в КРУ GA-24 их три-четыре.

Элементы ячеек КРУ размещаются, как правило, внутри прочного" металлического заземленного шкафа. Принятая международная классификация защитных оболочек фиксирует как возможность проникновения через отверстия в оболочке тел определенного размера, так и степень защищенности оборудования от попадания воды. Шкафы современных КРУ выполняются с уровнем защищенности не ниже IP30, что соответствует максимальному диаметру отверстий в оболочке не более 2,5 мм и отсутствию защиты от воздействия воды как в виде дождя, так и в виде отдельных капель. Выбор уровня защищенности оболочки обусловливается работой КРУ в закрытом помещении или под открытым небом, а также наличием в окружающей среде влаги, песка, пыли или мелких насекомых.

При размещении ячейки КРУ внутри шкафа важной особенностью конструкции является либо возможность одностороннего обслуживания, либо необходимость обслуживания с двух сторон. В первом случае ячейки могут быть установлены в два ряда вплотную к стене помещения РУ с проходом для контроля и обслуживания шириной 1800--2200 мм. При этом достигается компактное размещение большого числа ячеек. При двухстороннем "обслуживании вдоль стены должен быть оставлен коридор шириной не менее 1 м, и общая занимаемая площадь возрастает.

В зависимости от наличия или отсутствия внутренних перегородок в соответствии с рекомендацией МЭК КРУ делятся на три типа: с металлическими перегородками между отсеками шкафа; с перегородками из диэлектрического материала; без перегородок.

При этом ячейки второго типа обладают тем преимуществом, что при коротком замыкании внутри ячейки электрическая дуга не фиксируется на диэлектрических перегородках.

Наиболее ответственным элементом схем КРУ являются высоковольтные выключатели (ВВ), выполняющие основные функции по перераспределению потоков энергии. Они определяют такие наиболее существенные для потребителя параметры КРУ, как номинальный рабочий ток, номинальный ток короткого замыкания и др. Конструкция ВВ, используемая в нем среда дугогашения являются важными характеристиками КРУ. Первоначально в качестве среды дугогашения использовались воздух и минеральное масло, в настоящее время -- вакуум и элегаз. По оценкам специалистов КРУ среднего и высокого напряжения на 40--60 % должны оснащаться вакуумными выключателями. Некоторые фирмы развитых стран (например, японская «Мейденша») полностью перешли на выпуск КРУ с вакуумными выключателями, а фирма ВВС (ФРГ) разработала взаимозаменяемые выключатели с элегазовым или вакуумным принципом гашения дуги, позволяющие по требованию заказчика использовать ту или иную среду дугогашения в любой схеме КРУ.

4. Координация изоляции и защита от перенапряжений

4.1 Координация изоляции

Защита оборудования подстанций от набегающих волн и координация изоляции на подстанциях базируется в настоящее время на использовании разрядников типов РВП, РВС и ОПН нынешнего поколения по ГОСТ 16357-70. Трансформаторы и автотрансформаторы 150 и 220 кВ имеют два уровня изоляции:

Основной, скоординированный с разрядниками РВП и РВМГ;

Повышенный, скоординированный с разрядниками РВС и ОПН.

Изоляция аппаратов и измерительных трансформаторов имеет один повышенный уровень.

На подстанциях до 110 кВ включительно, где установлены трансформаторы с повышенным уровнем изоляции, место установки вентильных разрядников и ограничителей перенапряжений выбирается таким образом, чтобы обеспечить защиту всего оборудования минимальным числом защитных аппаратов(например, по одному комплекту на каждую систему шин). При этом допускается наличие коммутационных аппаратов между РВ (ОПН) и трансформаторами, поскольку уровень изоляции трансформаторов выше возможной кратности большинства коммутационных перенапряжений, т.е. перенапряжений при включении и отключении.

Для оценки надежности защиты подстанционного оборудования от набегающих волн необходимо сопоставить напряжения на изоляции с её электрической прочностью. При этом следует учитывать, что формы волн напряжения на изоляции являются нестандартными.

Перекрытие изоляции на подстанции в большинстве случаев означает дуговое к.з. в непосредственной близости от сборных шин, которое может привести к системным авариям.

В результате перекрытия внешней изоляции возникает так называемый срез, т.е. практически мгновенный спад напряжения до нуля, являющийся причиной больших градиентных перенапряжений в обмотках трансформаторов, вызывающих в неблагоприятных случаях повреждение продольной изоляции. Пробой внутренней изоляции в отличии от перекрытия внешней - это в большинстве случаев необратимый процесс, приводящий к выходу из строя аппарата в целом.

Подстанции защищаются как от прямых ударов молний, так и от волн напряжения, набегающих с линии.

Повреждения или перекрытия изоляции на подстанции принципиально могут быть обусловлены тремя причинами:

Прорывом молнии мимо молниеотводов;

Возникновением высокого потенциала на заземлении пораженного молниеотвода, приводящего к обратному перекрытию с заземлителя на токоведуще части установки;

Возникновением высоких потенциалов под влиянием волн, приходящих с линии.

Если обозначить число опасных случаев в год, обусловленных перечисленными выше причинами, соответственно О1,О2 и О3, то расчетное число лет безаварийной работы подстанции

М=1/(О1+О2+О3)

М - показатель грозоупорности подстанции.

Для того чтобы обеспечить как можно меньшую вероятность повреждения изоляции подстанции, число М должно более чем на порядок превосходить нормальный срок службы оборудования, т.е. должно измеряться сотнями лет.

Координация характеристик изоляции аппаратов и РВ (ОПН) должна проводиться для всех возможных схем работы подстанции (разное число присоединений к шинам линий, связанная или раздельная работа секций и систем шин, выводов в ремонт секций с присоединенными РВ или ОПН и т.д.). Наивыгоднейшая схема защиты может быть спроектирована только при учете всех индивидуальных особенностей данной подстанции и при реальной оценке возможных и наиболее вероятных волн перенапряжений, приходящих с линий. Наиболее целесообразно расположение РВ и ОПН на подстанциях с более или менее сложной схемой можно определить лишь экспериментально, на анализаторах молниезащиты.

При разработке системы защиты подстанций от волн перенапряжений в первом приближении можно воспользоваться рекомендациями ПУЭ и НТП.

4.2 Защита электрооборудования от импульсов грозовых перенапряжений, набегающих с ВЛ

На ОРУ-110 кВ от волн перенапряжений приходящих с линий осуществляется вентильными разрядниками типа РВС-110 кВ.

В настоящее время в электрических системах для защиты электрооборудования от перенапряжений всеобщее распространение получили ограничители перенапряжений нелинейные (ОПН).

Хотя в этих целях по-прежнему используются и вентильные разрядники, однако, в новых проектных разработках применяются только ОПН, а при реконструкции действующих электроустановках РВ заменяют на ОПН.

Вентильные разрядники комплектуются нелинейными резисторами (варисторами) на основе карбида кремния (SiC) и искровыми промежутками, которые подключают нелинейный резистор между фазным проводом и землей только на короткое время для ограничения грозовых, а в установках сверхвысокого напряжения и коммутационных перенапряжений. Вследствие относительно невысокой нелинейности их варисторов РВ не позволяют обеспечить достаточное ограничение перенапряжений. Более глубокое их снижение требует уменьшение сопротивления нелинейного резистора, что приводит в вентильных разрядниках к существенному увеличению сопровождающих токов. Искровые промежутки даже достаточно сложной конструкции не в состоянии погасить большие сопровождающие токи. Включение варистора под рабочее напряжение без искровых промежутков оказывается невозможным, вследствие, сравнительно большого тока протекающего по варистору постоянно, а также из-за низкой термической устойчивости. На замену РВ пришли ОПН - защитные аппараты без искровых промежутков с высоконелинейными варисторами из металлооксидной керамики, постоянно подключенными между фазным проводом и землей. В отличие от РВ ОПН могут ограничивать и грозовые и коммутационные перенапряжения в электроустановках любых классов напряжений. Отметим также, что на воздушных линиях электропередачи (ВЛ) происходит замена РВ на ОПН. ОПН устанавливается вместо РВ на опорах ВЛ в местах с ослабленной изоляцией, в начале и конце защищенного подхода перед подстанцией на опорах вокруг пересечений ВЛ, на длинных переходах ВЛ и т.д. На первый взгляд применение ОПН представляется простым и эффективным решением задачи по ограничению перенапряжений. Исключение из ограничителя коммутирующих искровых промежутков повышает надежность этого защитного аппарата. Ограничение коммутационных перенапряжений в ЭУ U = 220 кВ и ниже позволяют существенно облегчить изоляцию либо повысить надежность изоляций таких ЭУ, которая в обычном исполнении рассчитана на воздействие коммутационных перенапряжений, не ограниченных защитными промежутками.

Однако, постоянное нахождение варистора ОПН под напряжением ставит проблему обеспечения тепловой устойчивости ОПН и при длительных рабочих напряжениях, а при ограниченных по времени повышениях напряжения в рабочих режимах электроустановки, и при установившихся (квазистационарных) перенапряжениях. При нарушениях тепловой устойчивости варистора возможны, и как показывает аварийная статистика, происходят взрывы и разрушения.

Отсюда возникает комплексная задача, как выбрать ОПН, чтобы он имел достаточную энергоемкость и надежно работал при длительных напряжениях и при временных повышениях, а также обеспечивал требуемое ограничение грозовых и коммутационных перенапряжений.

4.3 Сравнение РВ и ОПН

Принцип действия и основные характеристики Ограничителей Перенапряжений. В середине 70-х годов в СССР и Японии были созданы опытные образцы защитных аппаратов на основе варисторов из оксидно-цинковой керамики. Коэффициент нелинейности ВАХ для таких варисторов составляет б?0,02 для широкой области изменения тока, что на порядок меньше а для варисторов из карбида кремния.

Использование оксидно-цинковых варисторов позволило разработать защитные аппараты без искровых промежутков: при рабочем напряжении токи через варисторы измеряются миллиамперами, а при перенапряжениях достигают сотен и тысяч ампер. Такие аппараты в СССР получили название «нелинейных ограничителей перенапряжений» -- ОПН, за рубежом их называют «металлооксидными ограничителями», присваивая им различные фирменные названия и обозначения.

Высокая нелинейность ВАХ и большая удельная энергоемкость
оксидно-цинковых варисторов позволяют существенно улучшить
как защитные, так и массогабаритные характеристики ОПН по
сравнению с разрядниками. Кроме того, использование ограничителей позволяет устранить существенные недостатки, свойственные разрядникам:

нестабильность защитных характеристик, обусловленную разбросом напряжения срабатывания искровых промежутков и его снижением после многократных воздействий импульсов тока;

снижение пробивного напряжения разрядников при увлажнении загрязненной поверхности покрышки, определяющего возможность выхода аппарата из строя в нормальном эксплуатационном режиме;

сложность профилактики (контроля пробивного напряжения);

нестабильность защитных характеристик вследствие существенного влияния температуры на ВАХ карбидокремниевых резисторов и ее деградация от воздействия импульсов тока при ограничении перенапряжений;

поглощение из сети избыточной энергии при протекании сопровождающего тока;

сложность конструкции, подбора параметров элементов и настройки пробивного напряжения искровых промежутков.

После подтверждения эксплуатационной надежности ограничителей ведущие фирмы -- производители защитной аппаратуры приступили к свертыванию производства разрядников и их замене ограничителями. Так, в 1983 г. в Японии было полностью прекращено производстве; разрядников, как и в Швеции, Швейцарии, США.

Простота конструкции, компактность, способность работать в различных средах, возможность регулирования характеристик оксидно-цинковых варисторов обеспечили ограничителям широкое использование в современных аппаратах, в том числе в элегазовых распредустройствах. При создании разъединителей ограничители могут использоваться как опорные изоляционные конструкции. В трансформаторах ограничители могут размещаться внутри бака, -что позволяет выравнивать распределение напряжения по витковой изоляции. Малая масса ограничителей при использовании полимерных корпусов позволяет использовать их в виде подвесных и оттягивающих изоляторов.

Ограничитель присоединен к сети в течение всего срока службы, поэтому через его варисторы непрерывно протекает ток. Допустимая плотность активного тока составляет несколько микроампер на 1 см2, при этом плотность емкостного тока составляет 10--20 мкА/см2. Ограничитель сохраняет работоспособность до тех пор, пока воздействием рабочего напряжения и импульсов

Рис. 4.2.1 Конструкция нелинейного ограничителя перенапряжений наружного исполнения в фарфоровом (а) и полимерном (б) корпусах перенапряжений активная составляющая тока не превысит критического значения, при котором нарушается тепловое равновесие аппарата.

Поглощение ограничителем энергии из сети препятствует повышению перенапряжения, что обеспечивает защиту изоляции высоковольтного оборудования РУ. Основными конструктивными элементами ограничителя наружного исполнения наряду с одним или несколькими столбами варисторов (рис. 4.2.1) являются: колонки варисторов 7; изолирующий корпус 2 с ребрами, обеспечивающий необходимую электрическую прочность конструкции; фланцы 4 корпуса со смонтированными на них узлами герметичности и взрывобезопасности 3 и наружный тороидальный экран 6 с экранодержателями 5, обеспечивающий выравнивание распределения напряжения по варисторам, ограничение стримерной короны и необходимую электрическую прочность воздушной изоляции. При использовании фарфоровой покрышки в аппарате предусматривается сквозная полость 1, обеспечивающая передачу избыточного давления внутри корпуса при аварийном дуговом перекрытии на клапаны взрывобезопасности и предохраняющая аппарат от взрывного разрушения. В полости корпуса размещены также элементы крепления варисторов и теплопроводящая прослойка 8, передающая избыток теплоты от варисторов на корпус.

В последнее время для изготовления корпусов ограничителей стали использоваться полимерные материалы, например стеклопластик,-- для цилиндров 9 с силиконовыми ребристыми покрытиями 10. Использование полимерных корпусов позволяет существенно снизить массу аппаратов, упростить решение вопросов, связанных со взрывобезопасностью, теплоотводом и надежностью работы ограничителей в условиях сильно загрязненной окружающей среды.

В табл. 4.2.1 приведены основные защитные и конструктивные характеристики ОПН, выпускаемых в СССР.

Таблица 4.2.1

Кратность

ограничения

Тип ограничителя

Номинальное напряже-

перенапряжений

Высота ограничи-

Масса ограничителя

(одной фазы)

ние, кВ

коммутаци-

теля, м

кг

онных

грозовых

ОПН-110

110

1,75

2,42

1,45

50

ОПН-150

150

1,75

2,35

2,0

80

ОПН-220

220

1,75

2,24

2,78

115

ОПН-330

330

1,75

2,36

4,15

250

ОПН-500

500

1,75

2,15

5,42

510

ОПН-750

750

1,75

2,10

9,30

1250

ОПН-750

750

1,75

2,10

8,29

1000

ОПН-1150

1150

1,60

1,80

8,0

2600

ОПНО-1150

1150

1,60

1,80

8,0

2400

Принцип действия и основные характеристики Вентильных Разрядников. Основными элементами вентильного разрядника являются многократный искровой промежуток и соединенный последовательно с ним резистор с нелинейной вольт-амперной характеристикой (рис. 4.2.2). При воздействии на разрядник импульса грозового перенапряжения пробивается искровой промежуток и через разрядник проходит импульсный ток, создающий падение напряжения на сопротивлении разрядника. Благодаря нелинейной вольт-амперной характеристике материала, из которого выполнено сопротивление, это напряжение мало меняется при существенном изменении импульсного тока и незначительно отличается от импульсного пробивного напряжения искрового промежутка разрядника. Одной из основных характеристик разрядника является остающееся напряжение разрядника U/ост, т. е. напряжение при определенном токе (5--14 кА для разных UH0M), который называется током координациu. Импульсное пробивное напряжение искрового промежутка разрядника и близкое к нему напряжение Uост должны быть на 20--25% ниже разрядного напряжения изоляции (координационный интервал).

Рис. 4.2.2. Вольт-амперные характеристики вентильного разрядника и пути уменьшения остающегося напряжения.

/ и 2 -- разные степени нелинейности;

/ и 3 -- разные токи гашения

После окончания процесса ограничения перенапряжения через разрядник продолжает проходить ток, определяемый рабочим напряжением промышленной частоты. Этот ток (так же, как и у трубчатых разрядников) называется сопровождающим током. Сопротивление нелинейного резистора разрядника резко возрастает при малых по сравнению с перенапряжениями рабочих напряжениях, сопровождающий ток существенно ограничивается, и при переходе тока через нулевое значение дуга в искровом промежутке гаснет. Наибольшее напряжение промышленной частоты на вентильном разряднике, при котором надежно обрывается проходящий через него сопровождающий ток, называется напряжением гашения Uгаш, а соответствующий ток -- током гашения Uгаш. Гашение дуги сопровождающего тока должно осуществляться в условиях однофазного замыкания на землю, так как во время одной и той же грозы могут произойти перекрытие изоляции на одной фазе и срабатывание разрядника в двух других фазах. Таким образом, напряжение гашения должно быть равным напряжению на неповрежденных фазах при однофазном замыкании на землю:

Uгаш = k3Uном, (4.2.1)

где k3 -- коэффициент, зависящий от способа заземления нейтрали (ниже будет показано, что k3 = 0,8; 1,1 соответственно для установок с заземленной и изолированной нейтралью); Ј/вом -- номинальное линейное напряжение.

Эффективность действия разрядника характеризуется так называемыми защитными отношениями:

k= Uпр~/Uгаш; (4.2.2)

kзащ = Uост/1.43U гаш , (4.2.3)

где Unp^ -- пробивное напряжение искрового промежутка разрядника при 50 Гц.

Основное значение для грозозащитных разрядников имеет снижение k3m, которое может быть достигнуто двумя путями. Первый путь -- получение более пологой вольт-амперной характеристики (рис. 16-7, кривая 2) -- уже в достаточной мере использован и в настоящее время не открывает реальных перспектив. Второй путь -- увеличение тока гашения за счет улучшения дуго-гасящих свойств промежутка -- позволяет снизить вольт-амперную характеристику во всем диапазоне токов (кривая 3).

Вентильные разрядники обладают определенной пропускной способностью, т. е. предельной величиной тока, который они могут многократно пропускать без изменения своих электрических характеристик. Пропускная способность разрядника зависит от теплостойкости его нелинейного резистора. До недавнего времени вследствие недостаточной пропускной способности вентильные разрядники отстраивались от внутренних перенапряжений, т. е. имели пробивное напряжение выше возможной величины внутренних перенапряжений и предназначались только для ограничения кратковременных перенапряжений грозового происхождения. Разработка нелинейных резисторов с более высокой пропускной способностью и применение новых принципов гашения дуги сопровождающего тока ^позволяют в настоящее время возложить на разрядники также и функцию ограничения более длительных внутренних перенапряжений. Это обстоятельство открывает перспективу дальнейшего снижения уровней изоляции электрооборудования и повышения его экономической эффективности.

4.4 Замена вентильных разрядников на ОПН

По ГОСТ 16357-70 разрядники РВС относятся к III группе и имеют следующие характеристики:

РВС-110. Uгаш.РВ = 102 кВ,

Uпр.г = 258 кВ,

Uост.г = 367 кВ при Iг = 10 кА.

Согласно ГОСТ 1516.3-96 испытательное напряжение полным грозовым импульсом нормальной изоляции силовых трансформаторов и аппаратов равно Uисп.гп = 460 кВ. Испытательное напряжение полным грозовым импульсом изоляций нейтрали силовых трансформаторов равно Uисп.н.гп = 200 кВ.

Выбор ОПН, включенных на шинах ПС. Напряжение Uнр.опн в соответствие с исходными данными равно:

Uнр.с = 1,1 Uном./v3 = 1,1•110/v3 = 70 кВ. (4.4.1.)

...

Подобные документы

  • Электрическая схема подстанции. Расчет токов короткого замыкания. Выбор электрооборудования подстанции. Защита электрооборудования от импульсов грозовых перенапряжений, набегающих с ВЛ. Расчет проходного изолятора на 110 кВ с бумажно-масляной изоляцией.

    дипломная работа [950,9 K], добавлен 04.09.2010

  • Расчет нагрузки и выбор главной схемы соединений электрической подстанции. Выбор типа, числа и мощности трансформаторов. Расчет токов короткого замыкания. Выбор электрических аппаратов и проводников. Релейная защита, расчет заземления подстанции.

    курсовая работа [1,1 M], добавлен 17.12.2014

  • Расчеты электрической части подстанции, выбор необходимого оборудования подстанций. Определение токов короткого замыкания, проверка выбранного оборудования на устойчивость к воздействию токов короткого замыкания. Расчеты заземляющего устройства.

    курсовая работа [357,3 K], добавлен 19.05.2013

  • Структурная схема опорной тяговой подстанции, расчет ее мощности. Определение рабочих токов и токов короткого замыкания. Выбор токоведущих частей, изоляторов, высоковольтных выключателей, ограничителей перенапряжения. Выбор и расчет типов релейной защиты.

    дипломная работа [1,1 M], добавлен 15.06.2014

  • Производственная мощность проектируемой электрической подстанции. Выбор числа и мощности трансформаторов. Расчет токов короткого замыкания. Максимальная токовая защита от перегрузки автотрансформаторов. Компоновка основного электрооборудования подстанции.

    дипломная работа [661,4 K], добавлен 01.07.2015

  • Разработка однолинейной схемы коммутации трансформаторной подстанции. Расчет активных и реактивных мощностей потребителей. Выбор типа понижающих трансформаторов. Расчет максимальных рабочих токов, сопротивлений элементов цепи короткого замыкания.

    курсовая работа [1,4 M], добавлен 07.05.2015

  • Структурная схема тяговой подстанции. Определение трансформаторной мощности. Разработка схемы главных электрических соединений подстанции. Методика и принципы вычисления токов короткого замыкания, токоведущих частей и выбор необходимого оборудования.

    курсовая работа [467,9 K], добавлен 24.09.2014

  • Разработка однолинейной схемы коммутации трансформаторной подстанции. Суточные графики нагрузок предприятий различных отраслей промышленности. Расчёт максимальных рабочих токов основных присоединений подстанции. Расчет параметров короткого замыкания.

    дипломная работа [4,0 M], добавлен 25.01.2015

  • Обоснование целесообразности реконструкции подстанции. Выбор мощности трансформаторов трансформаторной подстанции. Расчет токов короткого замыкания и выбор основного оборудования подстанции. Расчетные условия для выбора электрических аппаратов.

    дипломная работа [282,5 K], добавлен 12.11.2012

  • Определение расчетных нагрузок и выбор силовых трансформаторов. Расчет токов короткого замыкания. Выбор электрических схем первичных соединений подстанции. Выбор ограничителей перенапряжения. Выбор ячеек закрытого распределительного устройства.

    курсовая работа [167,2 K], добавлен 16.03.2017

  • Выбор числа и мощности силовых трансформаторов. Проверка коэффициентов их загрузки. Разработка и обоснование принципиальной электрической схемы подстанции. Расчет токов короткого замыкания. Выбор и проверка основного электрооборудования. Выбор изоляторов.

    курсовая работа [615,2 K], добавлен 12.06.2011

  • Выбор числа и мощности силовых трансформаторов. Расчет токов короткого замыкания и их ограничение. Определение структурной схемы. Разработка главной схемы подстанции. Выбор и проверка электрических аппаратов, кабелей и электроизмерительных приборов.

    курсовая работа [3,5 M], добавлен 22.09.2014

  • Тип подстанции и ее нагрузка. Разработка понизительной подстанции. Выбор силовых трансформаторов, расчёт токов короткого замыкания. Составление схем замещения. Выбор электрической схемы распределительного устройства подстанции. Типы релейной защиты.

    курсовая работа [3,9 M], добавлен 27.08.2012

  • Обоснование главной схемы подстанции. Проверка электрооборудования на стойкость в режиме короткого замыкания. Собственные нужды ГПП-19. Релейная защита и автоматика. Надёжность схемы электроснабжения. Электробезопасность на подстанции, молниезащита.

    дипломная работа [2,8 M], добавлен 02.12.2012

  • Выбор и обоснование главной схемы электрических соединений подстанции. Расчет токов короткого замыкания. Выбор коммутационных аппаратов, сборных шин и кабелей. Контрольно-измерительные приборы. Схемы открытого и закрытого распределительных устройств.

    курсовая работа [369,6 K], добавлен 22.09.2013

  • Обоснование главной схемы электрических соединений подстанции. Выбор трансформаторов собственных нужд. Расчет токов короткого замыкания. Выбор коммутационной аппаратуры на стороне напряжения 220 кВ. Контрольно-измерительные приборы для цепей схемы.

    курсовая работа [605,5 K], добавлен 23.06.2016

  • Выбор числа и мощности силовых трансформаторов и сечений проводов питающих высоковольтных линий. Разработка принципиальной электрической схемы подстанции. Расчет токов короткого замыкания. Проверка электрических аппаратов и токоведущих частей подстанции.

    курсовая работа [498,0 K], добавлен 24.11.2012

  • Расчет электрической части подстанции: определение суммарной мощности потребителей, выбор силовых трансформаторов и электрических аппаратов, устройств от перенапряжения и грозозашиты. Вычисление токов короткого замыкания и заземляющего устройства.

    контрольная работа [39,6 K], добавлен 26.11.2011

  • Расчет мощности и выбор соответствующего оборудования для трансформаторной электрической подстанции двух предприятий - потребителей энергии первой и третьей категории. Определение мощности и числа трансформаторов, расчет токов короткого замыкания.

    курсовая работа [413,2 K], добавлен 18.05.2012

  • Выбор структурной схемы и расчёт реактивной нагрузки проектируемой подстанции. Выбор мощности и типа трансформатора, схемы питания собственных нужд. Расчёт токов короткого замыкания и электрической схемы замещения. Выбор токоведущих частей для цепей.

    курсовая работа [453,8 K], добавлен 26.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.