Теоретические основы электротехники

Вращающееся магнитное поле. Переходные процессы в линейных электрических цепях с сосредоточенными параметрами. Способы составления характеристического уравнения. Переходные процессы в цепи с одним накопителем энергии и произвольным числом резисторов.

Рубрика Физика и энергетика
Вид курс лекций
Язык русский
Дата добавления 29.04.2015
Размер файла 2,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Для цепи на рис. 8 составить характеристическое уравнение и определить, при каких значениях переходный процесс в ней будет носить апериодический характер, если .

Ответ: .

Определить в цепи на рис. 9, если , , , .

Ответ: .

Лекция N 26. Переходные процессы в цепи с одним накопителем энергии и произвольным числом резисторов

Как отмечалось в предыдущей лекции, линейная цепь охвачена единым переходным процессом. Поэтому в рассматриваемых цепях с одним накопителем энергии (катушкой индуктивности или конденсатором) - цепях первого порядка - постоянная времени будет одной и той же для всех свободных составляющих напряжений и токов ветвей схемы, параметры которых входят в характеристическое уравнение.

Общий подход к расчету переходных процессов в таких цепях основан на применении теоремы об активном двухполюснике: ветвь, содержащую накопитель, выделяют из цепи, а оставшуюся часть схемы рассматривают как активный двухполюсник А (эквивалентный генератор) (см. рис.1, а) со схемой замещения на рис. 1,б.

Совершенно очевидно, что постоянная времени здесь для цепей с индуктивным элементом определяется, как:

,

и с емкостным, как:

,

где - входное сопротивление цепи по отношению к зажимам 1-2 подключения ветви, содержащей накопитель энергии.

Например, для напряжения на конденсаторе в цепи на рис. 2 можно записать

,

где в соответствии с вышесказанным

.

Переходные процессы при подключении последовательной

R-L-C-цепи к источнику напряжения

Рассмотрим два случая:

а) ;

б) .

Согласно изложенной в предыдущей лекции методике расчета переходных процессов классическим методом для напряжения на конденсаторе в цепи на рис. 3 можно записать

(1)

Тогда для первого случая принужденная составляющая этого напряжения

(2)

Характеристическое уравнение цепи

,

решая которое, получаем

.

В зависимости от соотношения параметров цепи возможны три типа корней и соответственно три варианта выражения для свободной составляющей:

1.

Или

,

где - критическое сопротивление контура, меньше которого свободный процесс носит колебательный характер.

В этом случае

(3)

2. - предельный случай апериодического режима.

В этом случае

и

(4)

3. - периодический (колебательный) характер переходного процесса.

В этом случае

И

(5)

Где

- коэффициент затухания;

- угловая частота собственных колебаний; - период собственных колебаний.

Для апериодического характера переходного процесса после подстановки (2) и (3) в соотношение (1) можно записать

.

Для нахождения постоянных интегрирования, учитывая, что в общем случае и в соответствии с первым законом коммутации

,

запишем для t=0 два уравнения:

решая которые, получим

;.

Таким образом,

.

Тогда ток в цепи

и напряжение на катушке индуктивности

.

На рис. 4 представлены качественные кривые , и , соответствующие апериодическому переходному процессу при .

Для критического режима на основании (2) и (4) можно записать

.

При

Таким образом

и

.

Для колебательного переходного процесса в соответствии с (2) и (5) имеем

.

Для нахождения постоянных интегрирования запишем

Откуда

и

.

Тогда

.

а рис. 5представлены качественные кривые и , соответствующие колебательному переходному процессу при .

При подключении R-L-C-цепи к источнику синусоидального напряжения для нахождения принужденных составляющих тока в цепи и напряжения на конденсаторе следует воспользоваться символическим методом расчета, в соответствии с которым

,

Где

;

;

.

Таким образом,

и .

Здесь также возможны три режима:

1. ;

2.

3.

Наибольший интерес представляет третий режим, связанный с появлением во время переходного процесса собственных колебаний с частотой . При этом возможны, в зависимости от соотношения частот собственных колебаний и напряжения источника, три характерные варианта: 1 - ; 2 - ; 3 - , - которые представлены на рис. 6,а…6,в соответственно.

Литература

Основы теории цепей: Учеб. для вузов /Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. -5-е изд., перераб. -М.: Энергоатомиздат, 1989. -528с.

Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. -7-е изд., перераб. и доп. -М.: Высш. шк., 1978. -528с.

Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М. Поливанова. Т.1. К.М. Поливанов. Линейные электрические цепи с сосредоточенными постоянными. -М.: Энергия- 1972. -240с.

Контрольные вопросы

Как можно определить постоянную времени в цепи с одним накопителем энергии по осциллограмме тока или напряжения в какой-либо ветви?

Определить, какой процесс: заряд или разряд конденсатора в цепи на рис. 2 - будет происходить быстрее?

Ответ: заряд.

Влияет ли на постоянную времени цепи тип питающего устройства: источник напряжения или источник тока?

В цепи на рис. 2 , С=10 мкФ. Чему должна быть равна индуктивность L катушки, устанавливаемой на место конденсатора, чтобы постоянная времени не изменилась?

Ответ: L=0,225 Гн.

Как влияет на характер переходного процесса в R-L-C-контуре величина сопротивления R и почему?

Определить ток через катушку индуктивности в цепи на рис. 7, если ; ; ; ; .

Ответ: .

Определить ток в ветви с конденсатором в цепи на рис. 8, если ; ; ; .

Ответ: .

Лекция N 27. Операторный метод расчета переходных процессов

Сущность операторного метода заключается в том, что функции вещественной переменной t, которую называют оригиналом, ставится в соответствие функция комплексной переменной , которую называют изображением. В результате этого производные и интегралы от оригиналов заменяются алгебраическими функциями от соответствующих изображений (дифференцирование заменяется умножением на оператор р, а интегрирование - делением на него), что в свою очередь определяет переход от системы интегро-дифференциальных уравнений к системе алгебраических уравнений относительно изображений искомых переменных. При решении этих уравнений находятся изображения и далее путем обратного перехода - оригиналы. Важнейшим моментом при этом в практическом плане является необходимость определения только независимых начальных условий, что существенно облегчает расчет переходных процессов в цепях высокого порядка по сравнению с классическим методом.

Изображение заданной функции определяется в соответствии с прямым преобразованием Лапласа:

(1)

В сокращенной записи соответствие между изображением и оригиналом обозначается, как:

или

Следует отметить, что если оригинал увеличивается с ростом t, то для сходимости интеграла (1) необходимо более быстрое убывание модуля .

Функции, с которыми встречаются на практике при расчете переходных процессов, этому условию удовлетворяют.

В качестве примера в табл. 1 приведены изображения некоторых характерных функций, часто встречающихся при анализе нестационарных режимов.

Таблица 1. Изображения типовых функций

Оригинал

А

Изображение

Некоторые свойства изображений

Изображение суммы функций равно сумме изображений слагаемых:

.

При умножении оригинала на коэффициент на тот же коэффициент умножается изображение:

.

С использованием этих свойств и данных табл. 1, можно показать, например, что

.

Изображения производной и интеграла

В курсе математики доказывается, что если

,

То

,

где - начальное значение функции .

Таким образом, для напряжения на индуктивном элементе можно записать

или при нулевых начальных условиях

.

Отсюда операторное сопротивление катушки индуктивности

.

Аналогично для интеграла: если

,

то

.

С учетом ненулевых начальных условий для напряжения на конденсаторе можно записать:

.

Тогда

или при нулевых начальных условиях

,

откуда операторное сопротивление конденсатора

.

Закон Ома в операторной форме

Пусть имеем некоторую ветвь (см. рис. 1), выделенную из некоторой

сложной цепи. Замыкание ключа во внешней цепи приводит к переходному процессу, при этом начальные условия для тока в ветви и напряжения на конденсаторе в общем случае ненулевые.

Для мгновенных значений переменных можно записать:

.

Тогда на основании приведенных выше соотношений получим:

.

Отсюда

(2)

где

- операторное сопротивление рассматриваемого участка цепи.

Следует обратить внимание, что операторное сопротивление соответствует комплексному сопротивлению ветви в цепи синусоидального тока при замене оператора р на .

Уравнение (2) есть математическая запись закона Ома для участка цепи с источником ЭДС в операторной форме. В соответствии с ним для ветви на рис. 1 можно нарисовать операторную схему замещения, представленную на рис. 2.

Законы Кирхгофа в операторной форме

Первый закон Кирхгофа: алгебраическая сумма изображений токов, сходящихся в узле, равна нулю

.

Второй закон Кирхгофа: алгебраическая сумма изображений ЭДС, действующих в контуре, равна алгебраической сумме изображений напряжений на пассивных элементах этого контура

.

При записи уравнений по второму закону Кирхгофа следует помнить о необходимости учета ненулевых начальных условий (если они имеют место). С их учетом последнее соотношение может быть переписано в развернутом виде

.

В качестве примера запишем выражение для изображений токов в цепи на рис. 3 для двух случаев: 1 - ; 2 - .

В первом случае в соответствии с законом Ома

.

Тогда

и

.

Во втором случае, т.е. при , для цепи на рис. 3 следует составить операторную схему замещения, которая приведена на рис. 4. Изображения токов в ней могут быть определены любым методом расчета линейных цепей, например, методом контурных токов:

Откуда

; и .

Переход от изображений к оригиналам

Переход от изображения искомой величины к оригиналу может быть осуществлен следующими способами:

1. Посредством обратного преобразования Лапласа

,

которое представляет собой решение интегрального уравнения (1) и сокращенно записывается, как:

.

На практике этот способ применяется редко.

2. По таблицам соответствия между оригиналами и изображениями

В специальной литературе имеется достаточно большое число формул соответствия, охватывающих практически все задачи электротехники. Согласно данному способу необходимо получить изображение искомой величины в виде, соответствующем табличному, после чего выписать из таблицы выражение оригинала.

Например, для изображения тока в цепи на рис. 5 можно записать

.

Тогда в соответствии с данными табл. 1

,

что соответствует известному результату.

3. С использованием формулы разложения

Пусть изображение искомой переменной определяется отношением двух полиномов

,

где .

Это выражение может быть представлено в виде суммы простых дробей

(3)

где - к-й корень уравнения .

Для определения коэффициентов умножим левую и правую части соотношения (3) на ( ):

.

При

.

Рассматривая полученную неопределенность типа по правилу Лапиталя, запишем

.

Таким образом,

.

Поскольку отношение

есть постоянный коэффициент, то учитывая, что

,

окончательно получаем

(4)

Соотношение (4) представляет собой формулу разложения. Если один из корней уравнения равен нулю, т.е.

,

то уравнение (4) сводится к виду

.

В заключение раздела отметим, что для нахождения начального и конечного значений оригинала можно использовать предельные соотношения

которые также могут служить для оценки правильности полученного изображения.

Литература

Основы теории цепей: Учеб. для вузов /Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. -5-е изд., перераб. -М.: Энергоатомиздат, 1989. -528с.

Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. -7-е изд., перераб. и доп. -М.: Высш. шк., 1978. -528с.

Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М. Поливанова. Т.1. К.М. Поливанов. Линейные электрические цепи с сосредоточенными постоянными. -М.: Энергия- 1972. -240с.

Контрольные вопросы

В чем заключается сущность расчета переходных процессов операторным методом?

Что такое операторная схема замещения?

Как при расчете операторным методом учитываются ненулевые независимые начальные условия?

Какими способами на практике осуществляется переход от изображения к оригиналу?

Для чего используются предельные соотношения?

Как связаны изображение и оригинал в формуле разложения? Какие имеются варианты ее написания?

С использованием теоремы об активном двухполюснике записать операторное изображение для тока через катушку индуктивности в цепи на рис. 6.

Ответ:

.

С использованием предельных соотношений и решения предыдущей задачи найти начальное и конечное значения тока в ветви с индуктивным элементом.

Ответ:

.

Лекция N 28. Некоторые важные замечания к формуле разложения

При наличии в цепи синусоидальной ЭДС для перехода от комплекса к функции времени от правой части формулы разложения берется мнимая часть, т.е. выражение при j. Если при этом в цепи также имеют место другие источники, например, постоянной Е и экспоненциальной ЭДС, и начальные условия для токов в ветвях с индуктивными элементами и напряжений на конденсаторах ненулевые, то они должны быть все введены в формулу предварительно умноженными на j, поскольку только в этом случае они будут учтены при взятии мнимой части от формулы разложения, т.е.

.

Принужденной составляющей от действия источника синусоидальной ЭДС в формуле разложения соответствует слагаемое, определяемое корнем .

Для сложных схем такое ее вычисление может оказаться достаточно трудоемким, в связи с чем принужденную составляющую в этих случаях целесообразно определять отдельно символическим методом, а свободную - операторным.

Комплексно-сопряженным корням уравнения в формуле разложения соответствуют комплексно-сопряженные слагаемые, которые в сумме дают удвоенный вещественный член, т.е. для к-й пары комплексно-сопряженных корней имеет место

.

Последовательность расчета переходных процессов операторным методом

1. Определение независимых начальных условий путем расчета докоммутационного режима работы цепи.

2. Составление операторной схемы замещения цепи (для простых цепей с нулевыми начальными условиями этот этап может быть опущен).

3. Запись уравнений по законам Кирхгофа или другим методам расчета линейных цепей в операторной форме с учетом начальных условий.

4. Решение полученных уравнений относительно изображений искомых величин.

5. Определение оригиналов (с помощью формулы разложения или таблиц соответствия оригиналов и изображений) по найденным изображениям.

В качестве примера использования операторного метода определим ток через катушку индуктивности в цепи на рис. 1.

С учетом нулевого начального условия операторное изображение этого тока

.

Для нахождения оригинала воспользуемся формулой разложения при нулевом корне

(1)

Где

, .

Корень уравнения

.

Тогда

и

.

Подставляя найденные значения слагаемых формулы разложения в (1), получим

.

Воспользовавшись предельными соотношениями, определим и :

Формулы включения

Формулу разложения можно использовать для расчета переходных процессов при нулевых и ненулевых начальных условиях. Если начальные условия нулевые, то при подключении цепи к источнику постоянного, экспоненциального или синусоидального напряжения для расчета переходных процессов удобно использовать формулы включения, вытекающие из формулы разложения.

Формула включения на экспоненциальное напряжение

(2)

Где

- входное операторное сопротивление двухполюсника при определении тока в ветви с ключом (при расчете тока в произвольной ветви это операторное сопротивление, определяющее ток в ней по закону Ома); - к-й корень уравнения .

Формула включения на постоянное напряжение (вытекает из (2) при )

.

Формула включения на синусоидальное напряжение

(формально вытекает из (2) при и )

.

В качестве примера использования формулы включения рассчитаем ток в цепи на рис. 2, если в момент времени t=0 она подсоединяется к источнику с напряжением ; ; .

В соответствии с заданной формой напряжения источника для решения следует воспользоваться формулой (2). В ней

.

Тогда корень уравнения . Производная

И

.

В результате

.

Сведение расчета переходного процесса к расчету с нулевыми начальными условиями

Используя принцип наложения, расчет цепи с ненулевыми начальными условиями можно свести к расчету схемы с нулевыми начальными условиями. Последнюю цепь, содержащую пассивные элементы, можно затем с помощью преобразований последовательно-параллельных соединений и треугольника в звезду и наоборот свести к виду, позволяющему определить искомый ток по закону Ома с использованием формул включения.

Методику сведения цепи к нулевым начальным условиям иллюстрирует рис. 3, на котором исходная схема на рис. 3,а заменяется эквивалентной ей схемой на рис. 3,б, где . Последняя в соответствии с принципом наложения раскладывается на две схемы; при этом в схеме на рис. 3,в составляющая общего тока равна нулю. Таким образом, полный ток равен составляющей тока в цепи на рис. 3,г, где исходный активный двухполюсник АД заменен пассивным ПД, т.е. схема сведена к нулевым начальным условиям.

Следует отметить, что если определяется ток в ветви с ключом, то достаточно рассчитать схему на рис. 3,г. При расчете тока в какой-либо другой ветви АД в соответствии с вышесказанным он будет складываться из тока в этой ветви до коммутации и тока в ней, определяемого подключением ЭДС к пассивному двухполюснику.

Аналогично можно показать, что отключение ветви, не содержащей индуктивных элементов, при расчете можно имитировать включением в нее источника тока, величина которого равна току в ветви до коммутации, и действующему навстречу ему.

Переходная проводимость

При рассмотрении метода наложения было показано, что ток в любой ветви схемы может быть представлен в виде

,

где - собственная (к=m) или взаимная проводимость.

Это соотношение, трансформированное в уравнение

(3)

будет иметь силу и в переходном режиме, т.е. когда замыкание ключа в m-й ветви подключает к цепи находящийся в этой ветви источник постоянного напряжения .

При этом является функцией времени и называется переходной проводимостью.

В соответствии с (3) переходная проводимость численно равна току в ветви при подключении цепи к постоянному напряжению

.

Переходная функция по напряжению

Переходная функция по напряжению наиболее часто используется при анализе четырехполюсников.

Если линейную электрическую цепь с нулевыми начальными условиями подключить к источнику постоянного напряжения , то между произвольными точками m и n цепи возникнет напряжение

,

где - переходная функция по напряжению, численно равная напряжению между точками m и n схемы при подаче на ее вход постоянного напряжения .

Переходную проводимость и переходную функцию по напряжению можно найти расчетным или экспериментальным (осциллографирование) путями.

В качестве примера определим эти функции для цепи на рис. 4.

В этой схеме

,

где

.

Тогда переходная проводимость

.

Переходная функция по напряжению

.

Литература

Основы теории цепей: Учеб. для вузов /Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. -5-е изд., перераб. -М.: Энергоатомиздат, 1989. -528с.

Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. -7-е изд., перераб. и доп. -М.: Высш. шк., 1978. -528с.

Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М. Поливанова. Т.1. К.М. Поливанов. Линейные электрические цепи с сосредоточенными постоянными. -М.: Энергия- 1972. -240с.

Контрольные вопросы

Как в формуле разложения учитываются при наличии источника синусоидальной ЭДС источники других типов, а также ненулевые начальные условия?

Как целесообразно проводить расчет переходных процессов операторным методом в сложных цепях при синусоидальном питании?

Проведите сравнительный анализ классического и операторного методов.

Какие этапы включает в себя операторный метод расчета переходных процессов?

Из формулы включения на какое напряжение вытекают другие варианты ее записи? Запишите формулы включения.

В каких случаях применяются формулы включения?

Чему численно соответствуют переходная проводимость и переходная функция по напряжению?

На основании решения задачи 7 в задании к лекции № 27 с использованием формулы разложения определить ток в ветви с индуктивным элементом, если параметры цепи: .

Ответ:

.

С использованием формулы включения найти ток в неразветвленной части цепи на рис. 5,

если :

;

;

.

Ответ:

.

Лекция N 29. Расчет переходных процессов с использованием интеграла Дюамеля

Зная реакцию цепи на единичное возмущающее воздействие, т.е. функцию переходной проводимости или (и) переходную функцию по напряжению , можно найти реакцию цепи на воздействие произвольной формы. В основе метода - метода расчета с помощью интеграла Дюамеля - лежит принцип наложения.

При использовании интеграла Дюамеля для разделения переменной, по которой производится интегрирование, и переменной, определяющей момент времени, в который определяется ток в цепи, первую принято обозначать как , а вторую - как t.

Пусть в момент времени к цепи с нулевыми начальными условиями (пассивному двухполюснику ПД на рис. 1) подключается источник с напряжением произвольной формы. Для нахождения тока в цепи заменим исходную кривую ступенчатой (см. рис. 2), после чего с учетом, что цепь линейна, просуммируем токи от начального скачка напряжения и всех ступенек напряжения до момента t, вступающих в действие с запаздыванием по времени.

В момент времени t составляющая общего тока, определяемая начальным скачком напряжения , равна .

В момент времени имеет место скачок напряжения , который с учетом временного интервала от начала скачка до интересующего момента времени t обусловит составляющую тока .

Полный ток в момент времени t равен, очевидно, сумме всех составляющих тока от отдельных скачков напряжения с учетом , т.е.

.

Заменяя конечный интервал приращения времени на бесконечно малый, т.е. переходя от суммы к интегралу, запишем

(1)

Соотношение (1) называется интегралом Дюамеля.

Следует отметить, что с использованием интеграла Дюамеля можно определять также напряжение. При этом в (1) вместо переходной проводимости будет входить переходная функция по напряжению.

Последовательность расчета с использованием интеграла Дюамеля

Определение функции (или ) для исследуемой цепи.

Запись выражения (или ) путем формальной замены t на .

Определение производной .

Подстановка найденных функций в (1) и интегрирование определенного интеграла.

В качестве примера использования интеграла Дюамеля определим ток в цепи рис. 3, рассчитанный в предыдущей лекции с использованием формулы включения.

Исходные данные для расчета: , , .

Переходная проводимость

.

.

.

Полученный результат аналогичен выражению тока, определенному в предыдущей лекции на основе формулы включения.

Метод переменных состояния

Уравнения элекромагнитного состояния - это система уравнений, определяющих режим работы (состояние) электрической цепи.

Метод переменных состояния основывается на упорядоченном составлении и решении системы дифференциальных уравнений первого порядка, которые разрешены относительно производных, т.е. записаны в виде, наиболее удобном для применения численных методов интегрирования, реализуемых средствами вычислительной техники.

Количество переменных состояния, а следовательно, число уравнений состояния равно числу независимых накопителей энергии.

К уравнениям состояния выдвигаются два основных требования:

-независимость уравнений;

-возможность восстановления на основе переменных состояния (переменных, относительно которых записаны уравнения состояния) любых других переменных.

Первое требование удовлетворяется специальной методикой составления уравнений состояния, которая будет рассмотрена далее.

Для выполнения второго требования в качестве переменных состояния следует принять потокосцепления (токи в ветвях с индуктивными элементами) и заряды (напряжения) на конденсаторах. Действительно, зная закон изменения этих переменных во времени их всегда можно заменить источниками ЭДС и тока с известными параметрами. Остальная цепь оказывается резистивной, а следовательно, всегда рассчитывается при известных параметрах источников. Кроме того, начальные значения этих переменных относятся к независимым, т.е. в общем случае рассчитываются проще других.

При расчете методом переменных состояния, кроме самих уравнений состояния, связывающих первые производные и с самими переменными и и источниками внешних воздействий - ЭДС и тока, необходимо составить систему алгебраических уравнений, связывающих искомые величины с переменными состояния и источниками внешних воздействий.

Таким образом, полная система уравнений в матричной форме записи имеет вид

(2)

(3)

Здесь и - столбцовые матрицы соответственно переменных состояния и их первых производных по времени; - матрица-столбец источников внешних воздействий; - столбцовая матрица выходных (искомых) величин; - квадратная размерностью n x n (где n - число переменных состояния) матрица параметров, называемая матрицей Якоби; - прямоугольная матрица связи между источниками и переменными состояния (количество строк равно n, а столбцов - числу источников m); - прямоугольная матрица связи переменных состояния с искомыми величинами (количество строк равно числу искомых величин к, а столбцов - n); - прямоугольная размерностью к x m матрица связи входа с выходом.

Начальные условия для уравнения (2) задаются вектором начальных значений (0).

В качестве примера составления уравнений состояния рассмотрим цепь на рис. 4,а, в которой требуется определить токи и .

По законам Кирхгофа для данной цепи запишем

(4)

(5)

(6)

Поскольку

с учетом соотношения (6) перепишем уравнения (4) и (5) в виде

или в матричной форме записи

.

А В

Матричное уравнение вида (3) вытекает из соотношений (4) и (6):

.

С D

Вектор начальных значений

(0)= .

Непосредственное использование законов Кирхгофа при составлении уравнений состояния для сложных цепей может оказаться затруднительным. В этой связи используют специальную методику упорядоченного составления уравнений состояния.

Методика составления уравнений состояния

Эта методика включает в себя следующие основные этапы:

1. Составляется ориентированный граф схемы (см. рис. 4,б), на котором выделяется дерево, охватывающее все конденсаторы и источники напряжения (ЭДС).

Резисторы включаются в дерево по необходимости: для охвата деревом всех узлов. В ветви связи включаются катушки индуктивности, источники тока и оставшиеся резисторы.

2. Осуществляется нумерация ветвей графа (и элементов в схеме), проводимая в следующей последовательности:

первыми нумеруются участки графа (схемы) с конденсаторами,

затем резисторами, включенными в дерево,

следующими нумеруются ветви связи с резисторами и, наконец, ветви с индуктивными элементами (см. рис. 4,б).

3. Составляется таблица, описывающая соединение элементов в цепи. В первой строке таблицы (см. табл. 1) перечисляются емкостные и резистивные элементы дерева, а также источники напряжения (ЭДС). В первом столбце перечисляются резистивные и индуктивные элементы ветвей связи, а также источники тока.

Таблица 1. Таблица соединений

11

22

u

33

-1

0

0

44

1

1

1

J

1

0

Процедура заполнения таблицы заключается в поочередном мысленном замыкании ветвей дерева с помощью ветвей связи до получения контура с последующим обходом последнего согласно ориентации соответствующей ветви связи. Со знаком "+" записываются ветви графа, ориентация которых совпадает с направлением обхода контура, и со знаком "-" ветви, имеющие противоположную ориентацию.

Осуществляется расписывание таблицы по столбцам и по строкам. В первом случае получаются уравнения по первому закону Кирхгофа, во втором - по второму. В рассматриваемом случае (равенство тривиально)

,

откуда в соответствии с нумерацией токов в исходной цепи

.

При расписывании таблицы соединений по строкам напряжения на пассивных элементах необходимо брать со знаками, противоположными табличным:

(7)

Эти уравнения совпадают соответственно с соотношениями (6) и (5). Из (7) непосредственно вытекает

.

Таким образом, формализованным способом получены уравнения, аналогичные составленным выше с использованием законов Кирхгофа.

Литература

Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. -7-е изд., перераб. и доп. -М.: Высш. шк., 1978. -528с.

Матханов П.Н. Основы анализа электрических цепей. Линейные цепи.: Учеб. для электротехн. радиотехн. спец. вузов. 3-е изд., перераб. и доп. -М.: Высш. шк., 1990. -400с.

Контрольные вопросы и задачи

Какой принцип лежит в основе метода расчета переходных процессов с использованием интеграла Дюамеля, и для каких цепей может быть использован данный метод?

В каких случаях целесообразно использовать метод расчета с использованием интеграла Дюамеля?

В цепи на рис. 3 при напряжение на входе цепи мгновенно спадает до нуля. Определить ток в цепи.

Ответ: при ; при .

Какие требования и почему выдвигаются к уравнениям состояния?

Что включает в себя система уравнений при расчете переходного процесса в цепи методом переменных состояния?

Перечислите основные этапы методики составления уравнений состояния.

Записать матрицы А и В для цепи на рис. 5, если , , , , , .

Ответ

А

В

Лекция N 30. Нелинейные цепи

Нелинейными называются цепи, в состав которых входит хотя бы один нелинейный элемент.

Нелинейными называются элементы, параметры которых зависят от величины и (или) направления связанных с этими элементами переменных (напряжения, тока, магнитного потока, заряда, температуры, светового потока и др.). Нелинейные элементы описываются нелинейными характеристиками, которые не имеют строгого аналитического выражения, определяются экспериментально и задаются таблично или графиками.

Нелинейные элементы можно разделить на двух - и многополюсные. Последние содержат три (различные полупроводниковые и электронные триоды) и более (магнитные усилители, многообмоточные трансформаторы, тетроды, пентоды и др.) полюсов, с помощью которых они подсоединяются к электрической цепи. Характерной особенностью многополюсных элементов является то, что в общем случае их свойства определяются семейством характеристик, представляющих зависимости выходных характеристик от входных переменных и наоборот: входные характеристики строят для ряда фиксированных значений одного из выходных параметров, выходные - для ряда фиксированных значений одного из входных.

По другому признаку классификации нелинейные элементы можно разделить на инерционные и безынерционные. Инерционными называются элементы, характеристики которых зависят от скорости изменения переменных. Для таких элементов статические характеристики, определяющие зависимость между действующими значениями переменных, отличаются от динамических характеристик, устанавливающих взаимосвязь между мгновенными значениями переменных. Безынерционными называются элементы, характеристики которых не зависят от скорости изменения переменных. Для таких элементов статические и динамические характеристики совпадают.

Понятия инерционных и безынерционных элементов относительны: элемент может рассматриваться как безынерционный в допустимом (ограниченном сверху) диапазоне частот, при выходе за пределы которого он переходит в разряд инерционных.

В зависимости от вида характеристик различают нелинейные элементы с симметричными и несимметричными характеристиками. Симметричной называется характеристика, не зависящая от направления определяющих ее величин, т.е. имеющая симметрию относительно начала системы координат:

.

Для несимметричной характеристики это условие не выполняется, т.е.

.

Наличие у нелинейного элемента симметричной характеристики позволяет в целом ряде случаев упростить анализ схемы, осуществляя его в пределах одного квадранта.

По типу характеристики можно также разделить все нелинейные элементы на элементы с однозначной и неоднозначной характеристиками. Однозначной называется характеристика , у которой каждому значению х соответствует единственное значение y и наоборот. В случае неоднозначной характеристики каким-то значениям х может соответствовать два или более значения y или наоборот. У нелинейных резисторов неоднозначность характеристики обычно связана с наличием падающего участка, для которого , а у нелинейных индуктивных и емкостных элементов - с гистерезисом.

Наконец, все нелинейные элементы можно разделить на управляемые и неуправляемые. В отличие от неуправляемых управляемые нелинейные элементы (обычно трех- и многополюсники) содержат управляющие каналы, изменяя напряжение, ток, световой поток и др. в которых, изменяют их основные характеристики: вольт-амперную, вебер-амперную или кулон-вольтную.

Нелинейные электрические цепи постоянного тока

Нелинейные свойства таких цепей определяет наличие в них нелинейных резисторов.

В связи с отсутствием у нелинейных резисторов прямой пропорциональности между напряжением и током их нельзя охарактеризовать одним параметром (одним значением ).

Соотношение между этими величинами в общем случае зависит не только от их мгновенных значений, но и от производных и интегралов по времени.

Параметры нелинейных резисторов

В зависимости от условий работы нелинейного резистора и характера задачи различают статическое, дифференциальное и динамическое сопротивления.

Если нелинейный элемент является безынерционным, то он характеризуется первыми двумя из перечисленных параметров.

Статическое сопротивление равно отношению напряжения на резистивном элементе к протекающему через него току. В частности для точки 1 ВАХ на рис. 1

.

Под дифференциальным сопротивлением понимается отношение бесконечно малого приращения напряжения к соответствующему приращению тока

.

Следует отметить, что у неуправляемого нелинейного резистора всегда, а может принимать и отрицательные значения (участок 2-3 ВАХ на рис. 1).

В случае инерционного нелинейного резистора вводится понятие динамического сопротивления

,

определяемого по динамической ВАХ. В зависимости от скорости изменения переменной, например тока, может меняться не только величина, но и знак .

Методы расчета нелинейных электрических цепей постоянного тока

Электрическое состояние нелинейных цепей описывается на основании законов Кирхгофа, которые имеют общий характер. При этом следует помнить, что для нелинейных цепей принцип наложения неприменим. В этой связи методы расчета, разработанные для линейных схем на основе законов Кирхгофа и принципа наложения, в общем случае не распространяются на нелинейные цепи.

Общих методов расчета нелинейных цепей не существует. Известные приемы и способы имеют различные возможности и области применения. В общем случае при анализе нелинейной цепи описывающая ее система нелинейных уравнений может быть решена следующими методами:

графическими;

аналитическими;

графо-аналитическими;

итерационными.

Графические методы расчета

При использовании этих методов задача решается путем графических построений на плоскости. При этом характеристики всех ветвей цепи следует записать в функции одного общего аргумента. Благодаря этому система уравнений сводится к одному нелинейному уравнению с одним неизвестным. Формально при расчете различают цепи с последовательным, параллельным и смешанным соединениями.

а) Цепи с последовательным соединением резистивных элементов.

При последовательном соединении нелинейных резисторов в качестве общего аргумента принимается ток, протекающий через последовательно соединенные элементы. Расчет проводится в следующей последовательности. По заданным ВАХ отдельных резисторов в системе декартовых координат строится результирующая зависимость

.

Затем на оси напряжений откладывается точка, соответствующая в выбранном масштабе заданной величине напряжения на входе цепи, из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой опускается ортогональ на ось токов - полученная точка соответствует искомому току в цепи, по найденному значению которого с использованием зависимостей определяются напряжения на отдельных резистивных элементах.

Применение указанной методики иллюстрируют графические построения на рис. 2,б, соответствующие цепи на рис. 2,а.

Графическое решение для последовательной нелинейной цепи с двумя резистивными элементами может быть проведено и другим методом - методом пересечений.

В этом случае один из нелинейных резисторов, например, с ВАХ на рис.2,а, считается внутренним сопротивлением источника с ЭДС Е, а другой - нагрузкой. Тогда на основании соотношения

точка а (см. рис. 3) пересечения кривых и определяет режим работы цепи. Кривая строится путем вычитания абсцисс ВАХ из ЭДС Е для различных значений тока.

Использование данного метода наиболее рационально при последовательном соединении линейного и нелинейного резисторов. В этом случае линейный резистор принимается за внутреннее сопротивление источника, и линейная ВАХ последнего строится по двум точкам.

б) Цепи с параллельным соединением резистивных элементов.

При параллельном соединении нелинейных резисторов в качестве общего аргумента принимается напряжение, приложенное к параллельно соединенным элементам. Расчет проводится в следующей последовательности. По заданным ВАХ отдельных резисторов в системе декартовых координат строится результирующая зависимость . Затем на оси токов откладывается точка, соответствующая в выбранном масштабе заданной величине тока источника на входе цепи (при наличии на входе цепи источника напряжения задача решается сразу путем восстановления перпендикуляра из точки, соответствующей заданному напряжению источника, до пересечения с ВАХ ), из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой опускается ортогональ на ось напряжений - полученная точка соответствует напряжению на нелинейных резисторах, по найденному значению которого с использованием зависимостей определяются токи в ветвях с отдельными резистивными элементами.

Использование данной методики иллюстрируют графические построения на рис. 4,б, соответствующие цепи на рис. 4,а.

в) Цепи с последовательно-параллельным (смешанным) соединением резистивных элементов.

1. Расчет таких цепей производится в следующей последовательности:

Исходная схема сводится к цепи с последовательным соединением резисторов, для чего строится результирующая ВАХ параллельно соединенных элементов, как это показано в пункте б).

2. Проводится расчет полученной схемы с последовательным соединением резистивных элементов (см. пункт а), на основании которого затем определяются токи в исходных параллельных ветвях.

Метод двух узлов

Для цепей, содержащих два узла или сводящихся к таковым, можно применять метод двух узлов. При полностью графическом способе реализации метода он заключается в следующем:

Строятся графики зависимостей токов во всех i-х ветвях в функции общей величины - напряжения между узлами m и n, для чего каждая из исходных кривых смещается вдоль оси напряжений параллельно самой себе, чтобы ее начало находилось в точке, соответствующей ЭДС в i-й ветви, а затем зеркально отражается относительно перпендикуляра, восстановленного в этой точке.

Определяется, в какой точке графически реализуется первый закон Кирхгофа

.

Соответствующие данной точке токи являются решением задачи.

Метод двух узлов может быть реализован и в другом варианте, отличающемся от изложенного выше меньшим числом графических построений.

В качестве примера рассмотрим цепь на рис. 5. Для нее выражаем напряжения на резистивных элементах в функции :

(1)

(2)

(3)

Далее задаемся током, протекающим через один из резисторов, например во второй ветви , и рассчитываем , а затем по с использованием (1) и (3) находим и и по зависимостям и - соответствующие им токи и и т.д. Результаты вычислений сводим в табл. 1, в последней колонке которой определяем сумму токов

.

Таблица 1. Таблица результатов расчета методом двух узлов

Алгебраическая сумма токов в соответствии с первым законом Кирхгофа должна равнять нулю, поэтому получающаяся в последней колонке табл. 1 величина указывает, каким значением следует задаваться на следующем шаге.

В осях строим кривую зависимости и по точке ее пересечения с осью напряжений определяем напряжение между точками m и n. Для найденного значения по (1)…(3) рассчитываем напряжения на резисторах, после чего по заданным зависимостям определяем токи в ветвях схемы.

Литература

Основы теории цепей: Учеб. для вузов /Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. -5-е изд., перераб. -М.: Энергоатомиздат, 1989. -528с.

Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. -7-е изд., перераб. и доп. -М.: Высш. шк., 1978. -528с.

Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М. Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. -М.: Энергия- 1972. -200с.

Контрольные вопросы и задачи

Почему метод наложения неприменим к нелинейным цепям?

Какие параметры характеризуют нелинейный резистор?

Почему статическое сопротивление всегда больше нуля, а дифференциальное и динамическое могут иметь любой знак?

Какие методы используют для анализа нелинейных резистивных цепей постоянного тока?

Какая последовательность расчета графическим методом нелинейной цепи с последовательным соединением резисторов?

Какая последовательность расчета графическим методом нелинейной цепи с параллельным соединением резисторов?

Какой алгоритм анализа цепи со смешанным соединением нелинейных резисторов?

В чем сущность метода двух узлов?

В цепи на рис. 2,а ВАХ нелинейных резисторов

,

где напряжение - в вольтах, а ток - в амперах; . Графическим методом определить напряжения на резисторах.

Ответ: .

В цепи на рис. 4,а ВАХ нелинейных резисторов

И

,

где ток - в амперах, а напряжение - в вольтах; . Графическим методом определить токи и .

Ответ: .

В цепи на рис. 5 , где ток - в амперах, а напряжение - в вольтах; третий резистор линейный

с .

Определить токи в ветвях методом двух узлов, если

.

Ответ: .

Лекция N 31. Расчет нелинейных цепей методом эквивалентного генератора

Если в сложной электрической цепи имеется одна ветвь с нелинейным резистором, то определение тока в ней можно проводить на основе теоремы об активном двухполюснике (методом эквивалентного генератора). Идея решения заключается в следующем. Ветвь, содержащая нелинейный резистор, выделяется из исходной цепи, а вся остальная, уже линейная, схема представляется в виде активного двухполюсника (АД). Согласно теореме об АД схему линейного АД по отношению к зажимам 1-2 выделенной ветви (см. рис. 1,а) можно представить эквивалентным генератором (см. рис. 1,б) с ЭДС, равной напряжению на зажимах 1-2 при разомкнутой ветви с нелинейным резистором, и внутренним сопротивлением, равным входному сопротивлению линейного двухполюсника. Последняя схема рассчитывается, например, графическим методом как цепь с последовательным соединением элементов.

Если необходимо также найти токи в линейной части исходной цепи, то после расчета нелинейной схемы на рис. 1,б в соответствии с теоремой о компенсации нелинейный резистор заменяется источником ЭДС или тока, после чего проводится анализ полученной линейной цепи любым известным методом.

Аналитические методы расчета

Исследования общих свойств нелинейных цепей удобно осуществлять на основе математического анализа, базирующегося на аналитическом выражении характеристик нелинейных элементов, т.е. их аппроксимации. На выбор аналитического метода влияют условия поставленной задачи, а также характер возможного перемещения рабочей точки по характеристике нелинейного элемента: по всей характеристике или в ее относительно небольшой области.

К аналитическим методам относятся:

метод аналитической аппроксимации;

метод кусочно-линейной аппроксимации;

метод линеаризации.

Метод аналитической аппроксимации основан на замене характеристики (или ее участка) нелинейного элемента общим аналитическим выражением. Применяются следующие виды аналитической аппроксимации:

степенным многочленом (см. рис. 2,а);

трансцендентными (экспоненциальными, гиперболическими и др.) функциями (см. рис. 2,б).

Выбор коэффициентов (а,b,c,…) осуществляется исходя из наибольшего соответствия аналитического выражения рабочему участку нелинейной характеристики. При этом

выбираются наиболее характерные точки, через которые должна пройти аналитическая кривая. Число точек равно числу коэффициентов в аналитическом выражении, что позволяет однозначно определить последнее.

Необходимо помнить, что при получении нескольких корней нелинейного уравнения они должны быть проверены на удовлетворение задаче. Пусть, например, в цепи, состоящей из последовательно соединенных линейного R и нелинейного резисторов, ВАХ последнего может быть аппроксимирована выражением

.

Определить ток в цепи, если источник ЭДС Е обеспечивает режим работы цепи в первом квадранте.

В соответствии со вторым законом Кирхгофа для данной цепи имеет место уравнение

Или

.

Корни уравнения

.

Решением задачи является , поскольку второе решение не удовлетворяет условиям исходя из физических соображений.

Метод кусочно-линейной аппроксимации основан на представлении характеристики нелинейного элемента отрезками прямых линий (см. рис. 3), в результате чего нелинейная цепь может быть описана линейными уравнениями с постоянными (в пределах каждого отрезка) коэффициентами.

При наличии в цепи двух и более нелинейных резисторов реализация метода затруднена, так как в общем случае изначально неизвестно, на каких участках ломаных кривых находятся рабочие точки.

Кусочно-линейная аппроксимация может быть реализована методом секционных кусочно-линейных функций, позволяющим описать ломаную кривую общим аналитическим выражением. Например, для кривой, представленной на рис. 4 и определяемой коэффициентами и характеризующими наклон ее отдельных прямолинейных участков, и параметрами

,

характеризующими координаты точек, где значения функции изменяются скачками, данное выражение будет иметь вид

Здесь два первых слагаемых в правой части определяют первый наклонный участок аппроксимируемой кривой; три первых слагаемых - первый наклонный участок и участок первого скачка; четыре первых слагаемых - первый и второй наклонные участки с учетом участка первого скачка и т.д.

В общем случае аппроксимирующее выражение по методу секционных кусочно - линейных функций имеет вид

Метод линеаризации применим для анализа нелинейных цепей при малых отклонениях рабочей точки Р (см. рис. 5) от исходного состояния.

В окрестности рабочей точки (см. рис. 5)

,

где (закон Ома для малых приращений);

-дифференциальное сопротивление.

Идея метода заключается в замене нелинейного резистора линейным с сопротивлением, равным дифференциальному в заданной (или предполагаемой) рабочей точке, и либо последовательно включенным с ним источником ЭДС, либо параллельно включенным источником тока. Таким образом, линеаризованной ВАХ (см. прямую на рис. 5) соответствует последовательная (рис. 6,а) или параллельная (рис. 6,б) схема замещения нелинейного резистора.

Если исходный режим определен и требуется рассчитать лишь приращения токов и (или) напряжений, обусловленные изменением напряжения или тока источника, целесообразно использовать эквивалентные схемы для приращений, получаемые на основании законов Кирхгофа для малых приращений:

-первый закон Кирхгофа:

;

-второй закон Кирхгофа:

.

При составлении схемы для приращений:

1) все ЭДС и токи источников заменяются их приращениями;

2) нелинейные резисторы заменяются линейными с сопротивлениями, равными дифференциальным в рабочих точках.

Необходимо помнить, что полная величина какого-либо тока или напряжения в цепи равна алгебраической сумме исходного значения переменной и ее приращения, рассчитанного методом линеаризации.

Если исходный режим работы нелинейного резистора неизвестен, то следует задаться рабочей точкой на его ВАХ и, осуществив соответствующую линеаризацию, произвести расчет, по окончании которого необходимо проверить, соответствуют ли его результаты выбранной точке. В случае их несовпадения линеаризованный участок уточняется, расчет повторяется и так до получения требуемой сходимости

Итерационные методы расчета

Решение нелинейного уравнения (системы нелинейных уравнений), описывающего (описывающих) состояние электрической цепи, может быть реализовано приближенными численными методами. Решение находится следующим образом: на основе первой, достаточно грубой, оценки определяется начальное значение корня (корней), после чего производится уточнение по выбранному алгоритму до вхождения в область заданной погрешности.

Наиболее широкое применение в электротехнике для численного расчета нелинейных резистивных цепей получили метод простой итерации и метод Ньютона-Рафсона, основные сведения о которых приведены в табл. 1.

Таблица 1. Итерационные методы расчета

Последователь-ность расчета

Геометрическая иллюстрация алгоритма

Условие сходимости итерации

Примечание

Метод простой итерации

1.Исходное нелинейное уравнение электрической цепи , где -искомая переменная, представляется в виде .

2. Производится расчет по алгоритму где

- шаг итерации.

Здесь - заданная погрешность

На интервале между приближенным и точным значениями корня должно выполняться неравенство

1.Начальное приближение обычно находится из уравнения при пренебрежении в нем нелинейными членами.

2. Метод распространим на систему нелинейных уравнений n-го порядка. Например, при решении системы 2-го порядка

итерационные формулы имеют вид ;

.

3. При решении системы уравнений сходимость обычно проверяется в процессе итерации.

Метод Ньютона-

-Рафсона

1. На основании исходного нелинейного уравнения электрической цепи , где -искомая переменная, записывается итерационная формула где - шаг итерации.

2.По полученной формуле проводится итерационный расчет

Здесь - заданная погрешность

На интервале между приближенным и точным значениями корня должны выполняться неравенства

Примечания п. 1,2 и 3 к методу простой итерации распространимы на метод Ньютона-Рафсона. При этом при решении системы 2-го порядка

итерационные формулы имеют вид

где

Литература

Основы теории цепей: Учеб. для вузов /Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. -5-е изд., перераб. -М.: Энергоатомиздат, 1989. -528с.

Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. -7-е изд., перераб. и доп. -М.: Высш. шк., 1978. -528с.

Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М. Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. -М.: Энергия- 1972. -200с.

...

Подобные документы

  • Способы получение характеристического уравнения. Переходные процессы в цепях с одним реактивным элементом, с двумя разнородными реактивными элементами. Временные характеристики цепей. Расчет реакции линейной цепи на входное воздействие произвольного вида.

    контрольная работа [1,3 M], добавлен 28.11.2010

  • Основные методы расчета токов и напряжений в цепях, в которых происходят переходные процессы. Составление системы интегро-дифференциальных уравнений цепи, используя для этого законы Кирхгофа и уравнения связи. Построение графиков токов и напряжения.

    курсовая работа [125,4 K], добавлен 13.03.2013

  • Процессы в электрических цепях с сосредоточенными параметрами. Четырехполюсники при переменных токах. Расчет электрических полей. Теорема Гаусса и ее применение. Расчет симметричных магнитных полей. Моделирование плоскопараллельного магнитного поля.

    методичка [4,4 M], добавлен 16.10.2012

  • Определение закона изменения тока в катушке индуктивности классическим методом и методом интеграла Дюамеля. Решение системы уравнений состояния цепи после срабатывания ключа. Нахождение изображения напряжения на конденсаторе с помощью метода двух узлов.

    контрольная работа [281,0 K], добавлен 18.08.2013

  • Расчет электрических цепей с одним и двумя энергоемкими элементами классическим и операторным методами. Нахождение реакции линейной цепи на произвольное внешнее воздействие по ее переходной, импульсной характеристикам. Расчет напряжения на элементах цепи.

    курсовая работа [667,1 K], добавлен 30.05.2015

  • Принцип применения операторного метода для анализа переходных колебаний в электрических цепях, содержащих один реактивный элемент и резисторы. Переходные колебания в цепи с емкостью и с индуктивностью. Свободные переходные процессы в цепи с емкостью.

    лекция [174,2 K], добавлен 27.04.2009

  • Составление характеристического уравнения и расчёт его корней. Определение принужденных составляющих. Расчет независимых и зависимых начальных условий. Составление дифференциального уравнения по законам Кирхгофа. Построение графиков токов и напряжений.

    курсовая работа [484,5 K], добавлен 16.07.2015

  • Построение временных графиков гармоник напряжения и кривой тока. Выбор симметричной и несимметричной трёхфазной электрической цепи. Расчет токов и активной, реактивной и полной мощностей. Переходные процессы в цепях с одним и двумя накопителями энергии.

    контрольная работа [526,2 K], добавлен 18.04.2016

  • Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока. Расчет однофазных и трехфазных линейных электрических цепей переменного тока. Переходные процессы в электрических цепях, содержащих конденсатор и сопротивление.

    курсовая работа [4,4 M], добавлен 14.05.2010

  • Условия возникновения переходного процесса в электрической цепи, его длительность и методы расчета. Линейные электрические цепи периодических несинусоидальных токов. Сущность законов коммутации. Протекание свободного процесса в электрической цепи.

    курсовая работа [340,5 K], добавлен 02.05.2012

  • Мгновенные значения величин. Векторная диаграмма токов и топографическая диаграмма напряжений. Расчет показателей ваттметров, напряжения между заданными точками. Анализ переходных процессов в линейных электрических цепях с сосредоточенными параметрами.

    реферат [414,4 K], добавлен 30.08.2012

  • Содержание классического метода анализа переходных процессов в линейных цепях: непосредственное интегрирование дифференциальных уравнений, описывающих электромагнитное состояние цепи. Два закона коммутации при конечных по величине воздействиях в цепи.

    презентация [679,0 K], добавлен 28.10.2013

  • Колебательные контуры составляют часть аппаратуры связи. Переходные и свободные колебания в параллельном контуре. Режимы переходных колебаний. Переходные колебания в параллельном контуре при гармоническом воздействии. Теория линейных электрических цепей.

    лекция [131,9 K], добавлен 27.04.2009

  • Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока, однофазных и трехфазных линейных электрических цепей переменного тока. Переходные процессы в электрических цепях. Комплектующие персонального компьютера.

    курсовая работа [393,3 K], добавлен 10.01.2016

  • Расчет переходных процессов в цепях второго порядка классическим методом. Анализ длительности апериодического переходного процесса. Нахождение коэффициента затухания и угловой частоты свободных колебаний. Вычисление корней характеристического уравнения.

    презентация [240,7 K], добавлен 28.10.2013

  • Законы коммутации, начальные и конечные условия. Подключение реального конденсатора к источнику постоянного напряжения. Коммутация в цепях с реактивными элементами. Закон Ома, Кирхгофа по схеме замещения. Система уравнений электрического состояния.

    презентация [264,7 K], добавлен 14.11.2013

  • Переходные процессы в цепях первого и второго порядков. Расчет электрической цепи, состоящей из катушки индуктивности, емкости, сопротивлений, источника ЭДС. Способы нахождения токов и напряжений. Реакции в цепи на произвольное импульсное воздействие.

    курсовая работа [1,0 M], добавлен 08.01.2016

  • Основные физические законы Кирхгофа: сущность и содержание, направления практического применения. Баланс мощностей. Емкостное сопротивление в цепи переменного тока. Переходные процессы в линейных цепях, их характер, принципы и направления реализации.

    контрольная работа [115,6 K], добавлен 07.08.2013

  • Расчет переходных процессов, возникающих в электрических цепях при различных воздействиях, приводящих к изменению режима работы. Расчет установившегося синусоидального режима. Выбор волнового сопротивления, исходя из значения напряжения на сечении К1-К2.

    курсовая работа [2,0 M], добавлен 26.02.2017

  • Методика решения задач в энергетики с помощью программы Matlab. Выполнение в трехфазном исполнении модели системы электроснабжения. Расчет и построение характеристики повторяемости скоростей ветра. Переходные процессы в линейных электрических цепях.

    курсовая работа [252,4 K], добавлен 08.04.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.