Теоретические основы материаловедения
Определение свойств металлов и сплавов. Характеристика прочности, пластичности и упругости. Оценка ударной вязкости. Рассмотрение искажения в кристаллической решетке при наличии краевой дислокации. Особенности процесса кристаллизации металлов и сплавов.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 13.12.2015 |
Размер файла | 1,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
С металлами железо образует твердые растворы замещения, а с углеродом, азотом, бором, водородом (имеющими малый радиус атомов) - твердые растворы внедрения.
Наиболее широкое применение в различных отраслях промышленности получили железоуглеродистые сплавы - стали и чугуны.
УГЛЕРОД- порядковый номер 6, атомная масса 12,011, имеет плотность 2300 кг/м3, температуру возгонки около 3500 °С, может находиться в двух аллотропических модификациях: графит и алмаз.
Углерод в сплавах с железом может существовать в виде цементита (карбида железа Fe3C) и в виде графита (свободный углерод). Цементит (800 НВ) является неустойчивым химическим соединением, имеет сложную орторомбическую кристаллическую решетку. При высокой температуре и продолжительной выдержке цементит распадается с образованием графита и аустенита. Этот процесс имеет важное практическое значение для высокоуглеродистых сплавов - чугунов. В сталях, где концентрация углерода сравнительно невысока, цементит имеет большую устойчивость.
Графит- углерод, выделяющийся в железоуглеродистых сплавах в свободном состоянии. Имеет гексагональную кристаллическую решетку. Графит электропроводен, химически стоек, малопрочен, мягок.
Диаграмма фазового равновесия «железо - углерод»
Среди диаграмм состояния металлических сплавов самое большое значение имеет диаграмма состояния системы Fe-С. Это объясняется тем, что в технике наиболее широко применяются железоуглеродистые сплавы. Современный вариант диаграммы состояния «железо - углерод» приведен на рис. 6.1. Характерной особенностью этой диаграммы является то, что на ней нанесены две системы одновременно: система Fe - Fe3C (железо - цементит)-метастабильная - и (железо - графит)-стабильная. Большое практическое значение имеет метастабильная диаграмма, т.к. с помощью этой диаграммы объясняют превращения, происходящие в сталях и белых чугунах. Диаграмма является основой для рационального выбора оптимальных режимов термической обработки железоуглеродистых сплавов.
Рис 6.1. Диаграмма состояния «железо-углерод»: I - метастабильная; 2 - стабильная
Основные фазы, области, линии и точки диаграммы
В сплавах системы «железо - углерод» встречаются следующие фазы:
1. Жидкий раствор.
2. Твердые растворы на основе различных кристаллических модификаций железа.
3. Химическое соединение Fe3C (цементит).
4. Структурно - свободный углерод (графит).
Жидкая фаза Ж (L) представляет собой неориентированный раствор Fe и С, распространяющийся выше линии ликвидус АВСД от 0 до 6,67% С (рис. 6.1).
ФЕРРИТОМ (Ф) называется твердый раствор углерода в б- железе. У него сохраняется решетка Feб (ОЦК). Феррит занимает на диаграмме узкую область, примыкающую к железу, - GPQ. Максимальная растворимость углерода в нем не более 0,02% (точка Р), при комнатной температуре она равна 0,006%. Твердость феррита 65 - 130 НВ, д =40%.
Раствор углерода в высокотемпературном д - железе называется дельта - ферритом. Область устойчивости дельта-феррита AHN, концентрация углерода достигает 0,1% (точка Н, рис. 6. 2)
АУСТЕНИТ (А) - твердый раствор внедрения углерода в г - железе (с решеткой ГЦК). Однофазная область аустенита на диаграмме ограничена линией NJESG. Максимальная растворимость углерода в аустените составляет 2,14 % (1147°С, точка Е). С понижением температуры до 727°С растворимость углерода в аустените понижается до 0,02%. Линия ЕS называется линией предельной растворимости.
ЦЕМЕНТИТ (Ц) - химическое соединение железа с углеродом, соответствующее формуле Fe3C с концентрацией углерода 6,67% (вертикальная линия DFK). Температура плавления цементита точно не определена, т.к. при нагревании он легко распадается на аустенит и графит.
Все остальные области диаграммы, за исключением перечисленных, являются двухфазными. В двухфазных областях в равновесии находятся: в области АВН - жидкий раствор и кристаллы феррита; HJN - кристаллы феррита и аустенита; JBCE - жидкий раствор и кристаллы аустенита; SECFK - кристаллы аустенита и цементита; QPSKL- - кристаллы феррита и цементита.
Горизонтальные линии на диаграмме отвечают равновесным трехфазным состояниям сплавов. В сплавах с концентрацией углерода от 0,I до 0,51% при температуре 1499°С (линия HJB) происходит перитектическое превращение .В результате взаимодействия кристаллов феррита с окружающим жидким раствором образуется аустенит:
Ж(B) + Ф(Р) > A(J)
Перитектическое превращение в сплавах, расположенных левее точки J (С=0,1 - 0,16%), идет до исчезновения жидкой фазы, а в сплавах, расположенных правее точки J (С = 0,16 - О, 51%), -до исчезновения феррита.
При температуре 11470 С (линия ЕСF) в сплавах с концентрацией углерода от 2,14 до 6,67% происходит эвтектическое превращение:
Ж(С) - A(E) + Ц(F)
В процессе превращения жидкий раствор затвердевает в виде механической смеси кристаллов аустенита и цементита, которая называется ледебуритом (Л).
Во всех сплавах системы с концентрацией углерода более 0,02% при температуре 727°С (линия РSК) происходит эвтектоидное превращение, заключающееся в распаде аустенита на дисперсную механическую смесь чередующихся пластинок феррита и цементита, которая называется перлитом (П):
A(S) - Ф(Р) + Ц(К)
Перлит чаще всего имеет пластинчатое строение и является прочной структурной составляющей: уВ = 800…900 МПа; д ? 16%; твердость - 180-220 НВ.
Причиной эвтектоидной реакции является следующее:
1. В сплавах при температуре 727о происходит полиморфное превращение- железо с решеткой ГЦК превращается в железо с решеткой ОЦК;
2. В связи с этим уменьшается растворимость углерода с 0,8% до 0,02% (в 40 раз);
3.Углерод становится лишним и выделяется в виде цементита.
Цементит может образовываться из жидкой и твердой фаз при различных температурах. Цементит, выделяющийся из жидкой фазы, называется первичным (ЦI), из аустенита - вторичным (ЦII) а из феррита - третичным (ЦIII).Соответственно на диаграмме состояния СD- линия первичного цементита, ЕS- линия вторичного цементита, РQ- линия третичного цементита.
Железоуглеродистые сплавы при температурах, соответствующих перитектическому, эвтектическому или эвтектоидному превращению, находятся в трехфазном равновесном состоянии. Согласно правилу фаз (С = К - Ф + I) равновесие является нонвариантным (С =2-3+1=0). Все эти превращения происходят при определенных температурах и характеризуются остановкой (горизонтальным участком) на кривой охлаждения сплавов.
Построение кривых охлаждения сплавов заданной концентрации с использованием диаграммы состояния
Формирование фаз или структур в сплавах можно изучить, рассматривая по диаграмме процессы, происходящие в них при охлаждении или нагреве.
Для этого необходимо на оси концентраций найти процентное содержание углерода, соответствующее заданию и провести вертикальную линию сплава (ординату). Точки пересечения линии сплава с точками диаграммы являются критическими точками, которые необходимо обозначить индексами: 1, 2, 3 и т.д. Точка 1 всегда должна находиться на линии ликвидус.
Рядом с диаграммой начертить график охлаждения данного сплава в координатах «время-температура», показав связь критических точек на диаграмме и графике ( время при этом откладывается произвольно), и описать сущность превращений, происходящих в сплаве при медленном охлаждении.
В качестве примера проследим за формированием структур сплава с содержанием углерода 1,5 % при медленном охлаждении с 16000 С с описанием фазовых превращений, происходящих в сплаве.
Сплав до температуры 14500 С (точка 1) находится в жидком состоянии. Кристаллизация его начинается при 14500 С с выделением из жидкого раствора кристаллов аустенита.
Кристаллизация сплава заканчивается в точке 2 (12500 С). В интервале температур 1250 - 9500 С (точки 2, 3) сплав охлаждается, не претерпевая никаких изменений. При охлаждении сплава ниже 9500 С (точка 3) аустенит с концентрацией углерода 1,5 % становится пересыщенным. Избыточный углерод из зерен аустенита диффундирует к их границам и выделяется в виде цементита вторичного. Концентрация углерода в аустените при охлаждении сплава от 950 до 7270 изменяется согласно линии ES от точки 3 к точке S:
А(3-S) ЦII
При температуре 7270 С (точка 4) в сплаве происходит эвтектоидное превращение. Аустенит (0,8 % С) распадается на феррито-цементитную смесь - перлит:
АS Фр + Цк
С понижением температуры сплава ниже 7270 С растворимость углерода в феррите уменьшается (линия PQ). В связи с этим избыточный углерод из феррита выделяется в виде цементита третичного:
Ф(р-Q) ЦIII
Однако выделяющийся цементит третичный в структуре стали металлографически не различается, т.к. сливается с цементитом эвтектоида. В структуре сплава с концентрацией углерода 1,5 % при комнатной температуре наблюдаются зерна перлита, окаймленные тонкой сеткой цементита вторичного.
При построении кривой охлаждения необходимо учитывать следующие закономерности: если охлаждается одна фаза- кривая охлаждения имеет вогнутый вид; если одновременно существуют две фазы -выпуклый вид; если одновременно существуют три фазы -на кривой охлаждения появляется горизонтальная площадка.
Рис.6.2.. Схема для изучения превращений, происходящих в сплаве 1 при охлаждении: а - диаграмма состояния; б - кривая охлаждения (кристаллизации) сплава и конечная структура
Таблица 6.1 - Характерные точки диаграммы состояния Fe-Fe3C
Обозначение точки |
Температура, оС |
Содержание углерода,% |
|
А |
1539 |
0 |
|
Н |
1499 |
0,1 |
|
J |
1499 |
0,16 |
|
B |
1499 |
0,51 |
|
N |
1392 |
0 |
|
D |
1260 |
6,67 |
|
E |
1147 |
2,14 |
|
C |
1147 |
4,3 |
|
F |
1147 |
6,67 |
|
G |
910 |
0 |
|
P |
727 |
0,02 |
|
S |
727 |
0,8 |
|
K |
727 |
6,67 |
Таблица 6.2 - Линии трехфазного равновесия
Индекс линии |
Температура, оС 727°С727°С °С °С |
Фазы, находящиеся в равновесии |
Название превращения |
Взаимодействие фаз |
|
НВ |
1499 |
ЖВ + дН + AJ |
Перитектическое |
ЖB + дН -А |
|
ЕР |
1147 |
ЖС + АЕ + ЦF |
Эвтектическое |
ЖC-АE + ЦF (ледебурит) |
|
E'F' |
1153 |
ЖС + АЕ + Гр |
Эвтектическое |
ЖC-АE + C (графитная эвтектика) |
|
PSK |
727 |
АS+ ФР+ ЦК |
Эвтектоидное |
АS-ФP + Цк (перлит) |
|
P'S'K' |
738 |
АS+ ФP+ Гр |
Эвтектоидное |
АS'-ФP' + Гр |
Теоретические сведения
Основными компонентами железоуглеродистых сплавов являются железо и углерод. Кроме того, в них всегда содержатся кремний, марганец, сера и фосфор. В зависимости от содержания углерода сплавы называют сталями (если углерода менее 2,14%) или чугунами (при содержании углерода от 2,14% до 6, 67%).
В сталях углерод присутствует в виде цементита, а в чугунах в виде цементита (белый чугун) или графита (обыкновенный серый, ковкий и высокопрочный).
В структуре сталей и чугунов присутствуют также твердые растворы феррит и аустенит, механические смеси перлит и ледебурит. Подробная характеристика этих фаз и структурных составляющих приведена в предыдущей лабораторной работе.
Углеродистые стали
Основой для определения структурных составляющих углеродистых сталей в равновесном состоянии (после полного отжига) является диаграмма состояния системы “железо-углерод”.
Микроструктура стали в равновесном состоянии зависит от содержания в ней углерода (рис. 7.1.).
аб
вг
Рис. 7.1. Микроструктура углеродистых сталей:
а - сталь 20; б - сталь 40; в - сталь У8; г - сталь У12
По количеству углерода стали делятся на доэвтектоидные, эвтектоидные и заэвтектоидные.
Доэвтектоидные стали - стали, содержащие от 0,02 до 0,80% углерода. Структура их состоит из феррита в виде светлых зерен и перлита (эвтектоидной механической смеси феррита и цементита) в виде мелких темных зерен. С повышением содержания углерода количество перлита пропорционально увеличивается, а феррита уменьшается.
По соотношению площадей, занимаемых в микроструктуре перлитом и ферритом, можно, пользуясь правилом рычага, приближенно определить содержание углерода в стали.
Пример: если перлит занимает примерно 25% площади шлифа, то содержание углерода будет
Доэвтектоидные сплавы с содержанием углерода до 0,02% называются техническим железом. Его структура состоит из феррита (при С=0,008%) или из феррита и третичного цементита (в сплавах с С=0,008 - 0,020%).
Механические свойства технического железа зависят от его чистоты и величины зерна и находятся в пределах: В=180 - 290 МПа; 0,2 = 90 - 170 МПа; = 30 -50%; KCU = 180 - 250 Дж/ см2; НВ = 45 - 80. Малоуглеродистые доэвтектоидные стали по ГОСТ 1050 - 78 применяются, главным образом, для цементируемых изделий машиностроения. Среднеуглеродистые (стали 30, 40, 50) в термически обработанном виде - для различных машиностроительных деталей.
Эвтектоидная сталь - сталь с содержанием углерода 0,8%, состоит из перлита. Механические свойства перлита зависят от степени измельченности цементита. Среднепластичный перлит имеет следующие механические свойства: В = 900 МПа; 0,2 = 600 МПа; = 15%; = 30%; KCU = 20 Дж/ см2; НВ = 200.
Заэвтектоидные стали содержат 0,80 - 2,14% С. Структура - перлит и вторичный цементит, расположенный в виде тонкой светлой сетки (или цепочек светлых зерен) по границам зерен перлита. По площади вторичного цементита и площади перлита на шлифе можно определить примерное содержание углерода в стали.
Пример: если на поле шлифа вторичный цементит занимает примерно 10% площади, а перлит - 90%, то содержание углерода будет:
Эвтектоидные и заэвтектоидные углеродистые стали применяют для различных инструментов, предназначенных для механической обработки металлов, пластмасс, дерева и других материалов, измерительных и слесарных инструментов и др.
Чугуны.
Чугун - это железоуглеродистый сплав с содержанием углерода от 2,14 до 6 %. Кроме этих элементов, в чугуне содержится еще ряд примесей (кремний, марганец, сера, фосфор и др.). С целью улучшения свойств в чугуны могут вводиться легирующие элементы, такие как хром, никель, медь и др.
Чугун, по сравнению со сталью, имеет как преимущества, так и недостатки. Положительными свойствами этого материала являются: хорошие литейные свойства (более низкая, чем у стали, температура плавления, меньшая усадка, хорошая жидкотекучесть), хорошая обрабатываемость резанием (кроме одной разновидности - белого чугуна), достаточно высокая работоспособность в условиях трения, способность гасить вибрации, небольшая стоимость.
Недостатком чугуна являются его низкие пластические свойства и ударная вязкость, что препятствует использованию чугуна для изготовления деталей, работающих при значительных динамических, ударных нагрузках, и делает невозможным в большинстве случаев использование обработки давлением (ковки, штамповки, прокатки и т. д.) для изготовления чугунных изделий.
По структуре различают чугуны, в которых углерод находится в виде химического соединения с железом Fe3С - цементита, и чугуны, в которых весь углерод, или большая его часть, находится в свободном состоянии, в виде графита.
Первая разновидность называется белым чугуном. Структура белых чугунов отражена на диаграмме железо-углерод (рис.6.1.).
В зависимости от содержания углерода белые чугуны разделяют на три группы:
доэвтектические - с содержанием углерода от 2,14 до 4,3%;
эвтектические - с содержанием углерода 4,3%;
заэвтектические - с содержанием углерода от 4,3 до 6,67% (рис.3.4).
Белые чугуны имеют очень высокую твердость и не поддаются обработке резанием. В машиностроении их применяют только для деталей, подвергающихся обработке шлифованием (валки холодной прокатки), или для изделий, используемых без всякой механической обработки (грузы, противовесы, мелящие тела). В ряде случаев изготавливают детали с так называемой отбеленной поверхностью. Их поверхностный слой представляет собой белый чугун и имеет повышенную твердость и износостойкость, а сердцевина имеет структуру другой разновидности чугуна (с наличием графита), что обеспечивает необходимый комплекс механических свойств. Примерами таких изделий с отбеленной поверхностью являются валки для холодной прокатки металла, шары для шаровых мельниц.
Термической обработкой белый чугун перерабатывают в ковкий чугун.
абв
Рис. 7.2. Микроструктура белых чугунов:
а - доэвтектический (ледебурит + перлит)
б - эвтектический (ледебурит)
в - заэвтектический (ледебурит + цементит)
Чугуны, в которых углерод находится в свободном виде, классифицируют по форме графитовых включений:
Серый обыкновенный чугун. В нем содержится графит в виде пластинчатых включений.
Ковкий чугун с хлопьевидными включениями графита.
Высокопрочный чугун, в котором графит имеет шаровидную форму.
Поскольку графитовые включения отрицательно сказываются на механических свойствах металла, особенно на пластичности, то чем менее разветвленную форму они имеют, тем меньше их отрицательное влияние. Самая неудачная, с точки зрения механических свойств, форма графита - пластинчатая (пластичность при этом самая низкая), а наиболее благоприятная - шаровидная форма включений, обеспечивающая максимальную пластичность (рис.7.3.). Это связано с тем, что графитовые включения играют роль трещин, пустот в чугуне и являются концентраторами напряжений. Чем более компактную форму имеют эти включения, тем более «мягкий» получается концентратор напряжений и тем меньше снижение механических свойств металла за счет графита.
Графитные включения располагаются на металлической основе, которая может быть перлитной, ферритной или феррито-перлитной.
Рис. 7.3. Схемы микроструктур серого обыкновенного, ковкого и высокопрочного чугунов
Серый обыкновенный чугун получают при медленном охлаждении металла при литье изделий, а также при повышенном содержании кремния, углерода. Обозначается он буквами СЧ, после которых ставится цифра, показывающая предел прочности при растяжении в в кг/мм2 (ГОСТ 1412-85). Например, СЧ12 (в = 12 кг/мм2 или 120 ПМа). Применяется серый чугун для изготовления слабонагруженных деталей, работающих в легких условиях. Например, корпуса редукторов, насосов, электродвигателей, различные крышки, отопительные батареи и т.п.
Ковкий чугун получают из белого чугуна путем специального графитизирующего отжига (томление). Это длительная термическая обработка, при которой белый чугун медленно нагревается до температур 950-1000 С , выдерживается длительное время и охлаждается. При таком отжиге происходит графитизация цементита белого чугуна с образованием хлопьевидных включений графита. После томления отливок в зависимости от скорости охлаждения, при температуре немного ниже 727оС, получают ковкий чугун с различными структурами металлической основы:
при очень медленном охлаждении - ферритный;
при ускоренном охлаждении - ферритно-перлитный;
при быстром охлаждении - перлитный.
Обозначается ковкий чугун буквами КЧ, после которых следуют цифры, показывающие предел прочности при растяжении в в кг/мм2 - первая цифра, и относительное удлинение в % - вторая цифра . Например, КЧ30-6 (в = 300МПа, = 6 %). Применяется ковкий чугун для изготовления деталей, работающих в более тяжелых условиях по сравнению с деталями из серого чугуна _ при повышенных нагрузках, при знакопеременных и небольших ударных нагрузках. Например, картеры редукторов, коробок передач автомобилей, кронштейны рессор, различные крюки, фланцы и т.п.
Недостаток ковких чугунов- повышенная по сравнению с остальными чугунами стоимость из-за продолжительного дорогостоящего отжига.
Высокопрочный чугун получают путем модифицирования его при выплавке магнием или церием в количестве 0,05 %. Модификаторы способствуют формированию шаровидных включений графита. Обозначаются высокопрочные чугуны буквами ВЧ и цифрой, показывающей предел прочности при растяжении в .Например, ВЧ80 ((в = 800 МПа). Применяется высокопрочный чугун для изготовления ответственных деталей, работающих в довольно сложных условиях при повышенном нагружении. Например, коленчатые и распределительные валы легковых автомобилей, прокатные валки, корпуса турбин, детали кузнечно-прессового оборудования и др.
Представляет интерес использование чугунов для деталей, работающих в специфических условиях (агрессивные среды, высокие температуры и др.). Для этого в чугуны вводят легирующие элементы, способствующие повышению необходимых свойств. Такие чугуны называют легированными или чугунами специального назначения. Они дешевле легированных сталей и вследствие лучших литейных свойств оказываются предпочтительнее для получения отливок.
ТЕРМИЧЕСКАЯ ОБРАБОТКА УГЛЕРОДИСТЫХ СТАЛЕЙ
Термическая обработка - это технологический процесс, состоящий из нагрева и охлаждения материала изделия с целью изменения его структуры и свойств.
На стадии изготовления деталей необходимо, чтобы металл был пластичным, нетвердым, имел хорошую обрабатываемость резанием.
В готовых изделиях всегда желательно иметь материал максимально прочным, вязким, с необходимой твердостью.
Такие изменения в свойствах материала позволяет сделать термообработка. Любой процесс термообработки может быть описан графиком в координатах температура-время и включает нагрев, выдержку и охлаждение. При термообработке протекают фазовые превращения, которые определяют вид термической обработки. Температура нагрева стали зависит от положения ее критических точек и выбирается по диаграмме состояния Fe - Fe3С в зависимости от вида термической обработки (рис.9.1.).
Рис.9.1. Интервалы рекомендуемых температур нагрева при различных видах
Критические точки (температуры фазовых превращений) определяют: линия PSK - точку А1, GS - точку А3 и SE - точку Аm. Нижняя критическая точка А1 соответствует превращению А П при 727ОС. Верхняя критическая точка соответствует началу выделения феррита из аустенита (при охлаждении) или концу растворения феррита в аустените (при нагреве). Температура линии SE, соответствующая началу выделения вторичного цементита из аустенита, обозначается Аm.
Время нагрева до заданной температуры зависит, главным образом, от химического состава стали и толщины наиболее массивного сечения детали (в среднем 60 с на каждый миллиметр сечения).
Выдержка при температуре термообработки необходима для завершения фазовых превращений, происходящих в металле, выравнивания температуры по всему объему детали. Продолжительность выдержки зависит от химического состава стали и для нелегированных сплавов определяется из расчета 60 с. на один миллиметр сечения.
Скорость охлаждения зависит, главным образом, от химического состава стали, а также от твердости, которую необходимо получить.
Самыми распространенными видами термообработки сталей являются закалка и отпуск. Производятся с целью упрочнения изделий. Температура нагрева под закалку выбирается по диаграмме железо-углерод.
Закалка сталей
ЗАКАЛКОЙ называется фиксация при комнатной температуре высокотемпературного состояния сплава. Основная цель закалки - получение высокой твердости, прочности и износостойкости. Для достижения этой цели стали нагревают до температур на 30 - 50ОС выше линии GSK (рис. 9.1), выдерживают определенное время при этой температуре и затем быстро охлаждают. Для доэвтектоидных сталей температура нагрева под закалку определяется Ас3+(30-50)оС, для эвтектоидных и заэвтектоидных Ас1+(30-50)оС.
Процессы, происходящие в сплаве на различных стадиях закалки, можно рассмотреть на примере эвтектоидной стали У8. В исходном отожженном состоянии эта сталь имеет структуру перлита (эвтектоидная смесь феррита и цементита). При достижении температуры А1 (727 0С) произойдет полиморфное превращение, т.е. перестройка кристаллической решетки феррита (ОЦК) в решетку аустенита (ГЦК), вследствие чего растворимость углерода резко возрастает. В процессе выдержки весь цементит растворится в аустените и концентрация углерода в нем достигнет содержания углерода в стали, т.е. 0,8 %
Следующий этап - охлаждение стали из аустенитной области до комнатной температуры - является определяющим при закалке. При охлаждении стали ниже температуры А1 происходит обратное полиморфное превращение, т.е. решетка аустенита (ГЦК) перестраивается в решетку феррита (ОЦК) и при этом растворимость углерода уменьшается в 40 раз (с 0,8 до 0,02). Если охлаждение происходит медленно, то “лишний” углерод успевает выйти из решетки феррита и образовать цементит. В результате формируется структура феррито-цементитной смеси. Если же охлаждение производится быстро, то после полиморфного превращения углерод остается вследствие подавления диффузионных процессов в решетке ОЦК. Образуется пересыщенный твердый раствор углерода в - железе, который называется МАРТЕНСИТОМТОМ. Перенасыщенность мартенсита углеродом создает в его решетке большие внутренние напряжения, которые приводят к искажению ее формы и превращению из кубической в тетрагональную. Уровень внутренних напряжений оценивается степенью тетрагональности.
Чем выше степень тетрагональности решетки мартенсита, тем выше его твердость. Степень тетрагональности, в свою очередь, будет зависеть от содержания углерода в стали.
Рис. 9.2. Кристаллическая решетка феррита (с/а=1) (а) и кристаллическая решетка мартенсита (с/а1) (б)
Получить структуру мартенсита (или закалить сталь) можно только в том случае, если обеспечить скорость охлаждения больше или равную критической (Vкр) (рис 9.3),чтобы не успели пройти процессы распада аустенита в верхнем районе температур.
КРИТИЧЕСКАЯ СКОРОСТЬ закалки или минимальная скорость охлаждения (Vкр) - это скорость, при которой аустенит переходит в мартенсит. Если же скорости охлаждения будут меньше Vкр , при распаде аустенита получим феррито-цементитные смеси различной дисперсности ТРООСТИТ, СОРБИТ И ПЕРЛИТ.
Перлит (грубодисперсионная смесь феррита и цементита) может быть получен при очень медленных скоростях охлаждения (на рис. 10- это скорость V1). Такие скорости охлаждения характерны для отжига (охлаждение вместе с печью).
При охлаждении углеродистых сталей на воздухе (вид термообработки - нормализация) со скоростями V2 и V3 получаем структуры сорбита и троостита. Сорбит - механическая смесь феррита и цементита средней дисперсности. Троостит - мелкодисперсная феррито-цементитная смесь. Свойства сорбита и троостита занимают промежуточное положение между свойствами перлита (П) и мартенсита (М).
Практической целью закалки является получение максимальной прочности и твердости стали. Достигается эта цель при следующих режимах: нагрев стали на 30 - 50ОС выше линии GSK, выдержка при этой температуре и охлаждение со скоростью Vкр.
Рис 9.3. Диаграмма изотермического распада аустенита эвтектоидной стали со схемами микроструктур и их примерной твердостью: I - кривая начала диффузионного распада аустенита; II - кривая конца диффузионного распада аустенита; Мн - линия начала мартенситного превращения; Vкр - критическая скорость охлаждения.
Отпуск сталей
К важнейшим механическим свойствам сталей наряду с твердостью относится и пластичность, которая после закалки очень мала. Структура резко-неравновесная, возникают большие закалочные напряжения. Чтобы снять закалочные напряжения и получить оптимальное сочетание свойств для различных групп деталей, обычно после закалки проводят отпуск стали. Отпуском стали является термообработка, состоящая из нагрева закаленной стали до температуры ниже линии PSK (критическая точка А1), выдержки при этой температуре и дальнейшего произвольного охлаждения. Этот процесс связан с изменением строения и свойств закаленной стали. При отпуске происходит распад мартенсита (выделение углерода), переход к более устойчивому состоянию. При этом повышается пластичность, вязкость, снижается твердость и уменьшаются остаточные напряжения в стали. Механизм протекающих превращений при отпуске сталей - диффузионный, он определяется температурой и продолжительностью нагрева.
Первое превращение, протекающее в интервале 80 - 200ОС (низкий отпуск), соответствует выделению из мартенсита тонких пластин - карбида Fe2С. Выделение углерода из решетки приводит к уменьшению степени ее тетрагональности. Полученный при этом мартенсит, имеющий степень тетрагональности, близкую к 1, называется отпущенным.
При нагреве закаленной стали до температур 300-450ОС (средний отпуск) происходит полное выделение углерода из раствора и снятие внутренних напряжений. Сталь состоит из мелкодисперсной смеси феррита и цементита (троостит отпуска).
При нагреве до температур 480- 600 о С (высокий отпуск) идет процесс коагуляции (укрупнения) карбидных частиц и максимальное снятие остаточных напряжений. Формируется структура сорбита отпуска.
В зависимости от температуры нагрева различают низкий, средний и высокий отпуск. Низкий отпуск проводят в интервале температур 80 - 250ОС для инструментов-изделий, которым необходимы высокая твердость и износостойкость. Получаемая структура МОТП или МОТП + ЦII (мартенсит отпуска + цементит вторичный).
Средний отпуск (350 - 500ОС) применяется для рессор, пружин, штампов и другого ударного инструмента, т.е. для тех изделий, где требуется достаточная твердость и высокая упругость. Получаемая структура - ТОТП (троостит отпуска).
Высокий отпуск (500 - 650ОС) полностью устраняет внутренние напряжения. Достигается наилучший комплекс механических свойств: повышенная прочность, вязкость и пластичность. Применяется для изделий из конструкционных сталей, подверженных воздействию высоких напряжений. Структура - СОТП (сорбит отпуска).
Термообработку, заключающуюся в закалке на мартенсит и последующем высоком отпуске, называют улучшением.
Конструкционные стали
Классификация конструкционных сталей
Машиностроительные стали предназначены для изготовления различных деталей машин и механизмов.
Они классифицируются:
по химическому составу ( углеродистые и легированные);
по обработке (цементуемые, улучшаемые);
по назначению (пружинные, шарикоподшипниковые).
Углеродистые стали.
Сталь - сплав железа с углеродом (до 2,14% С). В сталях постоянно присутствуют примеси, которые попадают при выплавке. К ним относятся: марганец и кремний, которые являются полезными, а так же сера и фосфор, которые являются вредными. Сера вызывает красноломкость стали - хрупкость при горячей обработке давлением. В сталях сера находится в виде сульфита FeS, который образует с железом легкоплавкую эвтектику, отличающуюся низкой температурой плавления (9880 С) и располагающуюся по границам зерен. При горячей деформации границы зерен оплавляются и сталь хрупко разрушается. Фосфор вызывает в сталях хладноломкость - хрупкость при низких температурах. Каждая сотая доля фосфора повышает порог хладноломкости на 250 С. Содержание серы и фосфора влияет на качество сталей и в зависимости от их содержания стали подразделяются на 4 группы:
1. Стали обыкновенного качества содержат примерное количество серы и фосфора (до 0,045% каждого). Стали обозначают марками Ст0, Ст1, Ст 2 … Ст6. Буквы Ст обозначает сталь, цифры - условный номер марки, чем больше число, тем больше содержание углерода. Ориентировочно можно считать, что цифра обозначает содержание углерода в десятых долях процента. Для обозначения степени раскисления добавляют индексы: кп - кипящая, сп - спокойная, пс - полуспокойная (Ст 3 кп, Ст 3пс);
2. Качественные стали содержат серы и фосфора до 0,035% каждого, регламентированы по химическому составу и механическим свойствам. Марки стали обозначают цифрами, которые указывают среднее содержание углерода в сотых долях процента. Стали 08, 20, 25,…, 60. Например, сталь 20-0,20% С.
Инструментальные стали содержат более 0,7% углерода. Цифра в марке указывает на среднее содержание углерода в десятых долях процента. Например, сталь У7 - 0,7% С, У13 - 1,3% С.
3. Высококачественные стали содержат не более 0,025% Si и P каждого. Обозначаются буквой А, стоящей в конце марки. Например, У12А.
4. Особовысококачественные стали содержат не более 0,015% S и 0,025% P. В конце марки стоит буква, указывающая способ переплава. Например, Ш - электрошлаковый, ВДП - вакуумно-дуговой, ЭЛП - электронно-лучевой.
Легированные стали. Легирующие элементы обозначают буквами: Х - хром, Н - никель, Г - марганец, С - кремний, В - вольфрам, М - молибден, Ф - ванадий, К - кобальт, А - алюминий, Д - медь. Первая цифра указывает на среднее содержание углерода в стали в сотых долях процента, а цифры, следующие за буквами - процентное содержание этих элементов. Например, 30ХН3М - 0,30% С, 1% Cr, 3% Ni, 1% Mo.
Низкоуглеродистые стали 05 кп, 08, 10, 10 пс обладают малой прочностью высокой пластичностью. Применяются без термической обработки для изготовления малонагруженных деталей - шайб, прокладок и т.п.
Среднеуглеродистые стали 35, 40, 45 применяются после нормализации, термического улучшения, поверхностной закалки.
В нормализованном состоянии по сравнению с низкоотпущенным обладают большей прочностью, но меньшей пластичностью. После термического улучшения наблюдается наилучшее сочетание механических свойств. После поверхностной закалки обладают высокой поверхностной твердостью и сопротивлением износу.
Высокоуглеродистые стали 60, 65, 70,75 используются как рессорно-пружинные после среднего отпуска. В нормализованном состоянии - для прокатных валков, шпинделей станков.
Достоинства углеродистых качественных сталей - дешевизна и технологичность. Но из-за малой прокаливаемости эти стали не обеспечивают требуемый комплекс механических свойств в деталях сечением более 20 мм.
Легированные стали
Элементы, специально вводимые в сталь в определенных концентрациях с целью изменения ее строения и свойств, называются легирующими элементами, а стали - легированными.
Cодержание легируюшихх элементов может изменяться в очень широких пределах: хром или никель - 1% и более процентов; ванадий, молибден, титан, ниобий - 0,1… 0,5%; также кремний и марганец - более 1 %. При содержании легирующих элементов до 0,1 % - микролегирование.
В конструкционных сталях легирование осуществляется с целью улучшения механических свойств (прочности, пластичности). Кроме того меняются физические, химические, эксплуатационные свойства.
Легирующие элементы повышают стоимость стали, поэтому их использование должно быть строго обоснованно.
По назначению легированные стали делятся на следующие группы:
Строительные низколегированные стали -содержат углерода не более 0,22% и сумма легирующих элементов не более 5%. Применяют при строительстве промышленных зданий, сооружений, мостов, эстакад, ферм, колонн и др. Различают также стали трубные, рельсовые, котельные, автомобильные и др. В них используются недорогие легирующие элементы: Si, Mn, Cr, Cu, V, способствующие измельчению зерна, снижению порога хладноломкости, повышению прочности. Примеры: 09Г2С; 15ГФ; 15ХСНД; 18Г2АФ и др.
Специальная маркировка строительных сталей: С250, С320. Буква «С» обозначает- строительная сталь, цифра показывает предел текучести в МПа.
Конструкционные цементуемые (нитроцементуемые) стали
Содержат 0,1-0,2%С и легирующие элементы, способствующие насыщению углеродом и азотом и получению высокой твердости после термообработки. Например: 15Х; 20Х; 18ХГТ; 12ХН3А; 18Х2Н4МА; 15ХГН2ТА.
Используются для изготовления деталей, работающих на износ и подвергающихся действию переменных и ударных нагрузок. Детали должны сочетать высокую поверхностную прочность и твердость и достаточную вязкость сердцевины.
Цементации подвергаются низкоуглеродистые стали с содержанием углерода до 0,25%, что позволяет получить вязкую сердцевину. Для деталей, работающих с большими нагрузками, применяются стали с повышенным содержанием углерода (до 0,35 %).
С повышением содержания углерода прочность сердцевины увеличивается, а вязкость снижается. Детали подвергаются цианированию и нитроцементации.
Цементуемые углеродистые стали 15,20,25 используются для изготовления деталей небольшого размера, работающих в условиях изнашивания при малых нагрузках (втулки, валики, оси, шпильки и др.). Твердость на поверхности составляет 60…64 HRC, сердцевина остается мягкой.
Цементуемые легированные стали применяют для более крупных и тяжелонагруженных деталей, в которых необходимо иметь, кроме высокой твердости поверхности, достаточно прочную сердцевину (кулачковые муфты, поршни, пальцы, втулки).
Хромистые стали 15Х, 20Х используются для изготовления небольших изделий простой формы, цементуемых на глубину h =1…1,5 мм. При закалке с охлаждением в масле, выполняемой после цементации, сердцевина имеет бейнитное строение. Вследствие этого хромистые стали обладают более высокими прочностными свойствами при несколько меньшей пластичности в сердцевине и большей прочностью в цементованном слое.
Конструкционные улучшаемые легированные стали.
Содержат 0,3-0,5%С, применяют после закалки и высокого отпуска для деталей, работающих в условиях циклических нагрузок (коленчатые валы, шатуны, штоки). Примеры: 30Х; 40ХФА; 30ХГСА; 30ХН3А;36Х2Н2МФА др.
Стали, подвергаемые термическому улучшению, широко применяют для изготовления различных деталей, работающих в сложных напряженных условиях ( при действии разнообразных нагрузок, в том числе переменных и динамических). Стали приобретают структуру сорбита, хорошо воспринимающую ударные нагрузки. Важное значение имеет сопротивление хрупкому разрушению.
Улучшению подвергаются среднеуглеродистые стали с содержанием углерода 0,30…0,50 %.
Улучшаемые углеродистые стали 35, 40, 45 дешевы, из них изготавливают детали, испытывающие небольшие напряжения (сталь 35), и детали, требующие повышенной прочности (стали 40, 45). Но термическое улучшение этих сталей обеспечивает высокий комплекс механических свойств только в деталях небольшого сечения, так как стали обладают низкой прокаливаемостью. Стали этой группы можно использовать и в нормализованном состоянии.
Детали, требующие высокой поверхностной твердости при вязкой сердцевине (зубчатые колеса, валы, оси, втулки), подвергаются поверхностной закалке токами высокой частоты. Для снятия напряжений проводят низкий отпуск.
Мартенситностареющие высокопрочные стали.
Содержат менее 0,03% углерода, т.к. углерод и азот - вредные примеси. Это сплавы железа с никелем (8-20%), часто с кобальтом. Добавки Ti, Al, Mo, W, Nb обеспечивают образование интерметаллидов Fe3 Mo, Ni3Мо, Ni3Ti, Ni3 Al, (Fe, Со)2Мо, которые играют роль упрочнителей. Закаливают с 820-8500С на воздухе. В закаленном состоянии сталь пластична, обрабатывается резанием, сваркой. Затем проводится старение при 480-520 0С. При старении повышается прочность в 2 раза: в = 2100 МПа, = 8-12%, 40-60%, КСИ = 0,4-0,6 МДж/м2. Примеры: Н18К8М5Т, Н12К8М4Г2, Н9Х12Д2ТБ. Хром придает антикоррозионные свойства. Дорогостоящие, применяются для ответственных изделий в авиации, судостроении.
Пружинно-рессорные стали.
Содержат 0,55-0,85% С. Они должны иметь высокий предел текучести 0,2 и предел выносливости -1, поэтому их подвергают закалке с 820-880 0С и отпуску 420-480 0С. Легируют кремнием, повышающем прочность феррита и Cr, Ni, V, W, повышающими прокаливаемость, измельчающих зерно. Примеры: 60С2А,60С2ХФА, 70С3А, 60С2Н2А, 65Г и др. Спецпружины делают из нержавеющих, жаропрочных, мартенситностареющих сталей, а также БрБ2 и прецезионных сплавов, например, 36НХТЮ, 68НХВКТЮ, рабочий интервал температур -196…+500 0С.
Пружины, рессоры и другие упругие элементы являются важнейшими деталями различных машин и механизмов. В работе они испытывают многократные переменные нагрузки. Под действием нагрузки пружины и рессоры упруго деформируются, а после прекращения действия нагрузки восстанавливают свою первоначальную форму и размеры. Особенностью работы является то, что при значительных статических и ударных нагрузках они должны испытывать только упругую деформацию, остаточная деформация не допускается. Основные требования к пружинным сталям - обеспечение высоких значений пределов упругости, текучести, выносливости, а также необходимой пластичности и сопротивления хрупкому разрушению, стойкости к релаксации напряжений.
Пружины работают в области упругих деформаций, когда между действующим напряжением и деформацией наблюдается пропорциональность. При длительной работе пропорциональность нарушается из-за перехода части энергии упругой деформации в энергию пластической деформации. Напряжения при этом снижаются.
Самопроизвольное снижение напряжений при постоянной суммарной деформации называется релаксацией напряжений.
Релаксация приводит к снижению упругости и надежности работы пружин.
Пружины изготавливаются из углеродистых (65, 70) и легированных (60С2, 50ХГС, 60С2ХФА, 55ХГР) конструкционных сталей.
Для упрочнения пружинных углеродистых сталей применяют холодную пластическую деформацию посредством дробеструйной и гидроабразивной обработок, в процессе которых в поверхностном слое деталей наводятся остаточные напряжения сжатия.
Повышенные значения предела упругости получают после закалки со средним отпуском при температуре 400…480 oС.
Шарикоподшипниковые стали
Подвергаются воздействию высоких нагрузок переменного характера. Основными требованиями являются высокая прочность и износостойкость, высокий предел выносливости, отсутствие концентраторов напряжений, неметаллических включений, полостей, ликваций.
Шарикоподшипниковые стали характеризуются высоким содержанием углерода (около 1 %) и наличием хрома (ШХ9, ШХ15).
Высокое содержание углерода и хрома после закалки обеспечивает структуру мартенсит плюс карбиды, высокой твердости, износостойкости, необходимой прокаливаемости.
Дальнейшее увеличение прокаливаемости достигается дополнительным легированием марганцем, кремнием (ШХ15СГ).
Повышены требования в отношении чистоты и равномерности распределения карбидов, в противном случае может произойти выкрашивание. Стали подвергаются строгому металлургическому контролю на наличие пористости, неметаллических включений, карбидной сетки, карбидной ликвации.
Термическая обработка включает отжиг, закалку и отпуск. Отжиг проводят после ковки для снижения твердости и подготовки структуры к закалке. Температура закалки составляет 790…880 oС в зависимости от массивности деталей. Охлаждение - в масле (кольца, ролики), в водном растворе соды или соли (шарики). Отпуск стали проводят при температуре 150…170oС в течение 1…2 часов. Обеспечивается твердость 62…66 НRC.
Из стали ШХ9 изготавливают шарики и ролики небольших размеров, из стали ШХ15 - более крупные.
Детали подшипников качения, испытывающие большие динамические нагрузки (подшипники прокатных станов), изготавливают из сталей 20Х2Н4А и 18ХГТ с последующей глубокой цементацией на глубину 5…10 мм. Для деталей подшипников, работающих в азотной кислоте и других агрессивных средах, используется сталь 95Х18.
Износостойкие и кавитационностойкие стали
Для работы в условиях ударно-абразивного износа применяют сталь Гатфильда 110Г13Л. Она содержит до 1,3%С и до 14,5%Mn. После закалки с 1100 0С в воду структура состоит из аустенита, характерная особенность которого - превращается в мартенсит под действием ударов. Аналогичными свойствами обладает сталь 60Х5Г10Л. Для деталей, работающих в условиях кавитационной эрозии применяют стали с нестабильным аустенитом, например, 30Х10Г10, 0Х14АГ12, 0Х14Г12М. Аустенит этих сталей под действием гидроударов также превращается в мартенсит. Из них делают гребные винты, лопасти турбин, насосов.
Нержавеющие (коррозионно-стойкие) стали
Различают коррозию химическую, электрохимическую, газовую. Химическая - под действием веществ неэлектролитов (нефтепродукты); электрохимическая - под действием электролитов (кислот, щелочей, солей). Включает в себя несколько разновидностей: точечная пятнистая, язвенная, щелевая. Наиболее опасна интеркристаллитная коррозия, распространяющаяся по границам зерен.
Стали , предназначенные для работы в агрессивных средах при нормальных температурах, наз. нержавеющими, а для работы при повышенных и высоких температурах -жаростойкими и жаропрочными. Нержавеющие стали после закалки на воздухе могут иметь ферритную, феррито-мартенситную, мартенситную, аустенитную, аустенито-ферритную и аустенито-мартенситную структуры. Главный легирующий элемент нержавеющих сталей - хром, а в аустенитных - никель и марганец. Добавки Ti, Mo - для связывания углерода, чтобы не образовывались карбиды Cr и -фаза, чтобы не развивалась межкристаллитная коррозия.
08Х13 - сталь ферритного класса - 12Х17, 15Х25Т.
12Х13 - сталь мартенсито-ферритного класса.
20Х13, 30Х13, 40Х13 - стали мартенситного класса.
12Х18Н10Т, 10Х14АГ15, 10Х17Н13М3Т - аустенитные стали.
08Х21Н6М2Т - аустенито-ферритная сталь.
Кислостойкая сталь 06Х23Н28МДТ - аустенитная.
Нержавеющие стали дороги, поэтому рациональнее применять биметаллы, например, 09Г2С+08Х18Н10Т, или 10ХГСНД+06Х23Н28МДТ и др.
Нержавеющие стали с аустенитной структурой можно использовать как криогенные стали, т.е. способные работать при температурах ниже точки кипения кислорода (-183 0С). Стали марок 12Х18Н10Т, 07Х21Г7АН5, 10Х14Г14Н4Т могут работать при -253 0С.
9.Жаропрочные стали и сплавы.
При повышенных температурах (?500 0С) по нагрузкой в металлах развивается ползучесть, которая объясняется термо-диффузионным перемещением дислокаций. Чем надежнее заблокированы дислокации интерметаллидными включениями, тем меньше ползучесть, тем выше жаропрочность.
Жаропрочность может быть оценена двумя показателями: условным пределом ползучести и пределом длительной прочности.
Условный предел ползучести - это напряжение, которое вызывает за установленное время испытания при данной температуре заданное удлинение образца или заданную скорость деформации. Например,
Предел длительной прочности - это напряжение, которое образец выдерживает установленное время при заданной температуре не разрушаясь. Например, или
Жаропрочность зависит от прочности межатомных связей (показатель - температура плавления) и от эффективности препятствий движению дислокаций при высоких температурах. Структура жаропрочного сплава - это легированный твердый раствор с крупным зерном, внутри зерен и на границах которого равномерно распределены дисперсные включения карбидных и интерметаллидных фаз. Такая структура образуется после закалки и последующего старения при температурах, близких к рабочим.
Для работы при 500-750 0С применяют стали, 600-950 0С - сплавы на основе никеля и кобальта, а для работы при 1000-1500 0С - сплавы на основе Мо, Nb, Ta, W.
Жаропрочные стали применяют для работы при 500-750 0С.
При температурах 500-600 0С применяют стали перлитного класса, например, 16М, 15ХМФ, 12Х2МФСР. Котельная сталь 15ХМФ имеет
Еще более жаропрочны стали аустенитного класса: 10Х18Н10Т, 10Х11Н23Т3М
Инструментальные стали и сплавы.
Применяются для режущего, ударного, деформирующего и мерительного инструмента. Особенность маркировки - содержание углерода в десятых долях. Они должны обладать высокой твердостью (НRс=60-65), прочностью, износостойкостью, иногда вязкостью.
Все инструментальные стали делят на три группы: 1) не обладающие теплостойкостью; 2) полутеплостойкие, выдерживают нагрев до 400-500 0С; 3) теплостойкие - до 550 - 650 0С.
Стали для режущего инструмента.
А. Углеродистые. У7А…У13А. Теплостойкость до 200 0С. Применяют для изготовления слесарного и деревообрабатывающего инструмента. Термообработка - закалка с 760-810 0С в воду или растворы солей, иногда подогретые. Отпуск - 150-170 0С. Прокаливаемость низкая.
Б. Легированные, не теплостойкие (200-250 0С) Легируют Cr, V, Si, Mn, W. Сумма легирующих ? 3-4%. Эти стали имеют повышенную прокаливаемость, поэтому закаливают в масло или горячие среды. Например, 11ХФ, 13Х - для инструм. до 15 мм.; 9ХС, ХВСГ - для инструмента до 80 мм.; В2Ф, ХВ4 - для пил по металлу, граверного инструмента.
В. Быстрорежущие стали. Имеют теплостойкость до 600-650 0С. Основные легирующие элементы - W, Mo, которые образуют карбиды и придают режущие свойства. Легируют также Cr,V, Co. Широко известны быстрорежущие стали Р18 (8Х4В18МФ); Р9 (9Х4В9Ф2М); Р6М5 (9Х4В6Ф2М5). Для обработки высокопрочных нержавеющих и жаропрочных сталей применяют кобальтсодержащие быстрорежущие стали, например,Р6М5К5, Р18К5Ф2, Р2АМ9К5. Термообработка: закалка с 1270-1290 0С в масло или расплавл. солях (400-500 0С). Количество Аост.30%. Для его распада дают 3х-кратный отпуск при 550-570 0С, 1 час или обработку холодом (-80 0С) + 2х-кратный отпуск.
Более высокую теплостойкость имеют металлокерамические твердые сплавы
Металлокерамические твердые сплавы.
Получают методами порошковой металлургии. Состоят из карбидов тугоплавких металлов WC, TiC, ТаС, соединенных кобальтовй связкой. Обладают высокой твердостью, но хрупкие и дорогостоящие. Скорость резания в 5-8 раз выше, чем у быстрорежущих сталей.
Делятся на три группы:
1) вольфрамовые (ВК3…ВК10, ВК15, ВК20, ВК25); ВК3- 3% кобальта, остальное карбиды вольфрама. Теплостойкость 8000.
Чем больше кобальта, тем выше прочность, но ниже твердость.
2) титано-вольфрамовые (Т30К4, Т15К6, Т5К10, Т5К12); Т30К4 - кобальта 4%, карбиды титана -30%, остально- каобиды вольфрама. Теплостойкость 9000.
3) титано-тантало-вольфрамовые (ТТ7К12, ТТ8К6, ТТ20К9). ТТ7К12- кобальта 12%, сумма карбидов титана и тантала -7%, остальное -карбиды вольфрама.
Их теплостойкость достигает 1000-1100 0С.
Из твердых сплавов изготавливают пластинки (режущую часть), которые припаивают к инструменту, изготовленному из стали.
Стали для измерительного инструмента
Требования: высокая твердость, износостойкость, постоянство размеров. Применяют стали Х(ШХ15), ХВГ. Для них- обязательна обработка холодом и длительный (до 60 час) отпуск при 120-140 0С.
Штамповые стали
А. Для холодного деформирования: это штампы, пуансоны, накатные плашки и др. Должны обладать высокой твердостью, прочностью, износостойкостью, вязкостью. При скоростном деформировании могут нагреваться до 200-350 0С. Применяют стали Х12Ф, Х12М, Х6ВФ, 6Х6В3МФС. После закалки делают средний отпуск 500 0С.
Б. Для горячего деформирования и пресс-форм литья под давлением.
Требования: прочность, вязкость, разгаростойкость, окалиностойкость, износостойкость, теплопроводность. Широко применяют Стали 5ХНМ, 5ХНВ для молотовых штампов. После закалки с 840-860 делают отпуск при 580 0С. Сохраняют высокие свойства при нагреве до 500-520 0С. Прессформы для машин литья под давлением делают из сталей 4Х5В2ФС - для литья Al, Mg, Zn сплавов; 3Х2В8Ф - для литья медных сплавов. Закалка с 1100 0С в масло, отпуск при 650 0С.
Алюминиевые сплавы.
Алюминий и сплавы на его основе имеют широкое применение в машиностроении благодаря комплексу ценных физикохимических свойств: малой плотности, высокой тепло, электропроводности, пластичности, коррозионной стойкости.
Чистый алюминий серебристобелый металл с температурой плавления 6600 С, плотностью 2710 кг/м3, имеет кристаллическую решетку ГЦК, полиморфных превращений не претерпевает. Высокая коррозионная стойкость алюминия обусловлена образованием на поверхности тонкой и плотной пленки окиси. Механическая прочность чистого алюминия невелика (80100 МПа), поэтому он применяется в виде токоведущих изделий (провода, шины), конденсаторной и пищевой фольги, покрытий для зеркал, рефлекторов и др.
Основными примесями, попадающими в алюминий при его производстве, являются кремний и железо, но могут содержаться также медь, цинк, титан и др. Железо присутствует в структуре алюминия в форме химического соединения FeAl3, кремний соединений не образует, а его кристаллы имеют игольчатую форму.
...Подобные документы
Рассмотрение правил получения серии однослойных образцов металлов и их сплавов, напылённых на подложки с варьируемой толщиной слоя. Изучение влияние толщины напылённого слоя на соотношение характеристических полос испускания в рентгеновских спектрах.
дипломная работа [1,2 M], добавлен 20.07.2015Понятие сплавов как сложных веществ, получаемых сплавлением или спеканием двух или нескольких веществ, называемых компонентами. Сплавы в жидком и твердом состоянии. Структурные составляющие сплавов. Особенности состояния железоуглеродистых сплавов.
презентация [1,2 M], добавлен 02.05.2016Металлические расплавы и их свойства. Характеристика экспериментальных и теоретических методов изучения строения жидких металлов. Результаты дифракционного эксперимента. Современные методы электронографии поверхностных слоев металлической жидкости.
презентация [2,6 M], добавлен 22.02.2015Основы сканирующей электронной микроскопии. Методические особенности электронно-микроскопического исследования металлических расплавов. Особенности микроскопов, предназначенных для исследования структуры поверхностных слоев металлических расплавов.
реферат [1,5 M], добавлен 11.05.2013Сущность полиморфизма, история его открытия. Физические и химические свойства полиморфных модификаций углерода: алмаза и графита, их сравнительный анализ. Полиморфные превращения жидких кристаллов, тонких пленок дийодида олова, металлов и сплавов.
курсовая работа [493,4 K], добавлен 12.04.2012Коэффициент теплопроводности металлов и его зависимость от параметров состояния вещества. Главные особенности калориметрического метода. Методические рекомендации к выполнению лабораторной работы "Определение коэффициента теплопроводности металлов".
курсовая работа [79,4 K], добавлен 05.07.2012Растворимость водорода в аллотропической форме титана. Влияние водорода на механические свойства титана высокой чистоты. Классификация сплавов титана по легирующим элементам. Сущность механизма и признаки водородного охрупчивания титановых сплавов.
реферат [2,0 M], добавлен 15.01.2011Методы получения наноразмерных объектов и контроля их характеристик. Изменение механических, электрических, магнитных, оптических и химических свойств металлов при переходе в наносостояние. Определение характеристик наноразмерных частиц в суспензиях.
реферат [1,2 M], добавлен 26.06.2010Электрификация производственных процессов на участке твердых сплавов, расчет электрического освещения и облучения. Расчет внутренних сетей. Описание изобретения для смешивания сыпучих материалов. Меры безопасности при обслуживании установки, охрана труда.
курсовая работа [1,5 M], добавлен 20.01.2010Феноменологическая и микроскопическая теория диффузии. Диффузионная релаксация Сноека, Зинера, магнитнаяа также сущность эффекта Горского. Магнитострикция чистых металлов и бинарных сплавов. Рентгенографический метод измерения коэффициента диффузии.
курсовая работа [481,3 K], добавлен 17.05.2014Расчет кинематического коэффициента вязкости масла при разной температуре. Применение формулы Убеллоде для перехода от условий вязкости к кинематическому коэффициенту вязкости. Единицы измерения динамического и кинематического коэффициентов вязкости.
лабораторная работа [404,7 K], добавлен 02.02.2022Свойства молибдена и его сплавов. Формирование высокодисперсных жаропрочных структур в молибденовых сплавах с карбидными фазами, образующимися в процессе направленной кристаллизации. Регулярная пространственно-упорядоченная структура микрокомпозита.
курсовая работа [3,7 M], добавлен 05.06.2011Определение твердости металлов методами Бринелля, Роквелла и Виккерса. Составление диаграммы состояния железо - карбид железа. Описание структуры доэвтектоидного сплава при комнатной температуре. Изучение процессов закалки и отпуска хромистой стали.
контрольная работа [908,4 K], добавлен 21.07.2013Объяснение перехода теплоты от одного тела к другому на основе калориметрических опытов, произведенных русским ученым М.В. Ломоносовым. Определение теплоемкости металлов (алюминия и железа) при комнатной температуре, сравнение с теоретическими данными.
презентация [1,6 M], добавлен 19.12.2013Образование непрерывного ряда твердых растворов с никель-арсенидной структурой в системе Co1-xNixTe при закалке от температур, близких к температуре солидуса, их поведение. Измерения удельной намагниченности сплавов системы, ее температурная зависимость.
реферат [1,1 M], добавлен 26.06.2010Поиск полупроводниковых соединений в современной фотоэлектронной энергетике для замены монокристаллических кремниевых элементов. Изучение сплавов полупроводниковой системы CuInSe2-CuSbSe2 с помощью рентгенофазового анализа и микроструктурных исследований.
реферат [3,6 M], добавлен 25.06.2010Закон Ома электропроводности металлов. Состояние металла, возникающее в процессе электропроводности. Уравнение энергетического баланса процесса электропроводности в металлах. Деформационная поляризация металлов под действием электрического тока.
реферат [56,3 K], добавлен 26.01.2008Рентгеновский структурный анализ, его сущность и содержание. Исследование аморфных материалов и частично упорядоченных объектов. Строение реальных металлов и дефекты кристаллического строения. Особенности уширения спектральных линий в газах и плазме.
курсовая работа [2,0 M], добавлен 27.01.2015Исходные понятия реологии. Описание методов изучения реологических свойств аномальной нефти. Рассмотрение состава и свойств асфальтенов. Определения вязкости нефти и нефтепродуктов. Особенности применения капиллярных и ротационных вискозиметров.
реферат [502,9 K], добавлен 20.01.2016Исследование металлов, хорошо проводящих электрический ток. Полупроводники - твердые тела с промежуточной электропроводностью. Проявление различия полупроводников и металлов в характере зависимости электропроводности от температуры. Уравнение Шредингера.
реферат [338,7 K], добавлен 18.02.2009