Общие вопросы теории бесколлекторных машин

Ознакомление с принципом действия синхронного генератора. Изучение графиков распределения магнитной индукции в воздушном зазоре синхронного генератора. Рассмотрение устройства статора бесколлекторной машины. Исследование электродвижущей силы катушки.

Рубрика Физика и энергетика
Вид курс лекций
Язык русский
Дата добавления 15.02.2015
Размер файла 6,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Изоляционные материалы, применяемые в обмотках электрических машин и трансформаторов, разделяют на пять классов нагревостойкости, отличающихся друг от друга предельно допустимой температурой нагрева:

Класс нагревостойкости

изоляции

А

Е

В

F

H

Предельно допустимая

температура, °С

105

120

130

155

180

Расчетная рабочая температура обмотки, °С

75

75

75

115

115

Класс изоляции определяет также значение расчетной рабочей температуры при расчете активного сопротивления обмотки.

В последние годы для обмоток статоров при напряжении до 660 В преимущественно применяют провода с эмалевой изоляцией марок ПЭТВ и ПЭТ-155 круглого и прямоугольного сечений. Основным изоляционным материалом для обмоток статоров служат: в низковольтных машинах (до 660 В) -- пленкосинтокартон, электронит, лакотканеслюдопласт, а в высоковольтных машинах (6000 В и выше) -- стеклослюдопластовая лента, стеклотекстолит и т. п.

С целью улучшения использования габарита машины желательно, чтобы изоляция обмотки в пазах занимала меньше места.

Для оценки использования площади паза пользуются коэффициентом заполнения паза изолированными проводниками

kn = Nп1 dиз2 / Sп', (3.4)

где Nп1 -- число проводников в пазе; dиз -- диаметр изолированного проводника, мм; S'n -- площадь паза, занимаемая обмоткой (без учета клина), мм2.

При использовании обмоточных проводов круглого сечения (пазы полузакрытые) для ручной укладки обмотки kn = 0,70 ч 0,75,для машинной укладки на статорообмоточных станках kп = 0,70 ч 0,72.В высоковольтных машинах пазы статора делают открытыми, так как только в этом случае можно обеспечить надежную пазовую изоляцию.

4. Магнитодвижущая сила обмоток статора

4.1 Магнитодвижущая сила сосредоточенной обмотки

При анализе МДС обмоток будем исходить из следующего:

а) МДС обмоток переменного тока изменяется во времени и вместе с тем распределена по периметру статора, т. е. МДС является функцией не только времени, но и пространства;

б) ток в обмотке статора синусоидален, а следовательно, и МДС обмотки является синусоидальной функцией времени;

в) воздушный зазор по периметру статора постоянен, т. е. сердечник ротора цилиндрический;

г) ток в обмотке ротора отсутствует, т. е. ротор не создает магнитного поля.

Рассмотрим двухполюсную машину переменного тока с сосредоточенной однофазной катушкой обмотки статора с шагом у1 = ф (рис. 4.1, а). При прохождении тока по этой обмотке возникает магнитный поток, который, замыкаясь в магнитопроводе, дважды преодолевает зазор у между статором и ротором.

В связи с тем что обмотка статора сосредоточена в двух пазах, график МДС этой обмотки имеет вид двух прямоугольников: положительного и отрицательного (рис. 4.1, б). Высота каждого из них Fк соответствует МДС, необходимой для проведения магнитного потока через один воздушный зазор у , т. е.

Fk = 0,5 Imax щk = 0,5 I1 щk (4.1)

где I1 -- действующее значение тока катушки.

Для сосредоточенной обмотки МДС можно разложить в гармонический ряд, т. е. представить в виде суммы МДС, имеющих синусоидальное распределение в пространстве:

f(б) = Fk (cos б - cos3б + cos5б - ± cos хб ), (4.2)

где б --пространственный угол (рис. 4.1, б).

Из (4.2) следует, что МДС сосредоточенной обмотки статора содержит основную и высшие нечетные гармоники, амплитуды которых обратно пропорциональны порядку гармоники х.

Мгновенные значения любой гармоники МДС зависят от пространственного положения ее ординат относительно начала отсчета пространственного угла б (рис. 4.1, б). Эта зависимость у разных гармоник различна, т. е. гармоники МДС имеют разную периодичность в пространстве, определяемую законом cos хб . Поэтому гармоники МДС называют пространственными.

Гармоники МДС имеют и временную зависимость, поскольку по катушке проходит переменный ток. Но временная зависимость у всех гармоник одинакова и определяется частотой тока в катушке. Следовательно, все пространственные гармоники пропорциональны sin щt .

Рассмотренные нами в предыдущих главах гармонические составляющие тока и ЭДС называют временными гармониками. Временная периодичность у этих гармоник определяется номером гармоники (2.6).

Рис. 4.1. МДС однофазной сосредоточенной обмотки статора

Амплитуда первой пространственной гармоники МДС по (4.2)

Fk1 =Fk = I1 щk = 0,9 I1 щk (4.3)

Амплитуда пространственной гармоники х-гo порядка

Fkv = Fk1 / х =0,9 I1 щk / х (4.4)

Зависимость МДС любой гармоники от времени и пространственного угла б определяется выражением

fkv = ±Fkv sin щt cos хa. (4.5)

С увеличением номера гармоники растет ее пространственная периодичность. Поэтому число полюсов пространственной гармоники МДС равно 2pv = 2pх.

Полезный магнитный поток в машине переменного тока создает основная гармоника МДС, а высшие пространственные гармоники МДС обычно оказывают на машину вредное действие (действие высших гармоник МДС рассмотрено в последующих главах).

4.2 Магнитодвижущая сила распределенной обмотки

На рис. 4.2, а показана катушечная группа обмотки статора, состоящая из трех катушек. График МДС основной гармоники каждой из этих катушек представляет собой синусоиду, максимальное значение которой (Fк1) совпадает с осью соответствующей катушки, поэтому между векторами МДС катушек F1k1, F2k1 и F3k1 имеется пространственный сдвиг на угол г', равный пазовому углу смещения катушек обмотки относительно друг друга г'.

График МДС основной гармоники всей катушечной группы представляет собой также синусоиду, полученную сложением ординат синусоид МДС катушек, составляющих катушечную группу. Максимальное значение этого графика Fг1 совпадает с осью средней катушки.

Рис. 4.2. МДС основной гармоники распределенной обмотки статора
Переходя к векторному изображению гармоник МДС, видим, что амплитуда МДС катушечной группы основной гармоники (рис. 4.2, б) определяется геометрической суммой векторов амплитудных значений МДС катушек: Fr1 = F1k1 + Flk2 + F1k3 , т. е. аналогично определению ЭДС катушечной группы (см. рис. 2.7, б). Разница состоит лишь в том, что векторы ЭДС катушек смещены относительно друг друга на г - угол сдвига фаз этих ЭДС относительно друг друга (временной угол), а при сложении МДС угол г' является пространственным углом смещения амплитудных значений МДС катушек (г' = г ).
Если все катушки катушечной группы сосредоточить в двух пазах (г' = 0), то результирующая МДС будет определяться арифметической суммой МДС катушек, т.е. Fr1 = Fk1 q1.

Таким образом, распределение катушек в нескольких пазах ведет к уменьшению МДС катушечной группы, которое учитывается коэффициентом распределения обмотки (см. § 2.3). Для МДС основной гармоники это уменьшение невелико, но для высших пространственных гармоник оно значительно.

Амплитуда пространственной гармоники катушечной группы распределенной обмотки

Frv = Fkv q1 kpv = (0,9/v) I1щk q1 kpv, (4.6)

где kpv -- коэффициент распределения.

Например, амплитуда основной гармоники МДС

Fr1 = Fk1 q1 kp1 . (4.7)

Если машина имеет несколько пар полюсов (р > 1), то при q1, равном целому числу, в силу симметрии обмотки график МДС на каждой паре полюсов будет повторяться, поэтому (4.6), выведенное для катушечной группы, справедливо и для МДС фазной обмотки Fф. Заменим в (4.6) число витков катушки щk на число витков фазной обмотки щ1. Для однослойной обмотки при последовательном соединении всех катушек щ1 = p ql щk , откуда

щk = щ1/ (pq1) (4-8)

Используя (4.6) и (4.8), получим

Fфv=(0,9/ v) I1 щ1 kpv / p; (4.9)

для основной гармоники

Fф1 =0,9 I1 щ1 kp1 / p (4.10)

Здесь I1 -- ток в обмотке фазы. При последовательном соединении всех катушек фазной обмотки I1 = Iк.

Выражение (4.9) справедливо и для двухслойных обмоток, для которых щ1 = 2p ql щk, так как число витков в катушке двухслойной обмотки щк.двухсл., пазовая сторона которой занимает половину паза, в два раза меньше числа витков катушки однослойной обмотки щk.односл, т. е. щк.двухсл = 0,5 щк.односл .

Выражение (4.9) справедливо также и при параллельном соединении катушечных групп, когда число последовательно соединенных витков в обмотке фазы уменьшается в а раз, при этом ток в обмотке увеличивается во столько же раз (здесь а -- число параллельных ветвей в обмотке статора).

Эффективными средствами подавления высших пространственных гармоник являются: укорочение шага обмотки (см. § 2.2), применение распределенной обмотки (см. § 2.3) и скос пазов (см. § 2.5). Уменьшение амплитуды основной гармоники МДС обмотки статора учитывается обмоточным коэффициентом коб [см. (2.21)]. Что же касается скоса пазов, то он практически не влияет на величину основной гармоники МДС (см. § 2.5).

С учетом изложенного амплитуда МДС обмотки фазы статора

Fфv = (0,9/ v) I1 щ1 kоб / p (4.11)

для основной гармоники

Fф1 = 0,9 I1 щ1 kоб / p (4.12)

МДС однофазной обмотки статора прямо пропорциональна переменному току в этой

обмотке (Fф1 I1). Переменный ток в течение каждого периода принимает различные мгновенные значения

+I1max до - I1max. Следовательно, МДС однофазной обмотки пульсирует с частотой тока f1 принимая различные мгновенные значения (от + Fф1, до - Fф1) на каждом полюсном делении.

При этом все гармонические составляющие этой МДС пульсируют с одинаковой частотой.

4.3 Магнитодвижущая сила трехфазной обмотки статора

При включении трехфазной обмотки статора в сеть трехфазного тока в обмотках фаз появятся токи, сдвинутые по фазе (во времени) относительно друг друга на 120 эл. град (рис. 4.3, а):

IА = IAmax sin щt; iB = IBmax sm (щt -120°); iC = ICmax sint - 240°). (4.13)

Ток каждой обмотки создает пульсирующую МДС, а совокупное действие этих МДС создает результирующую МДС, вектор которой вращается относительно статора.

Принцип образования вращающейся МДС рассмотрим на простейшей трехфазной двухполюсной обмотке, каждая фаза которой состоит из одной катушки (q1 = 1). Фазные обмотки соединены звездой и включены в сеть трехфазного тока (рис. 4.4). Проведем ряд

построений вектора МДС трехфазной обмотки, соответствующих различным моментам времени, отмеченным на графике рис. 4.3, а цифрами 0, 1, 2, 3. В момент времени 0 ток в фазе А равен нулю, в фазе В имеет отрицательное направление, а в фазе С - положительное. Эти направления тока отмечаем на рис. 4.3, б. Затем в соответствии с указанными в пазовых сторонах обмотки направлениями токов определяем направление вектора МДС F1 трехфазной обмотки статора (вектор направлен вертикально вниз). В момент времени 1 ток в обмотке фазы В равен нулю, в обмотке фазы А имеет положительное направление, а в обмотке фазы С -

отрицательное направление. Сделав построения, аналогичные моменту времени 0, видим, что вектор МДС F1 повернулся относительно своего положения в момент времени 0 на 120° по часовой стрелке. Проведя такие же построения для моментов времени 2 и 3, видим, что вектор

F1 каждый раз поворачивается на 120° и за один период переменного тока делает полный оборот (360°).

Рис. 4.3. Принцип получения вращающейся МДС

Если частота тока в обмотке статора f1 = 50 Гц, то вектор МДС вращается с частотой 50 об/с. В общем случае частота вращения вектора МДС n1 -- синхронная частота вращения -- прямо пропорциональна частоте тока f1 и обратно пропорциональна числу пар полюсов p обмотки статора [см. (1.3)]:

n1 = f1 60/ р.

Значения синхронных частот вращения для промышленной частоты переменного тока f1 = 50 Гц приведены ниже:

Число пар полюсов р

1

2

3

4

5

6

Синхронная частота

вращениям,, об/мин.

3000

1500

1000

750

600

500

Вращающаяся МДС создает в расточке статора вращающееся магнитное поле. При необходимости изменить направление вращения МДС нужно изменить порядок следования токов в обмотке.

Так, в рассмотренном примере (см. рис. 4.3) порядок следования токов в фазных обмотках был А -- В -- С. При этом МДС вращалась по часовой стрелке. Если порядок следования токов в фазных обмотках изменить (А -- С -- B), то МДС трехфазной обмотки будет вращаться против часовой стрелки. Для изменения порядка следования токов в обмотках фаз необходимо поменять места присоединения к сети двух проводов, отходящих от зажимов обмотки статора (см. рис. 5.1, а, в). Изменение направления тока во всех трех обмотках фаз не изменяет направления вращения поля статора.

Для определения амплитуды основной гармоники МДС трехфазной обмотки необходимо сложитъ основные гармоники МДС обмоток фаз, оси которых смещены в пространстве относительно друг друга на 120 эл. град:

Рис. 4.4. Статор с трехфазной обмоткой
fA = Fф1 sin щ1t cos б = 0,5 Fф1 [sin (щ1t - б) + sin(щ1t + б)];
fB = Fф1 sin(щ1t - 120)cos(б - 120) = 0,5 Fф1[sin (щ1t - б) + sin(щ1t + б - 120)];
fC = Fф1 sin(щ1t- 240)cos(б - 240) = 0,5 Fф1[sin (щ1t - б) + sin(щ1t + б - 120)].
Следовательно, МДС трехфазной обмотки
f1 = fA + fB + fC =1,5 Fф1 sin(щ1t - б ) = F1 sin(щ1t - б ), (4.14)
F1 = 1,5 Fф1 = 1,35 I1 щ1 kоб / p (4.15)
- амплитуда основной гармоники МДС трехфазной обмотки, т. е. амплитуда МДС трехфазной обмотки на один полюс при симметричиой нагрузке фаз равна 1,5 амплитуды МДС обмотки фазы [см. (4.12)].
В общем случае число фаз в обмотке статора равно m1: тогда амплитуда МДС m1 фазной обмотки на один полюс (А)
F1 = 0,5 m1Fф1 = 0,45 I1 щ1 kоб / p (4-16)
4.4 Круговое, эллиптическое и пульсирующее магнитные поля

Вращающееся магнитное поле статора может быть круговым и эллиптическим. Круговое поле характеризуется тем, что пространственный вектор магнитной индукции этого поля вращается равномерно и своим концом описывает окружность, т. е. значение вектора индукции в любом его пространственном положении остается неизменным.

Круговое вращающееся поле создается многофазной обмоткой статора, если векторы магнитной индукции каждой фазы одинаковы, т. е. представляют собой симметричную систему. В трехфазной обмотке соблюдение этого условия обеспечивается тем, что фазные обмотки делают одинаковыми, а их оси смещают в пространстве относительно друг друга на 120 эл.град и включают к сеть с симметричным трехфазным напряжением.

Круговое вращающееся поле может быть получено и посредством двухфазной обмотки статора. Для этого оси обмоток фаз смещают в пространстве на 90 эл.град и питают эти обмотки токами, сдвинутыми по фазе относительно друг друга на 90°. Значение этих токов должно быть таким, чтобы МДС обмоток были равны.

Если же изложенные условия не соблюдаются, т. е. если векторы магнитной индукции обмоток фаз не образуют симметричной системы, то вращающееся поле статора становится эллиптическим: пространственный вектор магнитной индукции В этого поля в различные моменты времени не остается постоянным и, вращаясь неравномерно (щ = var), своим концом описывает эллипс (рис. 4.5, а). Эллиптическое вращающееся магнитное поле содержит обратно вращающуюся составляющую, которая меньше основной (прямо вращающейся) составляющей.

Таким образом, вектор магнитной индукции эллиптического поля в любом его пространственном положении можно представить в виде суммы векторов магнитных индукций прямого Впр и обратного Вo6p магнитных полей: В = Впр + Вобр при Впр > Во6р.

Для пояснения обратимся к рис. 4.5, б, на котором показано разложение вектора вращающегося эллиптического поля для четырех моментов времени, соответствующих точкам а, b, с, d на кривой, описываемой вектором индукции этого поля (четверть оборота поля). Наибольшее значение вектор индукции результи рующего поля Вmах (точка а) имеет при совпадении в пространстве векторов прямого Впр и обратного Вобр полей (положения 1 и 1') Наименьшее значение вектора индукции Вmjn (точка d) соответствует встречному направлению векторов Впр и Вобр (положения 4 и 4'). Значения вектора индукции в точках b и с соответствуют положениям 2 и 3 вектора Впр и положениям 2' и 3' вектора Bобр.

Обратное магнитное поле неблагоприятно влияет на свойства машины переменного тока, например в двигателях оно создает противодействующий (тормозной) электромагнитный момент и ухудшает их эксплуатационные свойства.

В трехфазной машине магнитное поле будет эллиптическим, если обмотку статора включить в сеть с несимметричным трехфазным напряжением или если обмотки фаз статора несимметричны (имеют неодинаковые сопротивления или разное число виктов). Поле также будет эллиптическим при неправильном сочтении фазных обмоток статора -- начало и конец одной из фазных обмоток «перепутаны». В этом случае

Вmах = 3В/ 2 и Вmin = В/2,

где В - вектор магнитной индукции кругового вращающегося поля данной обмотки при правильном соединении фаз (рис. 4.5, а).

Рис. 4.5 Разложение эллиптического и пульсирующего магнитных полей на два круговых вращающихся поля

Если прямая и обратная составляющие магнитного поля равны, то результирующее поле становится пульсирующим. Вектор индукции этого поля неподвижен в пространстве (рис. 9,5, в) и лишь изменяется во времени от + Вmax до - Вmах (когда векторы Впр и Вобр совпадают по направлению), проходя через нулевое течение (когда векторы Впр и Вобр направлены встречно). Пульсирующее магнитное поле создает однофазная обмотка, включенная в сеть переменного тока.

4.5 Высшие пространственные гармоники магнитодвижущей силы трехфазной обмотки

Полюсное деление МДС высших пространственных гармоник обратно пропорционально номеру гармоники: фv = ф /v. Поэтому пространственная периодичность этих гармоник растет пропорционально номеру гармоники (см. рис. 4.1). Учитывая изложенное, запишем уравнение МДС третьей гармоники фазных обмоток:

f3A = F3A sin щ1t cos3б ;

f3B = F3B sin(щ1t - 120 )cos3(б - 120 ) = F3A sin (щ1t -120 )cos3б ;

f3C = F3C sin(щ1t- 240 )cos3б (б - 240 ) = F3A sin (щ1t - 240 ) cos3б.

откуда МДС третьей гармоники трехфазной обмотки

f3 = f3A + f3B + f3C = 0, (4-17)

т. е. результирующая МДС третьей гармоники в трехфазной обмотке статора при симметричной нагрузке фаз равна нулю. Это распространяется также и на высшие гармоники, кратные трем (9, 15 и др.). МДС высших гармоник оставшихся номеров (5, 7 и др.) ослабляются распределением обмотки в пазах, укорочением шага катушек и скосом пазов.

МДС высших гармоник многофазной обмотки статора - вращающиеся. При этом частота их вращения nv в раз меньше частоты вращения МДС основной гармоники:

nv = n1/. (4.18)

Направление вращения этих МДС зависит от номера гармоники: МДС гармоник порядка 6х + 1 вращаются согласно с МДС основной гармоники -- прямовращающиеся МДС, а МДС порядка 6х - 1 вращаются встречно МДС основной гармоники -- обратновращающиеся МДС (здесь х = 1, 2, 3,...).

Вращающиеся магнитные поля, созданные высшими гармоническими составляющими МДС, индуцируют в обмотке статора ЭДС основной частоты). Действительно, частота ЭДС, наведенной магнитным полем любой пространственной гармоники,

fv = nv pv/ 60 = n1 pv/ (60) = f1 (4.19)

где pv = p; nv = n1/.

5. Режим работы и устройство асинхронной машины

5.1 Режим работы асинхронной машины

В соответствии с принципом обратимости электрических машин (см. § В.2) асинхронные машины могут работать как в двигательном, так и в генераторном режимах. Кроме того, возможен еще и режим электромагнитного торможения противовключением.

Двигательный режим. Принцип действия трехфазного асинхронного двигателя рассмотрен в § 1.2. При включении обмотки статора в сеть трехфазного тока возникает вращающееся магнитное поле, которое, сцепляясь с короткозамкнутой обмоткой ротора, наводит в ней ЭДС. При этом в стержнях обмотки ротора появляются токи (см. рис. 1.4). В результате взаимодействия этих токов с вращающимся магнитным полем на роторе возникают электромагнитные силы. Совокупность этих сил создает электромагнитный вращающий момент, под действием которого ротор асинхронного двигателя приходит во вращение с частотой n2 < n1 в сторону вращения поля статора. Если вал асинхронного двигателя механически соединить с валом какого-либо исполнительного механизма ИМ (станка, подъемного крана и т. п.), то вращающий момент двигателя М, преодолев противодействующий (нагрузочный) момент Мнагр, исполнительного механизма, приведет механизм во вращение. Следовательно, электрическая мощность Р1, поступающая в двигатель из сети, в основной своей части преобразуется в механическую мощность Р1 и передается исполнительному механизму ИМ (рис. 5.1, б).

Весьма важным параметром асинхронной машины является скольжение -- величина, характеризующая разность частот вращения ротора и вращающегося поля статора:

S = (n1 - n2)/ n1 (5.1)

Скольжение выражают в долях единицы либо в процентах. В последнем случае величину, полученную по (5.1), следует умножить на 100.

Вполне очевидно, что с увеличением нагрузочного момента на валу асинхронного двигателя частота вращения ротора n2 уменьшается. Следовательно, скольжение асинхронного двигателя зависит от механической нагрузки на валу двигателя и может изменяться в диапазоне 0 < s ? 1.

При включении асинхронного двигателя в сеть в начальный момент времени ротор под влиянием сил инерции неподвижен (n2 = 0). При этом скольжение s равно единице.

Рис. 5.1. Режимы работы асинхронной машины

В режиме работы двигателя без нагрузки на валу (режим холостого хода) ротор вращается с частотой лишь немного меньшей синхронной частоты вращения n1 и скольжение весьма мало отличается от нуля (s ? 0). Скольжение, соответствующее номинальной нагрузке двигателя, называют номинальным скольжением shom. Для асинхронных двигателей общего назначения shom = 18%, при этом для двигателей большой мощности sном = 1%, а для двигателей малой мощности sном = 8%.

Преобразовав выражение (5.1), получим формулу для определения асинхронной частоты вращения (об/мин):

n2 = n1(1-s). (5.2)

Трехфазный асинхронный двигатель с числом полюсов 2р = 4 работает от сети с частотой тока f1 = 50 Гц. Определить частоту вращения двигателя при номинальной нагрузке, если скольжение при этом составляет 6%.

Решение. Синхронная частота вращения по (1.3)

n1 = f1 60/ р = 50 * 60/4 = 1500 об/мин.

Номинальная частота вращения по (5.2)

nном = n1(1 - sном ) = 1500(1 - 0,06) = 1412 об/мин.

Генераторный режим. Если обмотку статора включить в сеть, а ротор асинхронной машины посредством приводного двигателя ПД (двигатель внутреннего сгорания, турбина и т. п.), являющегося источником механической энергии, вращать в направлении вращения магнитного поля статора с частотой n2 > n1, то направление движения ротора относительно поля статора изменится на обратное (по сравнению с двигательным режимом работы пой машины), так как ротор будет обгонять поле статора. При этом скольжение станет отрицательным, а ЭДС, наведенная в обмотке ротора, изменит свое направление. Электромагнитный момент на роторе М также изменит свое направление, т. е. будет направлен встречно вращающемуся магнитному полю статора и станет тормозящим по отношению к вращающемуся моменту приводного двигателя М1 (рис. 5.1, а). В этом случае механическая мощность приводного двигателя в основной своей части будет преобразована в электрическую активную мощность Р2 переменного тока. Особенность работы асинхронного генератора состоит в том, что вращающееся магнитное поле в нем создается реактивной мощностью Q трехфазной сети, в которую включен генератор и да он отдает вырабатываемую активную мощность Р2. Следовательно, для работы асинхронного генератора необходим источник переменного тока, при подключении к которому происходит возбуждение генератора, т. е. в нем возбуждается вращающееся магнитное поле.

Скольжение асинхронной машины в генераторном режиме может изменяться в диапазоне - ? < s < 0, т. е. оно может принимать любые отрицательные значения.

Режим торможения противовключением. Если у работающего трехфазного асинхронного двигателя поменять местами любую пару подходящих к статору из сети присоединительных проводов, то вращающееся поле статора изменит направление вращения на обратное. При этом ротор асинхронной машины под действием сил инерции будет продолжать вращение в прежнем правлении. Другими словами, ротор и поле статора асинхронной машины будут вращаться в противоположных направлениях. В этих условиях электромагнитный момент машины, направленный в сторону вращения поля статора, будет оказывать на ротор тормозящее действие (рис. 5.1, в). Этот режим работы асинхронной машиины называется электромагнитным торможением противовключением. Активная мощность, поступающая из сети в машину при этом режиме, частично затрачивается на компенсацию механической мощности вращающегося ротора, т. е. на его торможение.

В режиме электромагнитного торможения частота вращения ротора является отрицательной, а поэтому скольжение приобретает положительные значения больше единицы:

s = [n1 - (- n2)] / n1 = (n1 + n2) /n1 > 1. (5.3)

Скольжение асинхронной машины в режиме торможения противовключением может изменяться в диапазоне 1 < s < + ? , т. е. оно может принимать любые положительные значения больше единицы.

Обобщая изложенное о режимах работы асинхронной машины, можно сделать вывод: характерной особенностью работы асинхронной машины является неравенство частот вращения магнитного поля статора n1 и ротора n2, т. е. наличие скольжения, так как только в этом случае вращающееся магнитное поле наводит в обмотке ротора ЭДС и на роторе возникает электромагнитный момент. При этом каждому режиму работы асинхронной машины соответствует определенный диапазон изменений скольжения, а следовательно, и частоты вращения ротора.

Из рассмотренных режимов работы наибольшее практическое применение получил двигательный режим асинхронной машины, т. е. чаще используют асинхронные двигатели, которые составляют основу современного электропривода, выгодно отличаясь от других электродвигателей простотой конструкции и высокой надежностью. Поэтому теорию асинхронных машин принято излагать применительно к асинхронным двигателям.

5.2 Устройство асинхронных двигателей

Как уже отмечалось (см. § 1.2), асинхронный двигатель состоит из двух основных частей, разделенных воздушным зазором: неподвижного статора и вращающегося ротора. Каждая из этих частей имеет сердечник и обмотку. При этом обмотка статора включается в сеть и является как бы первичной, а обмотка ротора - вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками.

По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Рассмотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором (рис. 5.2). Двигатели этого вида имеют наиболее широкое применение.

Неподвижная часть двигателя -- статор -- состоит из корпуса 11 и сердечника 10 с трехфазной обмоткой (см. гл. 8). Корпус двигателя отливают из алюминиевого сплава или из чугуна либо делают сварным. Рассматриваемый двигатель имеет закрытое обдуваемое исполнение. Поэтому поверхность его корпуса имеет ряд продольных ребер, назначение которых состоит в том, чтобы увеличить поверхность охлаждения двигателя.

В корпусе расположен сердечник статора 10, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехнической стали толщиной обычно 0,5 мм покрыты слоем изоляционного лака, собраны в пакет и скреплены специальными скобами или продольными сварными швами по наружной поверхности пакета. Такая конструкция сердечника способствует значительному уменьшению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продольные пазы, в которых расположены пазовые части обмотки статора (см. рис. 3.1), соединенные в определенном порядке лобовыми частями, находящимися за пределами сердечника по его торцовым сторонам.

Рис. 5.2. Устройство трехфазного асинхронного двигателя с короткозамкнутым ротором: 1 -- вал; 2, 6 -- подшипники; 3, 7 -- подшипниковые щиты; 4 -- коробка выводов; 5 -- вентилятор; 8 -- кожух вентилятора; 9 -- сердечник ротора с короткозамкнутой обмоткой; 10 -- сердечник статора с обмоткой; 11 -- корпус; 12 -- лапы

В расточке статора расположена вращающаяся часть двигателя ротор, состоящий из вала 1 и сердечника 9 с короткозамкнутой обмоткой. Такая обмотка, называемая «беличье колесо», представляет собой ряд металлических (алюминиевых или медных стержней, расположенных в пазах сердечника ротора, замкнутых с двух сторон короткозамыкающими кольцами (рис. 5.3, а). Сердечник ротора также имеет шихтованную конструкцию, но листы ротора не покрыты изоляционным лаком, а имеют на своей поверхности тонкую пленку окисла. Это является достаточной изоляцией, ограничивающей вихревые токи, так как величина их невелика из-за малой частоты перемагничивания сердечника ротора (см. § 12.1). Например, при частоте сети50 Гц и номинальном скольжении 6 % частота перемагничивания сердечника ротора составляет 3 Гц.

Рис. 5.3. Короткозамкнутый ротор: а -- обмотка «беличья клетка», б -- ротор с обмоткой, выполненной методом литья под давлением; 1 -- вал;,2 -- короткозамыкающие кольца; 3 -- вентиляционные лопатки

Короткозамкнутая обмотка ротора в большинстве двигателей выполняется заливкой собранного сердечника ротора расплавленным алюминиевым сплавом. При этом одновременно со стержнями обмотки отливаются короткозамыкающие кольца и вентиляционные лопатки (рис. 5.3, б).

Вал ротора вращается в подшипниках качения 2 и 6, расположенных в подшипниковых щитах 3 и 2.

Охлаждение двигателя осуществляется методом обдува наружной оребренной поверхности корпуса. Поток воздуха создается центробежным вентилятором 5, прикрытым кожухом 3. На торцовой поверхности этого кожуха имеются отверстия для забора воздуха. Двигатели мощностью 15 кВт и более помимо закрытого делают еще и защищенного исполнения с внутренней самовентиляцией. В подшипниковых щитах этих двигателей имеются отверстия (жалюзи), через которые воздух посредством вентилятора прогоняется через внутреннюю полость двигателя. При этом воздух «омывает» нагретые части (обмотки, сердечники) двигателя и охлаждение получается более эффективным, чем при наружном обдуве.

Рис. 5.4. Расположение выводов обмотки статора (а) и положение перемычек при соединении обмотки статора звездой и треугольником (б)

Концы обмоток фаз выводят на зажимы коробки выводов 4. Обычно асинхронные двигатели предназначены для включения в трехфазную сеть на два разных напряжения, отличающиеся в раз. Например, двигатель рассчитан для включения в сеть на напряжения 380/660 В. Если в сети линейное напряжение 660 В, то обмотку статора следует соединить звездой, а если 380 В, то треугольником. В обоих случаях напряжение на обмотке каждой фазы будет 380 В. Выводы обмоток фаз располагают на панели таким образом, чтобы соединения обмоток фаз было удобно выполнять посредством перемычек, без перекрещивания последних (рис. 5.4). В некоторых двигателях небольшой мощности в коробке выводов имеется лишь три зажима. В этом случае двигатель может быть включен в сеть на одно напряжение (соединение обмотки статора такого двигателя звездой или треугольником выполнено внутри двигателя).

Рис. 5.5. Принципиальные схемы включения трехфазных асинхронных двигателей с короткозамкнутым (а) и фазным (б) ротором

Монтаж двигателя в месте его установки осуществляется либо посредством лап 12 (см. рис. 5.2), либо посредством фланца. В последнем случае на подшипниковом щите (обычно со стороны выступающего конца вала) делают фланец с отверстиями для крепления двигателя на рабочей машине. Для предохранения обслуживающего персонала от возможного поражения электрическим током двигатели снабжаются болтами заземления (не менее двух). Принципиальная схема включения в трехфазную сеть асинхронного двигателя с короткозамкнутым ротором показана на рис. 5.5, а.

Другая разновидность трехфазных асинхронных двигателей - двигатели с фазным ротором -- конструктивно отличается от рассмотренного двигателя главным образом устройством ротора (рис. 5.6). Статор этого двигателя также состоит из корпуса 3 и сердечника 4 с трехфазной обмоткой. У него имеются подшипниковые щиты 2 и 6 с подшипниками качения 1 и 2. К корпусу 3 прикреплены лапы 10 и коробка выводов 4. Однако ротор имеет более сложную конструкцию. На валу 8 закреплен шихтованный Сердечник 5 с трехфазной обмоткой, выполненной аналогично обмотке статора. Эту обмотку соединяют звездой, а ее концы присоединяют к трем контактным кольцам 11, расположенным на валу и изолированным друг от друга и от вала. Для осуществления электрического контакта с обмоткой вращающегося ротора на каждое контактное кольцо 1 (рис. 5.7) накладывают обычно две щетки 2, располагаемые в щеткодержателях 3. Каждый щеткодержатель снабжен пружинами, обеспечивающими прижатие щеток к контактному кольцу с определенным усилием.

Рис. 5.6 Устройство трехфазного асинхронного двигателя с фазным ротором: 1, 7 - подшипники, 2,6 - подшипниковые щиты, 3 - корпус, 4 - сердечник статора с обмоткой, 5 - сердечник ротора, 8 - вал, 9 - коробка выводов, 10 - лапы, 11 - контактные кольца

Асинхронные двигатели с фазным ротором имеют более сложную конструкцию и менее надежны, но они обладают лучшими регулировочными и пусковыми свойствами, чем двигатели с короткозамкнутым ротором (см. гл. 15). Принципиальная схема включения в трехфазную сеть асинхронного двигателя с фазным ротором показана на рис. 5.5, б. Обмотка ротора этого двигателя соединена с пусковым реостатом ПР, создающим в цепи ротора добавочное сопротивление Rдоб.

На корпусе асинхронного двигателя прикреплена табличка, на которой указаны тип двигателя, завод-изготовитель, год выпуска и номинальные данные (полезная мощность, напряжение, ток, коэффициент мощности, частота вращения и КПД).

Рис. 5.7 Расположение щеткодержателей

Размещено на Allbest.ru

...

Подобные документы

  • Общие понятия и определения в математическом моделировании. Основные допущения при составлении математической модели синхронного генератора. Математическая модель синхронного генератора в фазных координатах. Реализация модели синхронного генератора.

    дипломная работа [339,2 K], добавлен 05.10.2008

  • Расчет пазов и обмотки статора, полюсов ротора и материала магнитопровода синхронного генератора. Определение токов короткого замыкания. Температурные параметры обмотки статора для установившегося режима работы и обмотки возбуждения при нагрузке.

    курсовая работа [1,6 M], добавлен 20.06.2014

  • Параллельная работа синхронного генератора с сетью, регулирование его активной и реактивной мощности. Построение векторных диаграмм при различных режимах нагрузки. Схема подключения синхронного генератора к сети с помощью лампового синхроноскопа.

    контрольная работа [92,0 K], добавлен 07.06.2012

  • Конструкция синхронного генератора и приводного двигателя. Приведение генератора в состояние синхронизации. Способ точной синхронизации. Процесс синхронизации генераторов с применением лампового синхроноскопа. Порядок следования фаз генератора.

    лабораторная работа [61,0 K], добавлен 23.04.2012

  • Расчет и оптимизация геометрических и электрических параметров трехфазных обмоток статора синхронного генератора. Конструирование схемы обмотки, расчет результирующей ЭДС с учетом высших гармонических составляющих. Намагничивающие силы трехфазной обмотки.

    курсовая работа [2,1 M], добавлен 24.04.2014

  • Устройство синхронного генератора, экспериментальное подтверждение теоретических сведений о его свойствах. Сбор схемы генератора, пробный пуск и проверка возможности регулирования параметров. Анализ результатов эксперимента, составление отчета.

    лабораторная работа [221,2 K], добавлен 23.04.2012

  • Установившийся режим трехфазного короткого замыкания синхронного генератора. Физические явления при внезапном трехфазном коротком замыкании в цепи синхронного генератора без автоматического регулятора напряжения. Процессы изменения магнитных потоков.

    лекция [76,5 K], добавлен 11.12.2013

  • Експериментальні способи зняття характеристик трифазного синхронного генератора. Схема вмикання генератора. Зовнішня характеристика як залежність напруги від струму навантаження при сталому струмі збудження. Регулювальна характеристика, коротке замикання.

    лабораторная работа [204,2 K], добавлен 28.08.2015

  • Простота устройства, большая надежность и низкая стоимость асинхронных двигателей. Принцип действия асинхронной машины и режимы ее работы. Получения вращающегося магнитного поля. Устройство синхронной машины, холостой ход синхронного генератора.

    презентация [443,8 K], добавлен 12.01.2010

  • Однородное магнитное поле. Силовые линии поля. Время полного цикла изменения магнитной индукции. Зависимость магнитной индукции от времени. Определение площади поперечного сечения катушки. Построение графика изменения электродвижущей силы от времени.

    задача [58,7 K], добавлен 06.06.2015

  • Мощность в функции времени. Топографические и лучевые векторные диаграммы. Резонанс в линейных цепях при гармонических напряжениях и токах. Принцип действия синхронного генератора. Обмотки статора генератора, их обозначение. Явно- и неполюсной ротор.

    презентация [1,4 M], добавлен 16.10.2013

  • Назначение системы автоматического регулирования (САР) и требования к ней. Математическая модель САР напряжения синхронного генератора, передаточные функции разомкнутой и замкнутой системы. Определение предельного коэффициента усиления системы.

    курсовая работа [670,0 K], добавлен 09.03.2012

  • Расчет обмотки статора, демпферной обмотки, магнитной цепи. Характеристика холостого хода. Векторная диаграмма для номинальной нагрузки. Индуктивное и активное сопротивление рассеяния пусковой обмотки. Характеристики синхронного двигателя машины.

    курсовая работа [407,0 K], добавлен 11.03.2013

  • Расчет параметров синхронного генератора. Магнитная цепь двигателя. Размеры, конфигурация, материал. Обмотка статора и демпферная обмотка. Расчет магнитной цепи. Активное и индуктивное сопротивление обмотки для установившегося режима. Потери и КПД.

    дипломная работа [336,8 K], добавлен 04.07.2014

  • Свойства и характеристики синхронного генератора. Потеря энергии при преобразовании в синхронном генераторе механической энергии в электрическую. Устойчивость и увеличение перегрузочной способности генератора. Особенности параллельной работы генератора.

    реферат [206,4 K], добавлен 14.10.2010

  • Электромагнитная и электрическая схема синхронных машин. Конструкция явнополюсного ротора. Характеристика синхронного генератора, синхронное индуктивное сопротивление. Угловые характеристики и регулирование реактивной мощности, реактивный момент.

    презентация [3,8 M], добавлен 09.11.2013

  • Определение планирования и анализа эксперимента. Матрица планирования с фиктивной переменной. Расчет усредненной оценки дисперсии воспроизводимости. Рассмотрение свойств синхронного генератора. Стабилизация напряжения регулированием тока возбуждения.

    курсовая работа [315,8 K], добавлен 11.11.2014

  • Расчет и обоснование номинальной величины асинхронного двигателя. Размеры и зубцовая зона статора. Воздушный зазор и полюса ротора. Определение основных паромеров магнитной цепи. Превышение температуры обмотки статора. Характеристики синхронной машины.

    курсовая работа [585,7 K], добавлен 21.02.2016

  • Устройство асинхронной машины: статор и вращающийся ротор. Механическая характеристика асинхронного двигателя, его постоянные и переменные потери. Методы регулирования частоты вращения двигателя. Работа синхронного генератора в автономном режиме.

    презентация [9,7 M], добавлен 06.03.2015

  • Определение тягового усилия электромагнита. Расчет неразветвленной магнитной цепи. Вычисление тока в катушке, необходимого для создания заданного магнитного потока в воздушном зазоре магнитной цепи. Определение индуктивности катушки электромагнита.

    презентация [716,0 K], добавлен 22.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.