Високотемпературна надпровідність

Відкриття надпровідності Камерлінґ-Оннесом. Ідеальний провідник і надпровідник, ефект Мейснера. Мікроскопічна теорія надпровідності Бардіна - Купера - Шріффера, теорія Гінзбурга - Ландау. Високотемпературна надпровідність та перспективи її використання.

Рубрика Физика и энергетика
Вид курсовая работа
Язык украинский
Дата добавления 23.02.2015
Размер файла 406,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Найважливіша область техніки, де застосування надпровідників обіцяло зробити великі зміни, визначилася уже в перші роки після відкриття цього явища - це передача електричного струму і створення сильних магнітних полів.

Можна назвати сотні різноманітних фізичних, технічних і чисто інженерних задач, що поєднуються загальною вимогою: для їхнього здійснення потрібні сильні магнітні поля. Мова йде про енергетику, що створює нові генератори, і про водолазні роботи по підйому затонулих судів, і про фізику, зайняту проблемами термоядерного синтезу і прискоренням заряджених часток до надвисоких енергій... Усе це області, де вимагаються легкі, могутні й економічні магніти. Але ключі до проблеми створення потрібних магнітів учені довгий час не могли знайти. Здавалося б, що тут складного? Досить пропустити сильний струм по обмоткам соленоїда, і він стане потужним магнітом. З тих пір як Ампер з'ясував, що соленоїд зі струмом поводиться так само, як і природний магніт, усі сучасні магніти виготовляються по цьому принципу. У кожному з них є спіраль - обмотка, по якій проходить струм. Чим більша сила струму, тим сильніше магнітне поле.

Електромагніти теоретично не мають межі по своїй "силі" чи інтенсивності (індукції магнітного поля) )[1,с.61]. Але це тільки теоретично. Коли ж за допомогою струму створюють магнітне поле, мають місце два побічних ефекти, що і визначають складності одержання великих полів. По-перше, на елемент проводу довжиною l і зі струмом І , що знаходиться в магнітному полі з індукцією В, діє сила F = ВІДlsі, де б - кут між вектором індукції В і напрямком струму. Отже, на провід зі струмом будуть діяти сили, пропорційні силі струму й індукції поля, створюваного соленоїдом. Ці сили збільшуються зі збільшенням поля і прагнуть розірвати соленоїд і, крім того, притискають крайні витки до середнього. По-друге, при протіканні струму І по провіднику з опором R виділяється потужність P = І2R. Ця потужність пропорційна квадрату сили струму І2, і, отже, вона буде збільшуватися зі збільшенням індукції створюваного поля. Виходить, якщо підсилити магнітне поле, наприклад, у 10 разів, то необхідно збільшити потужність у 100 разів. Розширення обсягу робочого простору також буде супроводжуватися збільшенням потужності, що виділяється. Звідси виходить, що для живлення одного потужного магніту потрібна ціла електростанція.

Розглянемо надпровідні соленоїди. Обмотку соленоїда можна зробити із надпровідного матеріалу. Такий соленоїд може працювати, майже не споживаючи електроенергії, оскільки один раз збуджений у ньому струм не загасає. Потрібно тільки підтримувати соленоїд при низькій температурі, а для цього вимагаються дуже малі потужності. Таким чином, експлуатація надпровідних магнітів виключає потребу у великих джерелах споживання. Для споживання годяться звичайні батареї, чи генератори або акумулятори.

Зважується проблема відводу тепла. При нульовому опорі і потужність, що виділяється, рівна нулю. Правда, проблема міцності залишається, тому рекордних полів надпровідні соленоїди не створюють. Але зате вони легші і менші за розмірами, ніж звичайні. У порівнянні з кріогенними надпровідні соленоїди вимагають у сотні разів меншої витрати холодоагенту. Так, при індукції магнітного поля 10..15Тл надпровідний магніт важить усього кілька десятків кілограмів, і із усім стосовним до нього устаткуванням займає площу кілька квадратних метрів і витрачає приблизно 10л рідкого гелію в добу. І це замість декількох десятків тонн і тисяч кіловат електроенергії, що знадобилися б для роботи не надпровідного магніту з тими ж параметрами.

Ідея використання явища надпровідності для створення сильних магнітних полів виникла відразу ж після його відкриття. Вже в 1913р. Камерлінг-Оннес вирішує побудувати надпровідний магніт з індукцією, рівною 10 Тл , що не споживає енергії. Але мрії Оннеса не призначено було збутися, принаймні при його житті. Надпровідність, як з'ясувалося, руйнувалася в магнітних полях, у тисячі разів більш слабких. Оскільки такі поля можна було набагато простіше одержувати за допомогою постійних магнітів, а реалізацією ідеї створення надпровідних магнітів ніхто тоді грунтовно не зайнявся.

Надії на побудову потужних надпровідних магнітів відродилися на початку 30-х років, коли голландські фізики Хаас і Воогд винайшли, що сплави свинцю з вісмутом зберігають надпровідність до полів з індукцією 2Тл. Це відкриття давало можливість будувати надпровідні магніти принаймні з таким же магнітним полем. Однак цю ідею на той час ніхто не підтримав.

В історії надпровідних магнітів відбулася дуже драматична подія. Спадкоємець Оннеса, новий директор лейденської лабораторії, відомий фізик Кеєзом вирішив повторити експеримент. Він виміряв критичний струм сплаву свинцю з вісмутом і знайшов, що струм цей занадто малий, щоб з цього сплаву був сенс робити дріт для обмотки магніту.

На початку 60-х років нашого сторіччя виміри на сплавах свинцю з вісмутом були повторені. І тоді з'ясувалося, що Кеєзом помилився: він зробив те, чого не мав право робити ,- екстраполював дані, отримані їм у слабких магнітних полях, на область сильних магнітних полів. Критичний струм виявився цілком достатнім для того, щоб з цих сплавів усе-таки можна було виготовити нехай не дуже сильні, але досить економічні магніти. Широко розгорнулися пошуки нових надпровідників і привели до відкриття сплавів і з'єднань з високими критичними параметрами. Тепер можна було приступати до створення дроту, кабелів, шин із надпровідних матеріалів. Шлях до технічної надпровідності, до надпровідних магнітів, електротехнічним пристроям був відкритий.

Надпровідні генератори. Сучасні електрогенератори - великі спорудження, у яких утворюються великі магнітні поля, і з кожним роком їхня потужність зростає. Нажаль, можливості підвищення потужності електричних машин не безмежні. Якби обмотку збудження електричної машини (по суті справи, електромагніт особливої форми) вдалося зробити з надпровідника, це відразу б вирішило ряд проблем. По-перше, зникло б нагрівання. По-друге , збільшились би у машині поля і струми, що привело б до різкого скорочення розмірів машини. Так, надпровідний генератор потужністю 1300 МВт мав би близько 10м у довжину і масу 280т. Довжина аналогічної машини звичайної конструкції більш 20м, а маса 700т. Одна тільки маса ротора, наприклад, зменшилась би у 4...5 разів . Адже метал, з якого виготовлений великий ротор, що швидко обертається, працює в дуже напружених умовах, так що зниження маси і розмірів істотно підвищує механічну надійність конструкції. Можна вказати і на ряд визначених економічних переваг: коефіцієнт корисної дії надпровідних машин вищий , ніж у генераторів традиційної конструкції.

Переваги надпровідних машин стають особливо помітними при потужності генератора більше 1000МВт. Надпровідники знімають з порядку денного проблему "ліміту потужності", даючи фантастичну можливість будівлі генераторів потужністю аж до 20000МВт. Роботи, пов'язані зі створенням потужних і економічних генераторів, ведуться зараз широким фронтом. Перша експериментальна модель такого генератора була побудована ще в 1967 році. Вона мала потужність усього лише 600 Вт. А в 1982 році був випробуваний генератор потужністю вже 20 МВт. Результати цих експериментів дозволили приступити до будівлі надпровідного генератора потужністю 300 МВт.

Кабелі для передачі інформації. З ростом споживаних потужностей усе гострішою стає проблема передачі енергії. Джерела енергії і її споживачів часто розділені величезними відстанями. Як краще передавати енергію?

На сьогодні електроенергія передається споживачам в основному за допомогою повітряних ліній передачі (ЛЕП). Для підвищення ефективності роботи таких ліній є єдиний шлях - подальше підвищення напруги. Уже давно існують ЛЕП напругою 1 MB і вище, коефіцієнт корисної дії таких ліній близький до 95%.

Повітряні лінії найдешевші, але разом з тим виникає безліч проблем. Вони заважають будівництву, транспорту, радіозв'язку, псують ландшафт, шкодять фауні і людині. Можна, звичайно, передавати енергію по підземних кабелях, але і тут виникає чимало складностей. Доводиться прокладати кілька паралельних ліній кабелю, охолоджувати струмонесучі жили кабелю газом, маслом чи водою. Кабельна лінія передачі приблизно в 10-15 разів дорожче повітряної при однаковій провідній здатності. І в повітряній, і в кабельній лінії приблизно десята частина енергії витрачається при нагріванні струмопровідних жил.

Звичайно ж, дуже важливим для рішення цієї проблеми є явище надпровідності. Провідник без опору ідеально підходить саме для цієї мети. Перші кроки в цьому напрямку були зроблені ще в 60-х роках. Уже тоді було підрахувано, що по надпровідному кабелю товщиною в руку можна пропускати всю пікову потужність, що виробляється електростанціями США.

Ідея створення надпровідних кабелів зміцнювалася в гострій науковій боротьбі. Виконаний ще радянськими інженерами техніко-економічний аналіз показав, що при великій потужності надпровідний кабель є в 2-3 рази дешевшим звичайного, а утрати енергії в ньому скорочені приблизно в 25 разів. Сам по собі надпровідний матеріал набагато дорожчий міді, однак струмонесуча жила виявляється дешевшою. Причина зрозуміла: адже по проводу площею перерізу 1мм2 можна пропускати не 1-2 А, а близько 10 кА.

Тут треба відзначити, що в кабелях змінного струму деяка частина енергії все-таки втрачається. Справа в тому, що при протіканні змінного струму у надпровідному кабелі з'являється електричний опір. Обумовлено це явище впливом змінного електричного поля на неспарені електрони в надпровіднику. Протягом одного півперіоду струму швидкість електронів наростає від нуля до максимуму і знову падає до нуля, a потім струм змінює напрямок на протилежний, і усе повторюється знову.

Таким чином, струм що йде по надпровіднику витрачає свою енергію на коливальні рухи електронів. Виникаючий опір, хоча він і малий в порівнянні з опором металу в нормальному стані, усе-таки приводить до виділення тепла, і кабель треба охолоджувати.

Основні труднощі, що виникають при прокладанні надпровідного кабелю - тепловий захист надпровідника. Убезпечити кабель від значного впливу тепла ззовні можна за допомогою вакуумної ізоляції. Кабель має вид багатошарової труби і, по суті, являє собою кріостат. Поперечний переріз такого кабелю схематично показано на рисунку 14. Вакуумна ізоляція

Рис. 4.3.Поперечний переріз кабелю) [3,с.75].

Внутрішня труба діаметром 70мм, покрита шаром надпровідного матеріалу товщиною 0,3мм, заповнена рідким гелієм. В якості надпровідника може бути використаний, наприклад, сплав ніобію, титана і цирконію. Між першою і другою трубами вакуумна ізоляція, між другою і третьою протікає рідкий азот, між третьою і четвертою (зовнішньою) знову вакуумна ізоляція.

Незважаючи на простоту конструкції, монтаж такої лінії пов'язаний із значними труднощами.

Треба забезпечити герметичність кабелю, навчитися збирати його з окремих коротких відрізків, розробити рефрижератори, компенсатори деформацій і інше устаткування. "Холодні" лінії повинні витримувати перевантаження і аварійні режими, тому важливо удосконалювати і стабілізацію ліній.

Трансформатор постійного струму. Ще одна конструкція на надпровідниках - трансформатор постійного струму. Трансформатор - один з найпоширеніших виробів електротехнічної промисловості. Сьогоднішній прогрес у трансформаторобудуванні зв'язаний з удосконаленням технології їхнього виготовлення. Промисловість пропонує тисячі типів трансформаторів - різні по потужності, по вазі, по кількості обмоток та інші. Немає тільки трансформатора постійного струму. Одержати постійний струм у вторинній обмотці ненадпровідного трансформатора дійсно неможливо. У звичайних умовах не можна передати енергію від однієї обмотки до іншої за допомогою постійного струму, тому що струм у первинній обмотці, а отже, і магнітний потік у магнітопроводі не міняються по величині і напрямку. Тільки при включенні, коли струм у первинному ланцюзі наростає, тобто під час перехідного процесу, у вторинній обмотці виникає імпульс струму, але він швидко загасає через електричний опір вторинної обмотки. Якщо зробити обмотки трансформатора надпровідними, первинну обмотку з'єднати через вимикач з джерелом струму поза кріостатом, а вторинну замкнути на надпровідний ланцюг, то описаний перехідний процес піде інакше. При подачі струму в первинну обмотку у вторинній обмотці індукується електрорушійна сила , що викликає струм, який не загасає навіть тоді, коли вже немає електрорушійної сили , оскільки опір надпровідника дорівнює нулю. За допомогою таких трансформаторів постійного струму можна подавати в кріостат з рідким гелієм невеликий струм по тонких провідниках , трансформувати цей струм , доводячи його силу до десятків тисяч ампер.

Розглянемо магнітні підвіси і підшипники. Надпровідна сфера висить над кільцем, у якому циркулює незатухаючий струм. Відбувається завдяки діамагнетизму надпровідників. Сила ваги сфери врівноважується "магнітною подушкою", що створюється надпровідним струмом.

Ефект механічного відштовхування використовується для створення магнітного підвісу.

Надпровідний диск опускається на надпровідну котушку, у якій тече незатухаючий струм. На цьому принципі можна створити різні пристрої, що дозволяють забезпечити стійкість підвісу в одному, двох чи трьох напрямках. Подібні магнітні підвіси можуть працювати у всіляких пристроях. Особливо вони зручні в тих випадках, коли тіло, підвішене в магнітному полі, повинне обертатися з великим числом обертів.

Надпровідні перемикачі й елементи пам'яті. Ідея про використання надпровідників в ЕОМ виникла давно. У своїй первісній і найпростішій формі кріотрон являв собою танталовий дріт - вентиль, навколо якого були намотані витки з ніобію. І тантал, і ніобій - надпровідники, але критична температура танталу 4,4К , а ніобію - 9,2К. Тому в гелієвій ванні при температурі 4,2 К вентиль (і тим більше обмотка) знаходиться у надпровідному стані і не робить опору струму. При подачі на обмотку струму достатньої величини на поверхні вентиля з'являється магнітне поле , що перевищує критичне, і танталовий дріт переходить у нормальний стан з кінцевим опором. Керуюча обмотка, що має більш високу критичну температуру, залишається при цьому у надпровідному стані.

Такий пристрій діє як реле, замкнуте у надпровідному і розімкнуте в нормальному стані. Так можна записувати «0» чи «1», тобто створювати найпростіший елемент пам'яті. З декількох кріотронів, з'єднуючи їх у схему, можна створити пристрій, що розмикає одні і замикає інші канали для проходження струму, тобто створювати логічні елементи ЕОМ.

Надпровідні об'ємні резонатори. Об'ємні резонатори знаходять застосування в мікрохвильовій техніці як елементи настройки та фільтрів. Смуга частот і добротність об'ємних резонаторів визначається величиною їхнього поверхневого опору. З цієї причини поряд з провідниками (такими, як Сu, Ag і Аl) матеріали для конструювання об'ємних резонаторів, особливо високої якості, використовують також надпровідники. Для цих цілей немає необхідності використовувати тверді надпровідники, тому значна частина досліджень виконувалась з оловом. Поверхневий опір надпровідника при гелієвих температурах в області дуже високих частот відмінний від нуля і винятково сильно залежить від стану поверхні провідника.

Як відомо, магнітні поля не проникають у надпровідники, і це дає ідеальну можливість використовувати їх як екрани для магнітних полів. Як уже згадувалося, сильне магнітне поле можна екранувати тільки за допомогою твердих надпровідників; при цьому не вимагаються високі значення критичного струму (чи, відповідно, густини струму). У більшості випадків досить листа заліза, покритого тонким шаром твердого надпровідника. Такі екрани можуть знайти цікаві застосування також в електронній оптиці і електронній мікроскопії: краща екранізація дозволяє здійснити більш точне коректування ходу променів.

ВИСНОВКИ

Надпровімдність -- квантове явище протікання електричного струму у твердому тілі без втрат. Явище надпровідності було відкрито в 1911 році голландським науковцем Камерлінґ-Оннесом, лауреатом Нобелівської премії 1913 року. Усього за відкриття в області надпровідності було видано п'ять Нобелівських премій з фізики: в 1913, 1972, 1973, 1987 та 2003 роках.

Явище надпровідності існує для низки матеріалів, не обов'язково провідників високої якості, при звичайних температурах. Перехід до надпровідного стану відбувається при певній температурі, яку називають критичною температурою надпровідного переходу. Надпровідність, проте, може бути зруйнована, якщо помістити зразок у зовнішнє магнітне поле, яке перевищує певне критичне значення. Це критичне магнітне поле зменшується при збільшенні температури.

Явище надпровідності -- макроскопічне (видиме) проявлення квантової природи речовини: атомів та електронів. Відомо, що електрони в атомі можуть перебувати тільки у визначених станах, яким відповідають дискретні значення енергії. Таким чином атом може поглинати і випромінювати енергію певними порціями -- квантами. Однак, якщо ми перейдемо до макроскопічного тіла, де концентрація електронів перевищує 1022 см?3, то квантовий характер зміни енергії кожного електрону «змазується» великою кількістю таких електронів, що поглинають або випромінюють енергію, і ми бачимо суцільний спектр поглинання або випромінювання енергії макроскопічними тілами.

Досягнення в області надпровідності є ключовими для енергетики, електроніки, фізики високих енергій, повітряного, наземного і морського транспорту, космонавтики, медицини та багатьох інших областей. Успішне використання прикладної надпровідності може стати одним з головних відповідей на нові потреби суспільства. Воно набуває навіть більшого значення, ніж розвиток альтернативних джерел енергії: сонячної, геотермальної, атомної, а також енергії води і вітру. Більш того, надпровідність опосередковано знайде своє застосування і в багатьох гуманітарних областях.

На закінчення відзначимо, що ще в 2001 р. один з керівників Intermagnetics General Corporation (США) К.Х. Рознер зробив порівняльний прогноз, щодо застосування низькотемпературних і високотемпературних надпровідників в найближчі десятиліття. Даний прогноз вказував на поступове порівняльне збільшення використання високотемпературної надпровідності над низькотемпературною, викликане перевагами роботи ВТНП пристроїв при більш високих температурах експлуатації, що забезпечує відповідне зниження фінансових та технологічних витрат. При цьому, однак, передбачалося збереження переваг низькотемпературних надпровідних металів і сплавів, обумовлених їх меншою дефективністю порівняно з тендітною оксидної структурою ВТНП. Минуле десятиліття показало, що ВТНП вироби залишаються занадто дорогими для практики, і лише деякі зразки (наприклад, ітомографи) є конкурентоспроможними..

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1. Высокотемпературная сверхпроводимость. Фундаментальные и прикладные исследования. Под ред. проф. Киселева А.А.- Ленинград: Машиностроение, 1990, с.7-60

2. Гинзбург В.Л., Андрюшин Е. А. Сверхпроводимость. -- М.: Альфа-М, 2006.- 112 с.

3. Давыдов А.С.. Высокотемпературная сверхпроводимость. К.: Наукова думка, 1990, с.9-13, 104.

4. Локтєв В. М. Лекції з теорії надпровідності. -- К.: ІТФ НАН України, 2011. -- 276 с

5. Лихарев К.К., Черноплеков Н.А. Перспективы практического применения высокотемпературной сверхпроводимости.- Ж.Всес. хим. о-ва им.Менделеева,., т.34., N 4, 1989, с.446-450.

6. Основи мікроелектроніки : навчальний посібник / С. М. Павлов. - Вінниця : ВНТУ, 2010. - 224с.

7. Сивухин Д. В. 80. Надпровідники і їх магнітні властивості / / Загальний курс фізики. - М .: Наука, 1977. - Т. III. Електрика. - С. 333. - 688 с.

8. Тилли Д. Р., Тилли Дж. Сверхтекучесть и сверхпроводимость. -- М.: Мир, 1977. -- 304 с.

9. Тинкхам М. Введение в сверхпроводимость. -- М.: Атомиздат, 1980. -- 310 с.

10. Шмидт В. В. Введение в физику сверхпроводников. -- М.: МЦНМО, 2000. -- 402 с.

11. Шриффер Дж. Теория сверхпроводимости -- М.: Наука, 1970. -- 312 с.

12. http://uk.wikipedia.org/wiki/Надпровідність

13. http://www.superox.ru/application_superconductivity.htm

14. http://www.relga.ru/ Сверхпроводимость: успехи и неудачи

Размещено на Allbest.ru

...

Подобные документы

  • Надпровідники: історія розвитку, сучасний стан і перспективи. Відкриття явища надпровідності. Ідеальний провідник і надпровідник. Ефект Мейснера. Ефект виштовхування магнітного поля з надпровідника. Високотемпературна надпровідність і критичні стани.

    курсовая работа [1,5 M], добавлен 03.05.2009

  • У багатьох металів і сплавів при температурах, близьких до абсолютного нуля, спостерігається різке зменшення питомого опору - це явище зветься надпровідністю. Особливість надпровідників в тому, що силові лінії магнітного поля обгинають надпровідник.

    курсовая работа [2,2 M], добавлен 17.12.2008

  • Характеристика світла як потоку фотонів. Основні положення фотонної теорія світла. Визначення енергії та імпульсу фотона. Досліди С.І. Вавилова, вимірювання тиску світла. Досліди П.М. Лебєдева. Ефект Компотна. Корпускулярно-хвильовий дуалізм світла.

    лекция [201,6 K], добавлен 23.11.2010

  • Напівкласична теорія теплопровідності. Теоретичні аспекти ТЕ-наноматеріалів. Отримання зменшеної теплопровідності в сипких матеріалах. Квантово-розмірні ефекти: умови і прояви. Принципи впровадження наноструктур. Перспективи матеріалів на основі PbTe.

    дипломная работа [3,2 M], добавлен 11.11.2014

  • Єдина теорія полів і взаємодій у цей час. Об'єднання слабкої й електромагнітної взаємодій елементарних часток. Мрія Ейнштейна у пошуках єдиної теорії будови Всесвіту. Основної ідеї та теоретичні досягнення у теорії суперструн на сьогоднішній день.

    курсовая работа [474,6 K], добавлен 25.01.2011

  • Випромінювання Вавілова-Черенкова. Ефект Доплера, фотонна теорія світла. Маса та імпульс фотона. Досліди Боте та Вавилова. Тиск світла. Досліди Лебедєва. Ефект Комптока. Вивчення фундаментальних дослідів з квантової оптики в профільних класах.

    дипломная работа [661,8 K], добавлен 12.11.2010

  • Изучение научного и жизненного пути Льва Давидовича Ландау - советского физика-теоретика, основателя научной школы и лауреата Нобелевской премии. Личная жизнь и собственная теория счастья. Достижения и награды. Работы в области теоретической физики.

    презентация [743,5 K], добавлен 16.10.2013

  • Сверхпроводники. У начала пути. Сверхпроводники первого второго рода. Абрикосовские вихри. Свойства сверхпроводников. Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера (БКШ) и Боголюбова. Теория Гинзбурга - Ландау.

    курсовая работа [60,1 K], добавлен 24.04.2003

  • Лазери за невеликий час ввійшли в життя та побут людини. Винайденню цього пристрою людство повинно завдячувати радіофізикам. Квантова теорія як передісторія виникнення лазера. Дослідження радянських та американських вчених в галузі лазерної фізики.

    реферат [18,8 K], добавлен 09.07.2008

  • Загальна теорія відносності А. Ейнштейна та квантова теорія поля. Поставлені цілі та технічні характеристики великого андронного колайдера. Процес прискорення частинок у колайдері. Плани по використанню на найближчі кілька років та український внесок.

    презентация [520,5 K], добавлен 07.11.2010

  • Кристалічна структура металів та їх типові структури. Загальний огляд фазових перетворень. Роль структурних дефектів при поліморфних перетвореннях. Відомості про тантал та фазовий склад його тонких плівок. Термодинамічна теорія фазового розмірного ефекту.

    курсовая работа [8,1 M], добавлен 13.03.2012

  • Предмет, методи і завдання квантової фізики. Закони фотоефекту. Дослідження Столєтова. Схема установки для дослідження фотоефекту. Фотоефект як самостійне фізичне явище. Квантова теорія, що описує фотоефект. Характеристика фотоелементів, їх застосування.

    лекция [513,1 K], добавлен 23.11.2010

  • Розміри та маси атомів, їх будова. Заряд і маса електрону. Квантова теорія світла, суть лінійчатого характеру атомних спектрів. Квантово-механічне пояснення будови молекул. Донорно-акцепторний механізм утворення ковалентного зв’язку. Молекулярні орбіталі.

    лекция [2,6 M], добавлен 19.12.2010

  • Дослідження та винаходи, які сприяли формуванню гіпотези про складну будову атома: відкриття субатомних частинок, рентгенівські промені та радіоактивність. Перша модель атома Дж.Дж. Томсона. Планетарна модель Резерфорда. Теорія та постулати Бора.

    курсовая работа [985,6 K], добавлен 26.09.2012

  • Відкриття нових мікроскопічних частинок матерії. Основні властивості елементарних частинок. Класи взаємодій. Характеристики елементарних частинок. Елементарні частинки і квантова теорія поля. Застосування елементарних частинок в практичній фізиці.

    реферат [31,1 K], добавлен 21.09.2008

  • Свойства сверхпроводящих материалов. Определение электрического сопротивления и магнитной проницаемости немагнитных зазоров. Падение напряженности магнитного поля по участкам. Условия для работы устройства. Применение эффекта Мейснера и его изобретение.

    научная работа [254,2 K], добавлен 20.04.2010

  • Порядок и основные этапы взаимодействия электронов с веществом. Процесс рассеяния электронов, отличительные признаки упругих и неупругих столкновений. Метод Монте-Карло в задачах переноса частиц в веществе. Этапы алгоритма решения поставленной задачи.

    реферат [84,4 K], добавлен 23.12.2010

  • Диэлектрические параметры и поляризация. Теория среднего поля, моделирование молекул. Плотность энергии слабых связей на границе раздела твердых сред в теории Ландау-де Жена. Реализация метода конечных элементов. Время и гидродинамическое моделирование.

    реферат [994,3 K], добавлен 23.12.2013

  • Теорія Бора будови й властивостей енергетичних рівнів електронів у водневоподібних системах. Використання рівняння Шредінгера, хвильова функція та квантові числа. Енергія атома водню і його спектр. Виродження рівнів та магнітний момент водневого атома.

    реферат [329,9 K], добавлен 06.04.2009

  • Альтернативні джерела енергії: вода. Енергія води, приливів, гідроенергія. Біологічні і фізичні наслідки будівництва приливних електростанцій. Перспективи вітрової енергетики в Україні. Сонячна енергія та її використання. Перспективи сонячної енергетики.

    реферат [21,5 K], добавлен 07.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.