Электрические аппараты

Основные физические явления и процессы в электрических аппаратах. Влияние переходного сопротивления контактов на нагрев проводников. Динамическая вольтамперная характеристика электрической дуги постоянного тока. Электрическая дуга в магнитном поле.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 28.06.2015
Размер файла 4,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

На распределённые в пространстве электрические объёмные заряды плотностью и поверхностные заряды плотностью воздействует электростатическая сила (закон Кулона для распределённых зарядов)

где: V и S - объём и площадь поверхностей, занимаемые зарядами, с которыми определяется силовое взаимодействие поля; E - напряжённость внешнего, по отношению к текущей точке интегрирования, электрического поля, т.е. поля, созданного всеми внешними, по отношению к данной точке, зарядами.

Если несущие заряды объём и поверхность представляют собой жёсткую конструкцию, то силовые взаимодействия зарядов между собой будут скомпенсированы реакцией механических связей.

Движущийся электрический заряд взаимодействует с магнитным полем. Возникающая сила Лоренца определяется как

где - вектор скорости заряда q.

Закон Ампера для силовых взаимодействий магнитного поля с токами, распределёнными в объёме V с плотностью J и на поверхности S плотностью i записывается в виде:

где В - магнитная индукция внешнего, по отношению к текущей точке, интегрированного поля, для которой справедливы те же замечания, что и для Е.

1.4.3 Намагничивание и магнитные материалы

Наличие у вещества магнитных свойств проявляется в изменении параметров магнитного поля по сравнению с полем в немагнитном пространстве. Происходящие физические процессы в микроскопическом представлении связывают с возникновением в материале под воздействием магнитного поля магнитных моментов микротоков, объёмная плотность которых называется вектором намагниченности.

Возникновение намагниченности в веществе при помещении его в магнитное поле объясняется процессом постепенной преимущественной ориентации магнитных моментов циркулирующих в нём микротоков в направлении поля. Подавляющий вклад в создание микротоков в веществе вносит движение электронов: спиновое и орбитальное движение связанных с атомами электронов, спиновое и свободное движение электронов проводимости.

По магнитным свойствам все материалы подразделяются на парамагнетики, диамагнетики, ферромагнетики, антиферромагнетики и ферриты. Принадлежность материала к тому или иному классу определяется характером отклика магнитных моментов электронов на магнитное поле в условиях сильных взаимодействий электронов между собой в многоэлектронных атомах и кристаллических структурах.

Диамагнетики и парамагнетики относятся к материалам со слабыми магнитными свойствами. Значительно более сильный эффект намагничивания наблюдается у ферромагнетиков. Магнитная восприимчивость (отношение абсолютных значений векторов намагниченности и напряженности поля) у таких материалов положительная и может достигать нескольких десятков тысяч. У ферромагнетиков образуются области самопроизвольной спонтанной однонаправленной намагниченности - домены. Ферромагнетизм наблюдается у кристаллов переходных металлов: железа, кобальта, никеля и у ряда сплавов. При наложении внешнего магнитного поля с возрастающей напряженностью векторы спонтанной намагниченности, изначально ориентированные в разных доменах по-разному, постепенно выстраиваются в одном направлении. Этот процесс называется техническим намагничиванием. Он характеризуется кривой начального намагничивания (рис. 4.1) - зависимостью индукции или намагниченности от напряженности результирующего магнитного поля в материале. При относительно небольшой напряженности поля (участок I) происходит быстрое возрастание намагниченности преимущественно из-за увеличения размеров доменов, имеющих ориентацию намагниченности в положительной полусфере направлений векторов напряженности поля. Одновременно пропорционально сокращаются размеры доменов в отрицательной полусфере. В меньшей степени изменяются размеры тех доменов, намагниченность которых ориентирована ближе к плоскости, ортогональной вектору напряженности.

При дальнейшем увеличении напряженности преобладают процессы поворота векторов намагниченности доменов по полю (участок II) до достижения технического насыщения (точка S). Последующему возрастанию результирующей намагниченности и достижению одинаковой ориентации всех доменов по полю препятствует тепловое движение электронов. Область III близка по характеру процессов к парамагнетикам, где увеличение намагниченности происходит из-за ориентации немногих спиновых магнитных моментов, дезориентированных тепловым движением. С увеличением температуры дезориентирующее тепловое движение усиливается и намагниченность вещества уменьшается.

Для конкретного ферромагнитного материала существует определенная температура, при которой ферромагнитное упорядочение доменной структуры и намагниченности исчезают. Материал становится парамагнитным. Эта температура носит название точки Кюри. Для железа точка Кюри соответствует 790 °С для никеля - 340 °С, для кобальта - 1150 °С.

Снижение температуры ниже точки Кюри вновь возвращает материалу магнитные свойства: доменную структуру с нулевой результирующей намагниченностью, если при этом отсутствовало внешнее магнитное поле. Поэтому разогрев изделий из ферромагнитных материалов выше точки Кюри используют для их полного размагничивания.

Рис. 4.1. Кривая начального намагничивания

Процессы намагничивания ферромагнитных материалов подразделяются на обратимые и необратимые по отношению к изменению магнитного поля. Если после снятия возмущения внешнего поля намагниченность материала возвращается в исходное состояние, то такой процесс обратимый, в противном случае - необратимый. Обратимые изменения наблюдаются на малом начальном отрезке участка I кривой намагничивания (зона Релея) при малых смещениях доменных стенок и на участках II, III при повороте векторов намагниченности в доменах. Основная часть участка I относится к необратимому процессу перемагничивания, который в основном определяет гистерезисные свойства ферромагнитных материалов (отставание изменений намагниченности от изменений магнитного поля).

Петлей гистерезиса (рис. 4.2) называют кривые, отражающие изменение намагниченности ферромагнетика под воздействием циклически изменяющегося внешнего магнитного поля. При испытаниях магнитных материалов петли гистерезиса строятся для функций параметров магнитного поля В (Н) или М (Н), которые имеют смысл результирующих параметров внутри материала в проекции на зафиксированное направление.

Если материал предварительно был полностью размагничен, то постепенное увеличение напряженности магнитного поля от нуля до Hs дает множество точек начальной кривой намагничивания (участок 0-1 на рис. 4.2). Точка 1 - точка технического насыщения s, Hs). Последующее снижение напряженности Н внутри материала до нуля (участок 1-2) позволяет определить предельное (максимальное) значение остаточной намагниченности Br и дальнейшим уменьшением отрицательной напряженности поля добиться полного размагничивания B = 0 (участок 2-3) в точке Н = -НсВ - максимальной коэрцитивной силы по намагниченности. Далее материал перемагничивается в отрицательном направлении до насыщения (участок 3-4 ) при Н = - Hs. Изменение напряженности поля в положительную сторону замыкает предельный гистерезисный цикл по кривой 4-5-6-1.

Множество состояний материала внутри предельного гистерезисного цикла может быть достигнуто при изменении напряженности магнитного поля, соответствующем частным симметричным и несимметричным гистерезисным циклам.

Рис. 4.2. Магнитный гистерезис: 1 - кривая начального намагничивания; 2 - предельный гистерезисный цикл; 3 - кривая основного намагничивания; 4 - симметричные частные циклы; 5 - несимметричные частные циклы

Частные симметричные гистерезисные циклы опираются вершинами на кривую основного намагничивания, которая и определяется как множество точек вершин этих циклов до совпадения с предельным циклом.

Частные несимметричные гистерезисные циклы образуются, если начальная точка не находится на кривой основного намагничивания при симметричном изменении напряженности поля, а также при несимметричном изменении напряженности поля в положительном или отрицательном направлении.

В зависимости от значений коэрцитивной силы ферромагнитные материалы разделяют на магнитомягкие и магнитотвёрдые.

Магнитомягкие материалы используются в магнитных системах как магнитопроводы. Эти материалы имеют малую коэрцитивную силу, высокую магнитную проницаемость и индукцию насыщения.

Магнитотвёрдые материалы имеют большую коэрцитивную силу и в предварительно намагниченном состоянии используются как постоянные магниты - первичные источники магнитного поля.

Существуют материалы, которые по магнитным свойствам относятся к антиферромагнетикам. У них оказывается энергетически более выгодным антипараллельное расположение спинов соседних атомов. Созданы антиферромагнетики, обладающие значительным собственным магнитным моментом из-за асимметрии кристаллической решётки. Такие материалы называются ферримагнетиками (ферритами). В отличие от металлических ферромагнитных материалов, ферриты - полупроводники и в них значительно меньшие потери энергии на вихревые токи в переменных магнитных полях.

2. Основные электромеханические процессы

2.1 Коммутация электрической цепи

Коммутация электрической цепи - процесс замыкания или размыкания цепи с током.

Коммутация может происходить под воздействием внешних или внутренних для данного устройства источников напряжения или тока.

При анализе и расчёте процессов коммутации необходимо учитывать общий закон коммутации:

- При коммутации индуктивных электрических цепей не могут изменяться скачком ток цепи и магнитный поток

();

- При коммутации емкостных цепей не могут изменяться скачком напряжение и электрический заряд

().

Под глубиной коммутации понимают отношение сопротивления Rотк коммутирующего органа в отключенном состоянии к сопротивлению Rвкл во включенном состоянии

Контактные электрические аппараты, у которых сопротивление межконтактного промежутка в отключенном состоянии измеряется мегомами, а сопротивление замкнутых контактов - микроомами, обеспечивают глубину коммутации

Для бесконтактных аппаратов, которые по глубине коммутации уступают контактным аппаратам, обычно

2.1.1 Отключение электрической цепи контактными аппаратами

Отключение цепи контактным аппаратом характеризуется возникновением плазмы, которая проходит разные стадии газового разряда в процессе преобразования межконтактного промежутка из проводника электрического тока в изолятор.

При токах выше 0,5-1 А возникает стадия дугового разряда (область 1) (рис. 2.1.); при снижении тока возникает стадия тлеющего разряда у катода (область 2); следующая стадия (область 3)- таунсендовский разряд, и наконец, область 4 - стадия изоляции, в которой носители электричества - электроны и ионы - не образуются за счет ионизации, а могут поступать только из окружающей среды.

Рис. 2.1. Вольтамперная характеристика стадий электрического разряда в газах

Первый участок кривой - дуговой разряд (область 1) -характеризуется малым падением напряжения у электродов и большой плотностью тока. С ростом тока напряжение на дуговом промежутке сначала резко падает, а затем изменяется незначительно.

Второй участок (область 2) кривой, представляющий собой область тлеющего разряда, характеризуется высоким падением напряжения у катода (250 - 300 В) и малыми токами. С ростом тока возрастет падение напряжения на разрядном промежутке.

Таунсендовский разряд (область 3) характеризуется чрезвычайно малыми значениями тока при высоких напряжениях.

Электрическая дуга сопровождается высокой температурой и связана с этой температурой. Поэтому дуга - явление не только электрическое, но и тепловое. сопротивление вольтамперный электрический магнитный

В обычных условиях воздух является хорошим изолятором. Так, для пробоя воздушного промежутка в 1 см требуется приложить напряжение не менее 30 кВ. Для того чтобы воздушный промежуток стал проводником, необходимо создать в нем определенную концентрацию заряженных частиц: отрицательных - в основном свободных электронов, и положительных - ионов. Процесс отделения от нейтральной частицы одного или нескольких электронов с образованием свободных электронов и ионов называется ионизацией.

Ионизация газа может происходить под действием света, рентгеновских лучей, высокой температуры, под влиянием электрического поля и ряда других факторов. Для дуговых процессов в электрических аппаратах наибольшее значение имеют: из процессов, происходящих у электродов, - термоэлектронная и автоэлектронная эмиссии, а из процессов, происходящих в дуговом промежутке, - термическая ионизация и ионизация толчком.

2.1.2 Электрическая дуга

В коммутационных электрических аппаратах, предназначенных для замыкания и размыкания цепи с током, при отключении возникает разряд в газе либо в виде тлеющего разряда, либо в виде дуги. Тлеющий разряд возникает тогда, когда отключаемый ток ниже 0,1 А, а напряжение на контактах достигает величины 250 - 300 В. Такой разряд встречается либо на контактах маломощных реле, либо как переходная фаза к разряду в виде электрической дуги.

Основные свойства дугового разряда:

- дуговой разряд имеет место только при токах большой величины; минимальный ток дуги для металлов составляет примерно 0,5 А;

- температура центральной части дуги очень велика и в аппаратах может достигать 6000 - 18000 К;

- плотность тока на катоде чрезвычайно велика и достигает 102 - 103 А/мм2;

- падение напряжения у катода составляет всего 10 - 20 В и практически не зависит от тока.

В дуговом разряде можно различить три характерные области: околокатодную, область столба дуги (ствол дуги) и околоанодную (рис. 2.2.).

В каждой из этих областей процессы ионизации и деионизации протекают по-разному в зависимости от условий, которые там существуют. Поскольку результирующий ток, проходящий через эти три области, одинаков, в каждой из них происходят процессы, обеспечивающие возникновение необходимого количества зарядов.

Рис. 2.2. Распределение напряжения и напряжённости электрического поля в стационарной дуге постоянного тока

Термоэлектронная эмиссия. Термоэлектронной эмиссией называется явление испускания электронов из накаленной поверхности.

При расхождении контактов резко возрастают переходное сопротивление контакта и плотность тока в последней площадке контактирования. Эта площадка нагревается до температуры плавления и образования контактного перешейка из расплавленного металла, который при дальнейшем расхождении контактов рвется. Здесь происходит испарение металла контактов. На отрицательном электроде образуется так называемое катодное пятно (раскаленная площадка), которое служит основанием дуги и очагом излучения электронов в первый момент расхождения контактов. Плотность тока термоэлектронной эмиссии зависит от температуры и материала электрода. Она невелика и может быть достаточной для возникновения электрической дуги, но она недостаточна для ее горения.

Автоэлектронная эмиссия. Это - явление испускания электронов из катода под воздействием сильного электрического поля.

Место разрыва электрической цепи может быть представлено как конденсатор переменной емкости. Емкость в начальный момент равна бесконечности, затем убывает по мере расхождения контактов. Через сопротивление цепи этот конденсатор заряжается, и напряжение на нем растет постепенно от нуля до напряжения сети. Одновременно увеличивается расстояние между контактами. Напряженность поля между контактами во время нарастания напряжения проходит через значения, превышающие 100 МВ/см. Такие значения напряженности электрического поля достаточны для вырывания электронов из холодного катода.

Ток автоэлектронной эмиссии также весьма мал и может служить только началом развития дугового разряда.

Таким образом, возникновение дугового разряда на расходящихся контактах объясняется наличием термоэлектронной и автоэлектронной эмиссий. Преобладание того или иного фактора зависит от значения отключаемого тока, материала и чистоты поверхности контактов, скорости их расхождения и от ряда других факторов.

Ионизация толчком. Если свободный электрон будет обладать достаточной скоростью, то при столкновении с нейтральной частицей (атом, а иногда и молекула) он может выбить из неё электрон. В результате получатся новый свободный электрон и положительный ион. Вновь полученный электрон может, в свою очередь, ионизировать следующую частицу. Такая ионизация носит название ионизации толчком.

Для того чтобы электрон мог ионизировать частицу газа, он должен двигаться с некоторой определенной скоростью. Скорость электрона зависит от разности потенциалов на длине его свободного пробега. Поэтому обычно указывается не скорость движения электрона, а то минимальное значение разности потенциалов, какое необходимо иметь на длине свободного пути, чтобы электрон к концу пути приобрел необходимую скорость. Эта разность потенциалов носит название потенциала ионизации.

Потенциал ионизации для газов составляет 13 - 16 В (азот, кислород, водород) и до 24,5 В (гелий), для паров металла он примерно в два раза ниже (7,7 В для паров меди).

Термическая ионизация. Это - процесс ионизации под воздействием высокой температуры. Поддержание дуги после ее возникновения, т.е. обеспечение возникшего дугового разряда достаточным числом свободных зарядов, объясняется основным и практически единственным видом ионизации - термической ионизацией.

Температура столба дуги с среднем равна 6000 - 10000 К, но может достигать и более высоких значений - до 18000 К. При такой температуре сильно возрастает как число быстро движущихся частиц газа, так и скорость их движения. При столкновении быстро движущихся атомов или молекул большая часть их разрушается, образуя заряженные частицы, т.е. происходит ионизация газа. Основной характеристикой термической ионизации является степень ионизации, представляющая собой отношение числа ионизированных атомов в дуговом промежутке к общему числу атомов в этом промежутке. Одновременно с процессами ионизации в дуге происходят обратные процессы, т. е. воссоединение заряженных частиц и образование нейтральных частиц. Эти процессы носят название деионизации.

Деионизация происходит главным образом за счет рекомбинации и диффузии.

Рекомбинация. Процесс, при котором различно заряженные частицы, приходя во взаимное соприкосновение, образуют нейтральные частицы, называется рекомбинацией.

В электрической дуге отрицательными частицами являются в основном электроны. Непосредственное соединение электронов с положительным ионом ввиду большой разности скоростей маловероятно. Обычно рекомбинация происходит при помощи нейтральной частицы, которую электрон заряжает. При соударении этой отрицательно заряженной частицы с положительным ионом образуется одна или две нейтральные частицы.

Диффузия. Диффузия заряженных частиц представляет собой процесс выноса заряженных частиц из дугового промежутка в окружающее пространство, что уменьшает проводимость дуги.

Диффузия обусловлена как электрическими, так и тепловыми факторами. Плотность зарядов в столбе дуги возрастает от периферии к центру. Ввиду этого создается электрическое поле, заставляющее ионы двигаться от центра к периферии и покидать область дуги. В этом же направлении действует и разность температур столба дуги и окружающего пространства. В стабилизированной и свободно горящей дуге диффузия играет ничтожно малую роль.

Падение напряжения на стационарной дуге распределяется неравномерно вдоль дуги. Картина изменения падения напряжения UД и напряжённости электрического поля (продольного градиента напряжения) ЕД = dU/dx вдоль дуги приведена на рисунке (см. рис 2.2). Под градиентом напряжения ЕД понимается падение напряжения на единицу длины дуги. Как видно из рисунка, ход характеристик UД и ЕД в приэлектродных областях резко отличается от хода характеристик на остальной части дуги. У электродов, в прикатодной и прианодной областях, на промежутке длины порядка 10- 4 см имеет место резкое падение напряжения, называемое катодным Uк и анодным Uа. Значение этого падения напряжения зависит от материала электродов и окружающего газа. Суммарное значение прианодного и прикатодного падений напряжений составляет 15 - 30 В, градиент напряжения достигает 105 - 106 В/см.

В остальной части дуги, называемой столбом дуги, падение напряжения UД практически прямо пропорционально длине дуги. Градиент здесь приблизительно постоянен вдоль ствола. Он зависит от многих факторов и может изменяться в широких пределах, достигая 100 - 200 В/см.

Околоэлектродное падение напряжения UЭ не зависит от длины дуги, падение напряжения в столбе дуги пропорционально длине дуги. Таким образом, падение напряжения на дуговом промежутке

UД = UЭ + ЕД lД,

где: ЕД - напряжённость электрического поля в столбе дуги;

lД - длина дуги

UЭ = Uк + Uа.

В заключение следует ещё раз отметить, что в стадии дугового разряда преобладает термическая ионизация - разбиение атомов на электроны и положительные ионы за счёт энергии теплового поля. При тлеющем - возникает ударная ионизация у катода за счет соударения с электронами, разгоняемыми электрическим полем, а при таунсендовском разряде ударная ионизация преобладает на всём промежутке газового разряда.

2.1.3 Статическая вольтамперная характеристика электрической дуги постоянного тока

Важнейшей характеристикой дуги является зависимость напряжения на ней от величины тока. Эта характеристика называется вольтамперной. С ростом тока i увеличивается температура дуги, усиливается термическая ионизация, возрастает число ионизированных частиц в разряде и падает электрическое сопротивление дуги rд.

Напряжение на дуге равно irд. При увеличении тока сопротивление дуги уменьшается так резко, что напряжение на дуге падает, несмотря на то, что ток в цепи возрастает. Каждому значению тока в установившемся режиме соответствует свой динамический баланс числа заряженных частиц.

При переходе от одного значения тока к другому тепловое состояние дуги не изменяется мгновенно. Дуговой промежуток обладает тепловой инерцией. Если ток изменяется во времени медленно, то тепловая инерция разряда не сказывается. Каждому значению тока соответствует однозначное значение сопротивления дуги или напряжения на ней.

Зависимость напряжения на дуге от тока при медленном его изменении называется статической вольтамперной характеристикой дуги.

Статическая характеристика дуги зависит от расстояния между электродами (длины дуги), материала электродов и параметров среды, в которой горит дуга.

Статические вольтамперные характеристики дуги имеют вид кривых, изображенных на рис. 2.3.

Рис. 2.3. Статические вольтамперные характеристики дуги

Чем больше длина дуги, тем выше лежит ее статическая вольтамперная характеристика. С ростом давления среды, в которой горит дуга, также увеличивается напряженность ЕД и поднимается вольтамперная характеристика аналогично рис. 2.3.

Охлаждение дуги существенно влияет на эту характеристику. Чем интенсивнее охлаждение дуги, тем больше от нее отводится мощность. При этом должна возрасти мощность, выделяемая дугой. При заданном токе это возможно за счет увеличения напряжения на дуге. Таким образом, с ростом охлаждения вольтамперная характеристика располагается выше. Этим широко пользуются в дугогасительных устройствах аппаратов.

2.1.4 Динамическая вольтамперная характеристика электрической дуги постоянного тока

Если ток в цепи изменяется медленно, то току i1 соответствует сопротивление дуги rД1, а большему току i2 соответствует меньшее сопротивление rД2, что отражено на рис 2.4. (см. статическую характеристику дуги - кривая А).

Рис. 2.4. Динамическая вольтамперная характеристика дуги.

В реальных установках ток может меняться довольно быстро. Вследствие тепловой инерции дугового столба изменение сопротивления дуги отстает от изменения тока.

Зависимость напряжения на дуге от тока при быстром его изменении называется динамической вольтамперной характеристикой.

При резком возрастании тока динамическая характеристика идет выше статической (кривая В), так как при быстром росте тока сопротивление дуги падает медленнее, чем растет ток. При уменьшении - ниже, поскольку в этом режиме сопротивление дуги меньше, чем при медленном изменении тока (кривая С).

Динамическая характеристика в значительной степени определяется скоростью изменения тока в дуге. Если в цепь ввести очень большое сопротивление за время, бесконечно малое по сравнению с тепловой постоянной времени дуги, то в течение времени спада тока до нуля сопротивление дуги останется постоянным. В этом случае динамическая характеристика изобразится прямой, проходящей из точки 2 в начало координат (прямая D), т. е. дуга ведет себя как металлический проводник, так как напряжение на дуге пропорционально току.

2.1.5 Условия гашения дуги постоянного тока

Чтобы погасить электрическую дугу постоянного тока, необходимо создать такие условия, чтобы в дуговом промежутке при всех значениях тока процессы деионизации протекали бы интенсивнее, чем процессы ионизации.

Рис. 2.5. Баланс напряжений в цепи с электрической дугой.

Рассмотрим электрическую цепь, содержащую сопротивление R, индуктивность L и дуговой промежуток с падением напряжения UД, к которой приложено напряжение U (рис. 2.5, а). При дуге, имеющей неизменную длину, для любого момента времени будет справедливо уравнение баланса напряжений в этой цепи:

где

падение напряжения на индуктивности при изменении тока.

Стационарным режимом будет такой, при котором ток в цепи не меняется, т.е.

а уравнение баланса напряжений примет вид:

Для погасания электрической дуги необходимо, чтобы ток в ней всё время уменьшался, т.е.

, а

Графическое решение уравнения баланса напряжений представлено на рис. 2.5, б. Здесь прямая 1 представляет собой напряжение источника U; наклонная прямая 2 - падение напряжения на сопротивлении R (реостатная характеристика цепи), вычитаемое из напряжения U, т.е. U - iR; кривая 3 - вольтамперную характеристику дугового промежутка UД.

2.1.6 Особенности электрической дуги переменного тока

Если для гашения дуги постоянного тока необходимо создать такие условия, при которых ток упал бы до нуля, то при переменном токе ток в дуге независимо от степени ионизации дугового промежутка переходит через нуль каждый полупериод, т.е. каждый полупериод дуга гаснет и зажигается вновь. Задача гашения дуги существенно облегчается. Здесь необходимо создать условия, при которых ток не восстановился бы после прохождения через нуль.

Рис. 2.6. Процесс отключения цепи переменного тока

Вольтамперная характеристика дуги переменного тока за один период приведена на рис. 2.7. Поскольку, даже при промышленной частоте 50 Гц, ток в дуге меняется достаточно быстро, то представленная характеристика является динамической. При синусоидальном токе напряжение на дуге сначала увеличивается на участке 1, а затем, в связи с ростом тока, падает на участке 2 (участки 1 и 2 относятся к первой половине полупериода). После прохождения тока через максимум динамическая ВАХ возрастает по кривой 3 в связи с уменьшением тока, а затем уменьшается на участке 4 в связи с приближением напряжения к нулю (участки 3 и 4 относятся ко второй половине этого же полупериода).

Рис. 2.7. Вольтамперная характеристика дуги переменного тока

При переменном токе температура дуги является величиной переменной. Однако тепловая инерция газа оказывается довольно значительной, и к моменту перехода тока через нуль температура дуги хотя и уменьшается, но остаётся достаточно высокой. Всё же имеющее место снижение температуры при переходе тока через нуль способствует деионизации промежутка и облегчает гашение электрической дуги переменного тока.

2.1.7 Электрическая дуга в магнитном поле

Электрическая дуга является газообразным проводником тока. На этот проводник, так же как на металлический, действует магнитное поле, создавая силу, пропорциональную индукции поля и току в дуге. Магнитное поле, действуя на дугу, увеличивает ее длину и перемещает элементы дуги в пространстве.

Поперечное перемещение элементов дуги создает интенсивное охлаждение, что приводит к повышению градиента напряжения на столбе дуги.

При движении дуги в среде газа с большой скоростью возникает расслоение дуги на отдельные параллельные волокна. Чем длиннее дуга, тем сильнее происходит расслоение дуги.

Дуга является чрезвычайно подвижным проводником. Известно, что на токоведущую часть действуют такие силы, которые стремятся увеличить электромагнитную энергию контура. Поскольку энергия пропорциональна индуктивности, то дуга под действием своего собственного поля стремится образовывать витки, петли, так как при этом возрастает индуктивность цепи. Эта способность дуги тем сильнее, чем больше ее длина.

Движущаяся в воздухе дуга преодолевает аэродинамическое сопротивление воздуха, которое зависит от диаметра дуги, расстояния между электродами, плотности газа и скорости движения. Опыт показывает, что во всех случаях в равномерном магнитном поле дуга движется с постоянной скоростью. Следовательно, электродинамическая сила уравновешивается силой аэродинамического сопротивления.

С целью создания эффективного охлаждения дуга с помощью магнитного поля втягивается в узкую (диаметр дуги больше ширины щели) щель между стенками из дугостойкого материала с высокой теплопроводностью. Из-за увеличения теплоотдачи стенкам щели градиент напряжения в столбе дуги при наличии узкой щели значительно выше, чем у дуги, свободно перемещающейся между электродами. Это дает возможность сократить необходимую для гашения длину и время гашения.

2.1.8 Способы воздействия на электрическую дугу в коммутационных аппаратах

Цель воздействия на столб возникающей в аппарате дуги состоит в увеличении её активного электрического сопротивления вплоть до бесконечности, когда коммутационный орган переходит в изоляционное состояние. Практически всегда это достигается путем интенсивного охлаждения столба дуги, уменьшения её температуры и теплосодержания, в результате чего снижается степень ионизации и количество носителей электричества и ионизированных частиц и повышается электрическое сопротивление плазмы.

Для успешного гашения электрической дуги в коммутационных низковольтных аппаратах необходимо выполнить следующие условия:

- увеличить длину дуги путем её растяжения или увеличения числа разрывов на полюс выключателя;

- переместить дугу на металлические пластины дугогасительной (деионной) решётки, которые являются как радиаторами, поглощающими тепловую энергию столба дуги, так и разбивают её на ряд последовательно соединённых дуг;

- переместить столб дуги магнитным полем в щелевую камеру из дугостойкого изоляционного материала с большой теплопроводностью, где дуга интенсивно охлаждается, соприкасаясь со стенками;

- образовывать дугу в закрытой трубке из газогенерирующего материала - фибры; выделяемые под воздействием температуры газы создают высокое давление, что способствует гашению дуги;

- уменьшить концентрацию паров металлов в дуге, для чего на этапе проектирования аппаратов использовать соответствующие материалы;

- гасить дугу в вакууме; при очень низком давлении газа недостаточно атомов газа, чтобы ионизировать их и поддержать проведение тока в дуге; электрическое сопротивление канала столба дуги становится очень высоким и дуга гаснет;

- размыкать контакты синхронно перед переходом переменного тока через нуль, что существенно снижает выделение тепловой энергии в образовавшейся дуге, т.е. способствует гашению дуги;

- применять чисто активные сопротивления, шунтирующие дугу и облегчающие условия её гашения;

- применять шунтирующие межконтактный промежуток полупроводниковые элементы, переключающие на себя ток дуги, что практически исключает образование дуги на контактах.

3. Определение, назначение, принцип работы и устройство контактора постоянного тока

Контакторы постоянного тока предназначены для коммутации цепей постоянного тока и, как правило, приводятся в действие электромагнитом постоянного тока.

Общие технические требования к контакторам и условия их работы регламентированы ГОСТ 11206--77. Ниже описываются категории применения современных контакторов и приводятся параметры коммутируемых ими цепей в зависимости от характера нагрузки.

Контакторы постоянного тока:

ДС-1 -- активная или малоиндуктивная нагрузка.

ДС-2--пуск электродвигателей постоянного тока с параллельным возбуждением и их отключение при номинальной частоте вращения.

ДС-3--пуск электродвигателей с параллельным возбуждением и их отключение при неподвижном состоянии или медленном вращении ротора.

ДС-4--пуск электродвигателей с последовательным возбуждением и их отключение при номинальной частоте вращения.

ДС-5--пуск электродвигателей с последовательным возбуждением, отключение неподвижных или медленно вращающихся двигателей, торможение противотоком.

Общие требования к контакторам:

1.Высокая включающая и отключающая способность - не ниже 10Iном, а в отдельных случаях до 20Iном ;

2. Длительная работа при большой частоте отключений;

3. Высокая коммутационная износостойкость - до 3 млн. циклов с учетом отключений пусковых токов;

4. Высокая механическая износостойкость;

5. Технологичность конструкции, малая масса и габариты;

6. Высокая надёжность в эксплуатации.

Для контакторов существует еще режим редких коммутаций, характеризуемый более тяжелыми условиями, чем при нормальных коммутациях. Такие режимы возникают довольно редко (например, при КЗ).

Основными техническими данными контакторов являются номинальный ток главных контактов, предельный отключаемый ток, номинальное напряжение коммутируемой цепи, механическая и коммутационная износостойкость, допустимое число включений в час, собственное время включения и отключения. Способность контактора, как и любого коммутационного аппарата, обеспечить работу при большом числе операций характеризуется износостойкостью.

Различают механическую и коммутационную износостойкость. Механическая износостойкость определяется числом циклов включение-отключение контактора без ремонта и замены его узлов и деталей. Ток в цепи при этом равен нулю. Механическая износостойкость современных контакторов составляет (10--20)106 операций.

Коммутационная износостойкость определяется таким числом включений и отключений цепи с током, после которого требуется замена контактов. Современные контакторы должны иметь коммутационную износостойкость порядка (2--3)106 операций (некоторые выпускаемые в настоящее время контакторы имеют коммутационную износостойкость 106 операций и менее).

Собственное время включения состоит из времени нарастания потока в электромагните контактора до значения потока трогания и времени движения якоря. Большая часть этого времени тратится на нарастание магнитного потока. Для контакторов постоянного тока с номинальным током 100 А собственное время включения составляет 0,14с, для контакторов с током 630 А оно увеличивается до 0,37с.

Собственное время отключения - время с момента обесточивания электромагнита контактора до момента размыкания его контактов. Оно определяется временем спада потока от установившегося значения до потока отпускания. Временем с начала движения якоря до момента размыкания контактов можно пренебречь. В контакторах постоянного тока с номинальным током 100 А собственное время отключения составляет 0,07, в контакторах с номинальным током 630 А -- 0,23 с.

Номинальный ток контактора Iном представляет собой ток, который можно пропускать по замкнутым главным контактам в течение 8 часов без коммутаций, причем превышение температуры различных частей контактора не должно быть больше допустимого (прерывисто-продолжительный режим работы).

Номинальный рабочий ток контактора Iном.р - это допустимый ток через его замкнутые главные контакты в конкретных условиях применения. Так, например, номинальный рабочий ток Iном.р контактора для коммутации асинхронных двигателей с короткозамкнутым ротором выбирается из условий включения шестикратного пускового тока двигателя.

Номинальным напряжением называется наибольшее напряжение коммутируемой цепи, для работы при котором предназначен контактор. Коммутационная износостойкость главных контактов для категорий ДС-2, ДС-4 в режиме нормальных коммутаций должна быть не менее 0,1, а для категорий ДС-3 не менее 0,02 механической износостойкости. Вспомогательные контакты должны коммутировать цепи электромагнитов переменного тока, у которых пусковой ток может во много раз превышать установившийся.

Контактор имеет следующие основные узлы: контактную систему, дугогасительное устройство, электромагнит и систему вспомогательных контактов. При подаче напряжения на обмотку электромагнита контактора его якорь притягивается. Подвижный контакт, связанный с якорем электромагнита, замыкает или размыкает главную цепь. Дугогасительное устройство обеспечивает быстрое гашение дуги, благодаря чему достигается малый износ контактов. Система вспомогательных слаботочных контактов служит для согласования работы контактора с другими устройствами.

Контактная система. Контакты аппарата подвержены наиболее сильному электрическому и механическому износу ввиду большого числа операций в час и тяжелым условиям работы. С целью уменьшения износа преимущественное распространение получили линейные перекатывающиеся контакты.

Для предотвращения вибраций контактов контактная пружина создает предварительное нажатие, равное примерно половине конечной силы нажатия. Большое влияние на вибрацию оказывает жесткость крепления неподвижного контакта и стойкость к вибрациям всего контактора в целом. В этом отношении очень удачна конструкция контактора серии КПВ-600 (рис.1). Неподвижный контакт 1 жестко прикреплен к скобе 2. Один конец дугогасительной катушки 3 присоединен к этой же скобе. Второй конец катушки вместе с выводом 4 надежно скреплен с изоляционным основанием из пластмассы 5. Последнее крепится к прочной стальной скобе 6, которая является основанием аппарата. Подвижный контакт 7 выполнен в виде толстой пластины. Нижний конец пластины имеет возможность поворачиваться относительно точки опоры 8. Благодаря этому пластина может перекатываться по сухарю неподвижного контакта 1. Вывод 9 соединяется с подвижным контактом 7 с помощью гибкого проводника (связи) 10. Контактное нажатие создается пружиной 12.

При износе контактов сухарь 1 заменяется новым, а пластина подвижного контакта поворачивается на 180° и неповрежденная сторона ее используется в работе.

Для уменьшения оплавления основных контактов дугой при токах более 50 А контактор имеет дугогасительные контакты -- рога 2, 11. Под действием магнитного поля дугогасительного устройства опорные точки дуги быстро перемещаются на скобу 2, соединенную с неподвижным контактом 1, и на защитный рог подвижного контакта 11. Возврат якоря в начальное положение (после отключения магнита) производится пружиной 13.

Основным параметром контактора является номинальный ток, который определяет размеры контактора.

Рис.1. Контактор постоянного тока серии КПВ-600.

Характерной особенностью контакторов КПВ-600 и многих других типов является электрическое соединение вывода подвижного контакта с корпусом контактора. Во включенном положении контактора магнитопровод находится под напряжением. Даже в отключенном положении напряжение может оставаться на магнитопроводе и других деталях. Соприкосновение с магнитопроводом поэтому опасно для жизни.

Серия контакторов КПВ имеет исполнение с размыкающим главным контактом. Замыкание производится за счет действия пружины, а размыкание - за счет силы, развиваемой электромагнитом.

Номинальным током контактора называется ток прерывисто-продолжительного режима работы. При этом режиме работы контактор находится во включенном состоянии не более 8 ч. По истечении этого промежутка аппарат должен быть несколько раз включен и отключен (для зачистки контактов от окиси меди). После этого аппарат снова включается.

Если контактор располагается в шкафу, то номинальный ток понижается примерно на 10% из-за ухудшающихся условий охлаждения.

В продолжительном режиме работы, когда длительность непрерывного включения превышает 8 ч, допустимый ток контактора снижается примерно на 20%. В таком режиме из-за окисления медных контактов растет переходное сопротивление, что может привести к повышению температуры выше допустимой величины. Если контактор имеет небольшое число включений или вообще предназначен для длительного включения, то на рабочую поверхность контактов напаивается серебряная пластина. Серебряная облицовка позволяет сохранить допустимый ток контактора, равный номинальному току, и в режиме продолжительного включения. Если контактор наряду с режимом продолжительного включения используется в режиме повторно-кратковременного включения, применение серебряных накладок становится нецелесообразным, так как из-за малой механической прочности серебра происходит быстрый износ контактов.

Согласно рекомендациям завода допустимый ток повторно-кратковременного режима для контактора КПВ-600 определяется по формуле:

,

где п - число включений в час.

Необходимо отметить, что если при отключении в повторно-кратковременном режиме длительно горит дуга (отключается большая индуктивная нагрузка), то температура контактов может резко увеличиться за счет нагрева контактов дугой. В этом случае нагрев контактов в продолжительном режиме работы может быть меньше, чем в повторно-кратковременном режиме. Как правило, контактная система имеет один полюс.

Для реверса асинхронных двигателей при большой частоте включений в час (до 1200) применяется сдвоенная контактная система. В этих контакторах типа КТПВ-500, имеющих электромагнит постоянного тока, подвижные контакты изолированы от корпуса, что делает более безопасным обслуживание аппарата. На рис.2 показана схема включения контакторов для реверса асинхронных двигателей. По сравнению со схемой, имеющей однополюсные контакторы, схема рис.2 имеет большое преимущество. При неполадках и отказе одного контактора подается напряжение только на один зажим двигателя. В схеме с однополюсными контакторами отказ одного контактора ведет к возникновению тяжелого режима двухфазного питания двигателя.

Рис.2. Схема включения главных контактов контактора КТПВ-500 для реверса асинхронного двигателя.

Контакторы с двухполюсной контактной системой очень удобно использовать для закорачивания сопротивлений в цепи ротора асинхронного двигателя.

В контакторах типа КМВ-521 применяется также двухполюсная система. Эти контакторы предназначены для включения и отключения мощных электромагнитов приводов постоянного тока масляных выключателей. Наличие двухполюсной контактной системы, включенной в оба провода сети постоянного тока, обеспечивает надежное отключение индуктивной нагрузки.

3.1 Материалы контактов, раствор и провал контактов

К материалу контактов предъявляются следующие требования:

1. Высокие электрическая проводимость и теплопроводность.

2. Стойкость против коррозии в воздухе и других газах.

3. Стойкость против образования пленок с высоким удельным сопротивлением.

4. Малая твердость для уменьшения необходимой силы нажатия.

5. Высокая твердость для уменьшения механического износа при частых включениях и отключениях.

6. Малая эрозия.

7. Высокая дугостойкость (температура плавления).

8. Высокие значения тока и напряжения, необходимых для дугообразования.

9. Простота обработки, низкая стоимость.

Свойства некоторых контактных материалов рассмотрены ниже.

Медь. Положительные свойства: высокие электрическая проводимость и теплопроводность, достаточная твердость, что позволяет применять при частых включениях и отключениях, довольно высокие значения Uo и Io, простота технологии, низкая стоимость.

Недостатки: низкая температура плавления, при работе на воздухе покрывается слоем прочных окислов, имеющих высокое сопротивление, требует довольно больших сил нажатия. Для защиты меди от окисления поверхность контактов покрывается электролитическим способом слоем серебра толщиной 20--30 мкм. На главных контактах иногда ставятся серебряные пластинки (в аппаратах, включаемых относительно редко). Применяется как материал для плоских и круглых шин, контактов аппаратов высокого напряжения, контакторов, автоматов и др. Вследствие низкой дугостойкости нежелательно применение в аппаратах, отключающих мощную дугу и имеющих большое число включений в час.

Серебро. Положительные свойства: высокие электро- и теплопроводность, пленка окисла серебра имеет малую механическую прочность и быстро разрушается при нагреве контактной точки. Контакт серебра устойчив, благодаря малой механической прочности достаточны малые нажатия (применяется при нажатиях 0,05 Н и выше). Устойчивость контакта, малое переходное сопротивление являются характерными свойствами серебра.

Отрицательные свойства: малая дугостойкость и недостаточная твердость серебра препятствуют использованию его при наличии мощной дуги и при частых включениях и отключениях.

Применяется в реле и контакторах при токах до 20 А. При больших токах вплоть до 10 кА серебро используется как материал для главных контактов, работающих без дуги.

Алюминий. Этот материал имеет достаточно высокие электрическую проводимость и теплопроводность. Благодаря малой плотности токоведущая часть круглого сечения из алюминия на такой же ток, как и медный проводник, имеет почти на 48% меньшую массу. Это позволяет уменьшить массу аппарата.

Недостатки алюминия: образование на воздухе и в активных средах пленок с высокой механической прочностью и высоким сопротивлением; низкая дугостойкость (температура плавления значительно меньше, чем у меди и серебра); малая механическая прочность; при контакте с медью образуется пара, подверженная сильной электрохимической коррозии. В связи с этим при соединении с медью алюминий должен покрываться тонким слоем меди электролитическим путем либо оба металла необходимо покрывать серебром.

Алюминий и его сплавы (дюраль, силумин) применяются главным образом как материал для шин и конструкционных деталей аппаратов.

Вольфрам. Положительными свойствами вольфрама являются: высокая дугостойкость, большая стойкость против эрозии, сваривания. Высокая твердость вольфрама позволяет применять его при частых включениях и отключениях.

Недостатками вольфрама являются: высокое удельное сопротивление, малая теплопроводность, образование прочных оксидных и сульфидных пленок. В связи с высокой механической прочностью и образованием пленок вольфрамовые контакты требуют большого нажатия.

В реле на малые токи с небольшим нажатием применяются стойкие против коррозии материалы -- золото, платина, палладий и их сплавы.

Металлокерамические материалы. Рассмотрение свойств чистых металлов показывает, что ни один из них не удовлетворяет полностью всем требованиям, предъявляемым к разрывным контактам.

Основные необходимые свойства контактного материала -- высокие электрическая проводимость и дугостойкость -- не могут быть получены за счет сплавов таких материалов, как серебро и вольфрам, медь и вольфрам, так как эти металлы не образуют сплавов. Материалы, обладающие желаемыми свойствами, получают методом порошковой металлургии (металлокерамики). Физические свойства металлов при изготовлении металлокерамических контактов сохраняются. Дугостойкость керамике сообщается такими металлами, как вольфрам, молибден. Для получения низкого переходного сопротивления контакта в качестве второго компонента используют серебро или медь. Чем больше в материале вольфрама, тем выше дугостойкость, механическая прочность, сопротивление свариванию. Но соответственно растет сопротивление контактов, уменьшается теплопроводность. Обычно металлокерамика с содержанием вольфрама выше 50% применяется для тяжело нагруженных аппаратов, отключающих большие токи короткого замыкания.

Для контактов аппаратов высокого напряжения наибольшее распространение получила металлокерамика КМК-А60, КМК-А61, МК-Б20, КМК-Б21.

В аппаратах низкого напряжения наибольшее распространение получила металлокерамика КМК-А10 из серебра и окиси кадмия CdO. Отличительной особенностью этого материала является диссоциация CdO на пары кадмия и кислород. Выделяющийся газ заcтавляет дугу быстро перемещаться по поверхности контакта, что значительно снижает температуру контакта и способствует деионизации дуги.

Металлокерамика, состоящая из серебра и 10% окиси меди, МК-А20 еще более стойка к износу, чем КМК-А10.

Серебряно-никелевые контакты хорошо обрабатываются, обладают высокой стойкостью против электрического износа. Контакты дают низкое и устойчивое в эксплуатации переходное сопротивление. Однако они легче свариваются, чем контакты из материала КМК-А60, КМК-Б20, КМК-А10.

...

Подобные документы

  • Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока. Расчет однофазных и трехфазных линейных электрических цепей переменного тока. Переходные процессы в электрических цепях, содержащих конденсатор и сопротивление.

    курсовая работа [4,4 M], добавлен 14.05.2010

  • Электрические и электронные аппараты, их назначение и функции. Разновидности и отличия данных устройств. Электродинамические силы в электрических аппаратах: между параллельными проводниками бесконечной длины, в круговом витке, в месте изменения сечения.

    контрольная работа [54,3 K], добавлен 06.12.2010

  • Характеристика электрического поля как вида материи. Исследование особенностей проводников, полупроводников и диэлектриков. Движение тока в электрической цепи. Изучение законов Ома, Джоуля-Ленца и Кирхгофа. Изоляционные материалы. Электродвижущая сила.

    презентация [4,5 M], добавлен 19.02.2014

  • Основные определения и технические данные электрических машин. Электрические двигатели постоянного тока: устройство, краткие теоретические основы. Электрические генераторы постоянного тока. Обеспечение безыскровой коммутации. Электрическое равновесие.

    реферат [37,4 K], добавлен 24.12.2011

  • Расчет линейных и нелинейных электрических цепей постоянного тока. Определение реактивного сопротивления элементов, составление баланса активных и реактивных мощностей с целью исследования переходных процессов в одно- и трехфазных электрических цепях.

    контрольная работа [8,2 M], добавлен 14.05.2010

  • Основные понятия, определения и законы в электротехнике. Расчет линейных электрических цепей постоянного тока с использованием законов Ома и Кирхгофа. Сущность методов контурных токов, узловых потенциалов и эквивалентного генератора, их применение.

    реферат [66,6 K], добавлен 27.03.2009

  • Исследование основных особенностей электромагнитных процессов в цепях переменного тока. Характеристика электрических однофазных цепей синусоидального тока. Расчет сложной электрической цепи постоянного тока. Составление полной системы уравнений Кирхгофа.

    реферат [122,8 K], добавлен 27.07.2013

  • Расчет линейной электрической цепи постоянного тока. Определение токов во всех ветвях методом контурных токов и узловых напряжений. Электрические цепи однофазного тока, определение показаний ваттметров. Расчет параметров трехфазной электрической цепи.

    курсовая работа [653,3 K], добавлен 02.10.2012

  • Условия возникновения переходного процесса в электрической цепи, его длительность и методы расчета. Линейные электрические цепи периодических несинусоидальных токов. Сущность законов коммутации. Протекание свободного процесса в электрической цепи.

    курсовая работа [340,5 K], добавлен 02.05.2012

  • Применение метода междуузлового напряжения при анализе многоконтурной электрической схемы, имеющей два потенциальных узла. Нелинейные электрические цепи постоянного тока. Цепи с параллельным, последовательно-параллельным соединением резистивных элементов.

    презентация [1,8 M], добавлен 25.07.2013

  • Основные элементы электрической цепи, источник ЭДС и источник тока. Линейные цепи постоянного тока, применение законов Кирхгофа. Основные соотношения в синусоидальных цепях: сопротивление, емкость, индуктивность. Понятие о многофазных электрических цепях.

    курс лекций [1,2 M], добавлен 24.10.2012

  • Решение задач: линейные электрические цепи постоянного и синусоидального тока и трехфазные электрические цепи синусоидального тока. Метод контурных токов и узловых потенциалов. Условия задач, схемы электрических цепей, поэтапное решение и проверка.

    курсовая работа [86,5 K], добавлен 23.10.2008

  • Вакуумные коммутационные аппараты. Технология монтажа вакуумных выключателей как надежного способа гашения электрической дуги. Подготовка к использованию по назначению. Технология технического обслуживания оборудования, его периодические испытания.

    курсовая работа [310,1 K], добавлен 26.05.2015

  • Статическое электричество, изобретение первого генератора. Взаимодействие заряженных тел. Принцип действия электроскопа. Электрическое поле как одна из составляющих электромагнитного поля. Движение свободных электронов. Элементы электрической цепи.

    презентация [3,1 M], добавлен 22.05.2012

  • Определение ориентировочного значения тока в статорной обмотке асинхронного двигателя. Анализ назначения добавочных полюсов в электрической машине постоянного тока. Нахождение реактивного сопротивления фазы обмотки ротора при его неподвижном состоянии.

    контрольная работа [333,7 K], добавлен 10.02.2016

  • Исследование неразветвленной и разветвленной электрических цепей постоянного тока. Расчет нелинейных цепей постоянного тока. Исследование работы линии электропередачи постоянного тока. Цепь переменного тока с последовательным соединением сопротивлений.

    методичка [874,1 K], добавлен 22.12.2009

  • Основные законы электрических цепей. Освоение методов анализа электрических цепей постоянного тока. Исследование распределения токов и напряжений в разветвленных электрических цепях постоянного тока. Расчет цепи методом эквивалентных преобразований.

    лабораторная работа [212,5 K], добавлен 05.12.2014

  • Экспериментальное определение и построение вольтамперных характеристик нелинейных резистивных элементов. Проверка достоверности графического метода расчёта нелинейных электрических цепей. Основные теоретические положения, порядок выполнения работы.

    лабораторная работа [297,6 K], добавлен 22.12.2009

  • Работа по перемещению проводника с током в магнитном поле. Изучение явления электромагнитной индукции. Способы получения индукционного тока в постоянном и переменном магнитном поле. Природа электродвижущей силы электромагнитной индукции. Закон Фарадея.

    презентация [339,8 K], добавлен 24.09.2013

  • Решение линейных и нелинейных электрических цепей постоянного тока, однофазных и трехфазных линейных электрических цепей переменного тока. Схема замещения электрической цепи, определение реактивных сопротивлений элементов цепи. Нахождение фазных токов.

    курсовая работа [685,5 K], добавлен 28.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.