Теоретические основы материаловедения

Определение свойств металлов и сплавов. Характеристика прочности, пластичности и упругости. Оценка ударной вязкости. Рассмотрение искажения в кристаллической решетке при наличии краевой дислокации. Особенности процесса кристаллизации металлов и сплавов.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 13.12.2015
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Эти примеси ухудшают пластичность алюминия и часто нежелательны в сплавах. Относительное удлинение для алюминия, содержащего 0,005% примесей составляет 45%, при содержании примесей 1%- =25%.

Для повышения прочностных свойств в алюминий вводят легирующие элементы, наиболее распространенными из которых являются медь, цинк, кремний, магний, марганец, литий.

По технологическим свойствам и способам получения изделий алюминииевые сплавы подразделяются на три группы:

деформируемые сплавы, не упрочняемые термической обработкой:

деформируемые сплавы, упрочняемые термической обработкой;

литейные сплавы.

Принцип маркировки алюминиевых сплавов. В начале указывается тип сплава: Д - сплавы типа дюралюминов; А - технический алюминий; АК - ковкие алюминиевые сплавы; В - высокопрочные сплавы; АЛ - литейные сплавы.

Далее указывается условный номер сплава. За условным номером следует обозначение, характеризующее состояние сплава: М - мягкий (отожженный); Т - термически обработанный (закалка плюс старение); Н - нагартованный; П - полунагартованный

Методами порошковой металлургии изготовляют спеченные алюминиевые сплавы (САС) испеченные алюминиевые порошковые сплавы (САП).

Деформируемые сплавы, не упрочняемые термической обработкой.

Прочность алюминия можно повысить легированием. В сплавы, не упрочняемые термической обработкой, вводят марганец или магний. Атомы этих элементов существенно повышают его прочность, снижая пластичность. Обозначаются сплавы: с марганцем - АМц, с магнием - АМг; после обозначения элемента указывается его содержание (АМг3).

Магний действует только как упрочнитель, марганец упрочняет и повышает коррозионную стойкость.

Прочность сплавов повышается только в результате деформации в холодном состоянии. Чем больше степень деформации, тем значительнее растет прочность и снижается пластичность. В зависимости от степени упрочнения различают сплавы нагартованные и полунагартованные (АМг3П).

Эти сплавы применяют для изготовления различных сварных емкостей для горючего, азотной и других кислот, мало- и средненагруженных конструкций.

Деформируемые сплавы, упрочняемые термической обработкой.

К таким сплавам относятся дюралюмины ( сложные сплавы систем алюминий - медь -магний или алюминий - медь - магний - цинк). Они имеют пониженную коррозионную стойкость, для повышения которой вводится марганец.

Дюралюмины обычно подвергаются закалке с температуры 500oС и естественному старению, которому предшествует двух-, трехчасовой инкубационный период. Максимальная прочность достигается через 4…5 суток.

Широкое применение дюралюмины находят в авиастроении, автомобилестроении, строительстве.

Высокопрочными стареющими сплавами являются сплавы, которые кроме меди и магния содержат цинк. Сплавы В95, В96 имеют предел прочности около 650 МПа. Основной потребитель - авиастроение (обшивка, стрингеры, лонжероны).

Ковочные алюминиевые сплавы АК:, АК8 применяются для изготовления поковок. Поковки изготавливаются при температуре 380…450oС, подвергаются закалке от температуры 500…560oС и старению при 150…165oС в течение 6…15 часов.

В состав алюминиевых сплавов дополнительно вводят никель, железо, титан, которые повышают температуру рекристаллизации и жаропрочность до 300oС.

Изготавливают поршни, лопатки и диски осевых компрессоров, турбореактивных двигателей.

Литейные алюминиевые сплавы.

К литейным сплавам относятся сплавы системы алюминий - кремний (силумины), содержащие 10…13 % кремния.

Присадка к силуминам магния, меди содействует эффекту упрочнения литейных сплавов при старении. Титан и цирконий измельчают зерно. Марганец повышает антикоррозионные свойства. Никель и железо повышают жаропрочность.

Литейные сплавы маркируются от АЛ2 до АЛ20. Силумины широко применяют для изготовления литых деталей приборов и других средне- и малонагруженных деталей, в том числе тонкостенных отливок сложной формы.

Медные сплавы

Медь имеет гранецентрированную кубическую решетку. Плотность меди 8940 кг/м3, температура плавления 1083oС.

Характерным свойством меди является ее высокая электропроводность, поэтому она находит широкое применение в электротехнике. Технически чистая медь маркируется: М00 (99,99 % Cu), М0 (99,95 % Cu), М2, М3 и М4 (99 % Cu).

Механические свойства меди относительно низкие: предел прочности составляет 150…200 МПа, относительное удлинение - 15…25 %. Поэтому в качестве конструкционного материала медь применяется редко. Повышение механических свойств достигается созданием различных сплавов на основе меди.

Различают две группы медных сплавов: латуни - сплавы меди с цинком, бронзы - сплавы меди с другими (кроме цинка) элементами.

Латуни

Латунями называют сплавы меди с цинком и другими элементами. Структура двойных латуней определяется положением сплава на диаграмме состояния «медь-цинка рис. 11.2).

При содержании цинка до 39% сплав состоит из зерен твердого раствора замещения цинка в меди. В литом сплаве зерна имеют форму дендритов (рис.11.3.), что свидетельствует о неоднородности их химического состава, т.е. дендритной ликвации. Такая структура является нежелательной, т.к. свойства сплава неодинаковы по сечению зерен и могут быть ниже требуемых. Чтобы устранить дендритную ликвацию, сплав подвергают высокотемпературному отжигу (диффузионному). В процессе отжига происходит выравнивание химического состава каждого зерна и свойства сплава улучшаются. Структура при этом становится гомогенной, равновесной Однофазные латуни обладают очень высокой пластичностью, поэтому используются для изготовления прутков, лент, труб, фольги, проволоки и других полуфабрикатов.

При содержании цинка свыше 39% в структуре латуни появляется вторая фаза - твердый раствор в. Его основу составляет химическое соединение Твердый раствор в травится сильнее, чем б, поэтому в двухфазных сплавах под микроскопом он виден темным (рис. 11.4.). При комнатных температурах в- раствор обладает очень низкой пластичностью и повышенной хрупкостью, поэтому в машиностроении применяются лишь б и б+в латуни.

Рис. 11.2. Диаграмма состояния «медь - цинк»

Для придания латуням более высоких механических или специальных свойств в них дополнительно вводят легирующие добавки -алюминий, железо, марганец, никель, олово, кремний, свинец и др. В структуре сплава они могут быть растворенными в твердом растворе или образовывать химические соединения.

Латуни сложного химического состава - многофазные; они используются преимущественно для получения методами литья деталей, работающих в тяжелых силовых и коррозионных условиях.

По способу изготовления изделий различают латуни деформируемые и литейные.

Деформируемые латуни маркируются буквой Л, за которой следует число, показывающее содержание меди в процентах, например в латуни Л62 содержится 62 % меди и 38 % цинка. Если кроме меди и цинка, имеются другие элементы, то ставятся их начальные буквы ( О - олово, С - свинец, Ж - железо, Ф - фосфор, Мц - марганец, А - алюминий, Ц - цинк). Количество этих элементов обозначается соответствующими цифрами после числа, показывающего содержание меди, например, сплав ЛАЖ60-1-1 содержит 60 % меди, 1 % алюминия, 1 % железа и 38 % цинка.

Литейные латуни также маркируются буквой Л. После буквенного обозначения основного легирующего элемента (цинк) и каждого последующего ставится цифра, указывающая его усредненное содержание в сплаве. Например, латунь ЛЦ23А6Ж3Мц2 содержит 23 % цинка, 6 % алюминия, 3 % железа, 2 % марганца. Наилучшей жидкотекучестью обладает латунь марки ЛЦ16К4. К литейным латуням относятся латуни типа ЛС, ЛК, ЛА, ЛАЖ, ЛАЖМц. Литейные латуни не склонны к ликвации, имеют сосредоточенную усадку, отливки получаются с высокой плотностью.

Бронзы

Сплавы меди с другими элементами кроме цинка называются бронзами.

Бронзы подразделяются на деформируемые и литейные.

При маркировке деформируемых бронз на первом месте ставятся буквы Бр, затем буквы, указывающие, какие элементы, кроме меди, входят в состав сплава. После букв идут цифры, показывающие содержание компонентов в сплаве. Например, марка БрОФ10-1 означает, что в бронзу входит 10 % олова, 1 % фосфора, остальное - медь.

Маркировка литейных бронз также начинается с букв Бр, затем указываются буквенные обозначения легирующих элементов и ставится цифра, указывающая его усредненное содержание в сплаве. Например, бронза БрО3Ц12С5 содержит 3 % олова, 12 % цинка, 5 % свинца, остальное - медь.

Название бронзам дают по названию основного легирующего элемента, например, оловянная, алюминиевая и т.п. Отдельные бронзы в качестве легирующего компонента содержат цинк, но он не является основным. Но фазовому составу бронзы делят на однофазные и двухфазные. Однофазные бронзы состоят из зерен твердого раствора легирующих элементов в меди, называемого - фазой. По технологическому признаку бронзы, как и латуни, делят на 2 группы: литейные и деформируемые.

Оловянные бронзы подразделяются на деформируемые и литейные.

В деформируемых бронзах содержание олова не должно превышать 6 %, для обеспечения необходимой пластичности, БрОФ6,5-0,15.

В зависимости от состава деформируемые бронзы отличаются высокими механическими, антикоррозионными, антифрикционными и упругими свойствами, и используются в различных отраслях промышленности. Из этих сплавов изготавливают прутки, трубы, ленту, проволоку.

Литейные оловянные бронзы, БрО3Ц7С5Н1, БрО4Ц4С17, применяются для изготовления пароводяной арматуры и для отливок антифрикционных деталей типа втулок, венцов червячных колес, вкладышей подшипников.

Алюминиевые бронзы, БрАЖ9-4, БрАЖ9-4Л, БрАЖН10-4-4.Бронзы с содержанием алюминия до 9,4 % имеют однофазное строение - твердого раствора. При содержании алюминия 9,4…15,6 % сплавы системы медь - алюминий двухфазные и состоят из - и - фаз.

Оптимальными свойствами обладают алюминиевые бронзы, содержащие 5…8 % алюминия. Увеличение содержания алюминия до 10…11 % вследствие появления - фазы ведет к резкому повышению прочности и сильному снижению пластичности. Дополнительное повышение прочности для сплавов с содержанием алюминия 8…9,5 % можно достичь закалкой.

Положительные особенности алюминиевых бронз по сравнению с оловянными:

меньшая склонность к внутрикристаллической ликвации;

большая плотность отливок;

более высокая прочность и жаропрочность;

меньшая склонность к хладоломкости.

Основные недостатки алюминиевых бронз:

значительная усадка;

склонность к образованию столбчатых кристаллов при кристаллизации и росту зерна при нагреве, что охрупчивает сплав;

сильное газопоглощение жидкого расплава;

самоотпуск при медленном охлаждении;

недостаточная коррозионная стойкость в перегретом паре.

Для устранения этих недостатков сплавы дополнительно легируют марганцем, железом, никелем, свинцом.

Из алюминиевых бронз изготавливают относительно мелкие, но высокоответственные детали типа шестерен, втулок, фланцев литьем и обработкой давлением. Из бронзы БрА5 штамповкой изготавливают медали и мелкую разменную монету.

Кремнистые бронзы, БрКМц3-1, БрК4, применяют как заменители оловянных бронз. Они немагнитны и морозостойки, превосходят оловянные бронзы по коррозионной стойкости и механическим свойствам, имеют высокие упругие свойства. Сплавы хорошо свариваются и подвергаются пайке. Благодаря высокой устойчивости к щелочным средам и сухим газам, их используют для производства сточных труб, газо- и дымопроводов.

Свинцовые бронзы, БрС30, используют как высококачественный антифрикционный материал. По сравнению с оловянными бронзами имеют более низкие механические и технологические свойства.

Бериллиевые бронзы относятся к числу самых высокопрочных медных сплавов. Бронза БрБ2, является высококачественным пружинным материалом. Растворимость бериллия в меди с понижением температуры значительно уменьшается. Это явление используют для получения высоких упругих и прочностных свойств изделий методом дисперсионного твердения. Готовые изделия из бериллиевых бронз подвергают закалке от 800oС, благодаря чему фиксируется при комнатной температуре пересыщенные твердый раствор бериллия в меди. Затем проводят искусственное старение при температуре 300…350oС. При этом происходит выделение дисперсных частиц, возрастают прочность и упругость. После старения предел прочности достигает 1100…1200 МПа.

Титан и его сплавы

Титан серебристо-белый легкий металл с плотностью 4500 кг/м3. Температура плавления титана зависит от степени чистоты и находится в пределах 1660…1680oС.

Чистый иодидный титан, в котором сумма примесей составляют 0,05…0,1 %, имеет модуль упругости 112 000 МПа, предел прочности около 300 МПа, относительное удлинение 65%. Наличие примесей сильно влияет на свойства. Для технического титана ВТ1, с суммарным содержанием примесей 0,8 %, предел прочности составляет 650 МПа, а относительное удлинение - 20 %.

При температуре 882oС титан претерпевает полиморфное превращение, б-титан с гексагональной решеткой переходит в в- титан с объемно-центрированной кубической решеткой. Наличие полиморфизма у титана создает предпосылки для улучшения свойств титановых сплавов с помощью термической обработки.

Титан имеет низкую теплопроводность. При нормальной температуре обладает высокой коррозионной стойкостью в атмосфере, в воде, в органических и неорганических кислотах ( не стоек в плавиковой, крепких серной и азотной кислотах), благодаря тому, что на воздухе быстро покрывается защитной пленкой плотных оксидов. При нагреве выше 500oС становится очень активным элементом. Он либо растворяет почти все соприкасающиеся и ним вещества, либо образует с ними химические соединения.

Титановые сплавы имеют ряд преимуществ по сравнению с другими:

сочетание высокой прочности =800…1000 МПа с хорошей пластичностью ( =12…25%);

малая плотность, обеспечивающая высокую удельную прочность;

хорошая жаропрочность, до 600…700oС; высокая коррозионная стойкость в агрессивных средах.

Однородные титановые сплавы, не подверженные старению, используют в криогенных установках до гелиевых температур.

Элементы, повышающие температуру превращения, способствуют стабилизации б-- твердого раствора и называются б-стабилизаторами, это - алюминий, кислород, азот, углерод.

Элементы, понижающие температуру превращения, способствуют стабилизации в- твердого раствора и называются в- стабилизаторами, это - молибден, ванадий, хром, железо.

Кроме б- и в-стабилизаторов различают нейтральные упрочнители: олово, цирконий, гафний.

В соответствии с влиянием легирующих элементов титановые сплавы при нормальной температуре могут иметь структуру б или б + в.

Сплавы на основе титана можно подвергать всем видам термической обработки, химико-термической и термомеханической обработке. Упрочнение титановых сплавов достигается легированием, наклепом, термической обработкой.

Часто титановые сплавы легируют алюминием, он увеличивает прочность и жаропрочность, уменьшает вредное влияние водорода, увеличивает термическую стабильность. Для повышения износостойкости титановых сплавов их подвергают цементации или азотированию.

Основным недостатком титановых сплавов является плохая обрабатываемость режущим инструментом.

По способу производства деталей различаются деформируемые (ВТ 9, ВТ 18) и литейные (ВТ 21Л, ВТ 31Л) сплавы.

Области применения титановых сплавов:

авиация и ракетостроение (корпуса двигателей, баллоны для газов, сопла, диски, детали крепежа);

химическая промышленность (компрессоры, клапаны, вентили для агрессивных жидкостей);

оборудование для обработки ядерного топлива;

морское и речное судостроение (гребные винты, обшивка морских судов, подводных лодок);

криогенная техника (высокая ударная вязкость сохраняется до -253oС).

Неметаллические материалы

Пластмассы

Пластмассы (пластики) - это органические материалы на основе полимеров, которые способны при нагреве размягчаться и под давлением принимать определенную устойчивую форму. Простые пластмассы состоят из одних химических полимеров. Сложные пластмассы включают добавки: наполнители, пластификаторы, красители, отвердители, катализаторы.

Полимеры - это вещества, макромолекулы которых состоят из многочисленных повторяющихся элементарных звеньев, которые представляют одинаковую группу атомов. Молекулярная масса молекул составляет от 500 до 1000000.

В молекулах полимеров различают главную цепь, которая построена из большого числа атомов. Боковые цепи имеют меньшую протяженность.

Полимеры, главная цепь которых содержит одинаковые атомы, называют гомоцепными, а если атомы углерода - карбоцепными. Полимеры, в главной цепи которых содержатся различные атомы, называют гетероцепными.

Макромолекулы полимеров по форме делят на линейные, разветвленные, плоские, ленточные, пространственные или сетчатые.

Линейные макромолекулы полимера - длинные зигзагообразные и скрученные в спираль цепочки, которым присуща гибкость, ограничивающаяся жесткими участками - сегментами, состоящими из нескольких звеньев. Такие макромолекулы обладают высокой прочностью вдоль главной цепи, слабо связаны между собой и обеспечивают высокую эластичность материала. Нагрев вызывает размягчение, а последующее охлаждение - затвердевание полимера (полиамид, полиэтилен).

Разветвленная макромолекула содержит боковые ответвления и это затрудняет сближение макромолекул и понижает межмолекулярное взаимодействие. Полимеры с такой формой отличаются пониженной прочностью, повышенной плавкостью и рыхлостью. Сшитые формы макромолекул свойственны более прочным, нерастворимым и неплавким полимерам, склонным к набуханию в растворителях и размягчению при нагревании.

Макромолекулы полимеров обладают гибкостью.

Наполнители в пластмассы вводят в количестве 40-70 % для повышения твердости, прочности, жесткости, придания особых специфических свойств. Наполнителями могут быть ткани и порошкообразные, волокнистые вещества.

Пластификаторы (стеарин, олеиновая кислота) способствуют повышению эластичности, пластичности и облегчают обработку пластмасс.

Отвердители (амины) и катализаторы (перекисные соединения) вводят в пластмассы для отверждения.

Красители (минеральные пигменты, спиртовые растворы органических красок) придают пластмассам определенную окраску и снижают их стоимость. Состав компонентов, их сочетание и количественное соотношение позволяют изменять свойства пластмасс в широких пределах. Пластмассы классифицируют по признакам.

По виду наполнителя: с твердым наполнителем; с газообразным наполнителем.

По реакции связующего полимера к повторным нагревам. Термопластичные пластмассы на основе термопластичного полимера размягчаются при нагреве и затвердевают при последующем охлаждении (чистые полимеры или композиции полимеров с пластификаторами, противостарителями).

Термопласты отличаются низкой усадкой 1-3%. Для них характерны малая хрупкость, большая упругость и способность к ориентации.

Термореактивные пластмассы на основе термореактивных полимеров (смол) после тепловой обработки - отверждения - переходят в термостабильное состояние и отличаются хрупкостью, имеют большую усадку 10-15 % и содержат в своем составе наполнители.

По применению подразделяются на группы: конструкционные - для силовых деталей и конструкций, для несиловых деталей; прокладочные, уплотнительные; фрикционные и антифрикционные; электроизоляционные, радиопрозрачные теплоизоляционные; стойкие к воздействию огня, масел, кислот; облицовочно-декоративные.

Полиэтилен можно использовать длительное время при 60-100 °C. Морозостойкость достигает -70 °C и ниже. Химически стоек и нерастворим в растворителях, применяется для изоляции защитных оболочек кабелей проводов, деталей высокочастотных установок и изготовления коррозионностойких деталей - труб, прокладок, шлангов. Его выпускают в виде пленки, листов, труб, блоков. Полиэтилен подвержен старению

Полистирол - это аморфный, твердый, прозрачный полимер, который имеет линейное строение, высокие диэлектрические свойства, удовлетворительную механическую прочность, невысокую рабочую температуру (до 100 °C), химическую стойкость в щелочах, минеральных и органических кислотах, маслах. Он набухает в 65 %-ной азотной, ледяной уксусной кислотах, бензине и керосине. При температуре выше 200 °C разлагается, образуя стирол. Полистирол применяют для производства слабонагруженных деталей и высокочастотных изоляторов. Недостатки - хрупкость при пониженных температурах, склонность к постепенному образованию поверхностных трещин.

Пластмассы широко применяются в машиностроении и приборостроении для изготовления деталей. Пластмассы электротехнического назначения применяют в качестве электроизоляционных материалов в конструкциях машин.

Композиционные материалы

Композиционные материалы - искусственно созданные материалы, которые состоят из двух или более компонентов, различающихся по составу и разделенных выраженной границей, и которые имеют новые свойства, запроектированные заранее.

Компоненты композиционного материала различны по геометрическому признаку.

Компонент, непрерывный во всем объеме композиционного материала, называется матрицей.

Компонент прерывистый, разделенный в объеме композиционного материала, называется арматурой.

Матрица придает требуемую форму изделию, влияет на создание свойств композиционного материала, защищает арматуру от механических повреждений и других воздействий среды.

В качестве матриц в композиционных материалах могут быть использованы металлы и их сплавы, полимеры органические и неорганические, керамические, углеродные и другие материалы. Свойства матрицы определяют технологические параметры процесса получения композиции и ее эксплуатационные свойства: плотность, удельную прочность, рабочую температуру, сопротивление усталостному разрушению и воздействию агрессивных сред.

Армирующие или упрочняющие компоненты равномерно распределены в матрице. Они, как правило, обладают высокой прочностью, твердостью и модулем упругости и по этим показателям значительно превосходят матрицу. Вместо термина армирующий компонент можно использовать термин наполнитель.

Композиционные материалы классифицируют по геометрии наполнителя, расположению его в матрице, природе компонентов.

По геометрии наполнителя композиционные материалы подразделяются на три группы:

с нуль-мерными наполнителями, размеры которых в трех измерениях имеют один и тот же порядок;

с одномерными наполнителями, один из размеров которых значительно превышает два других;

с двухмерными наполнителями, два размера которых значительно превышают третий.

По схеме расположения наполнителей выделяют три группы композиционных материалов:

с одноосным (линейным) расположением наполнителя в виде волокон, нитей, нитевидных кристаллов в матрице параллельно друг другу;

с двухосным (плоскостным) расположением армирующего наполнителя, матов из нитевидных кристаллов, фольги в матрице в параллельных плоскостях;

с трехосным (объемным) расположением армирующего наполнителя и отсутствием преимущественного направления в его расположении.

По природе компонентов композиционные материалы разделяются на четыре группы:

композиционные материалы, содержащие компонент из металлов или сплавов;

композиционные материалы, содержащие компонент из неорганических соединений оксидов, карбидов, нитридов и др.;

композиционные материалы, содержащие компонент из неметаллических элементов, углерода, бора и др.;

композиционные материалы, содержащие компонент из органических соединений эпоксидных, полиэфирных, фенольных и др.

В композиционных материалах с нуль-мерным наполнителем наибольшее распространение получила металлическая матрица. Композиции на металлической основе упрочняются равномерно распределенными дисперсными частицами различной дисперсности. Такие материалы отличаются изотропностью свойств.

В таких материалах матрица воспринимает всю нагрузку, а дисперсные частицы наполнителя препятствуют развитию пластической деформации. Эффективное упрочнение достигается при содержании 5…10 % частиц наполнителя.

Армирующими наполнителями служат частицы тугоплавких оксидов, нитридов, боридов, карбидов.

Дисперсионно упрочненные композиционные материалы получают методами порошковой металлургии или вводят частицы армирующего порошка в жидкий расплав металла или сплава.

Промышленное применение нашли композиционные материалы на основе алюминия, упрочненные частицами оксида алюминия (Al2O3). Их получают прессованием алюминиевой пудры с последующим спеканием (САП). Преимущества САП проявляются при температурах выше 300oС, когда алюминиевые сплавы разупрочняются. Дисперсионно упрочненные сплавы сохраняют эффект упрочнения до температуры 0,8 Тпл.

Сплавы САП удовлетворительно деформируются, легко обрабатываются резанием, свариваются аргонодуговой и контактной сваркой. Из САП выпускают полуфабрикаты в виде листов, профилей, труб, фольги. Из них изготавливают лопатки компрессоров, вентиляторов и турбин, поршневые штоки.

В композиционных материалах с одномерными наполнителями упрочнителями являются одномерные элементы в форме нитевидных кристаллов, волокон, проволоки, которые скрепляются матрицей в единый монолит. Важно, чтобы прочные волокна были равномерно распределены в пластичной матрице. Для армирования композиционных материалов используют непрерывные дискретные волокна с размерами в поперечном сечении от долей до сотен микрометров.

Материалы, армированные нитевидными монокристаллами, были созданы в начале семидесятых годов для авиационных и космических конструкций. Основным способом выращивания нитевидных кристаллов является выращивание их из перенасыщенного пара (ПК-процесс). Для производства особо высокопрочных нитевидных кристаллов оксидов и других соединений осуществляется рост по П-Ж-К - механизму: направленный рост кристаллов происходит из парообразного состояния через промежуточную жидкую фазу.

Композиционные материалы этого типа перспективны как высокожаропрочные материалы. Для увеличения к.п.д. тепловых машин лопатки газовых турбин изготавливают из никелевых сплавов, армированных нитями сапфира (Al2O3), это позволяет значительно повысить температуру на входе в турбину (предел прочности сапфировых кристаллов при температуре 1680oС выше 700 МПа).

Для армирования композиционных материалов применяют металлическую проволоку из разных металлов: стали разного состава, вольфрама, ниобия, титана, магния - в зависимости от условий работы. Стальная проволока перерабатывается в тканые сетки, которые используются для получения композиционных материалов с ориентацией арматуры в двух направлениях.

Для армирования легких металлов применяются волокна бора, карбида кремния. Особенно ценными свойствами обладают углеродистые волокна, их применяют для армирования металлических, керамических и полимерных композиционных материалов.

Полимерные композиционные материалы. Особенностью является то, что матрицу образуют различные полимеры, служащие связующими для арматуры, которая может быть в виде волокон, ткани, пленок, стеклотекстолита.

Экономически обоснованный выбор материала

Правильный выбор материала для конкретного изделия является исключительно важной задачей. Он производится с учетом целого ряда критериев.При этом технические критерии выбора материала определяются условиями эксплуатации изделия. Они определяют комплекс механических свойств (прочность, упругость, твердость, пластичность, вязкость), а в ряде случаев и требования к специальным свойствам (коррозионная стойкость, жаростойкость, жаропрочность, износостойкость, радиоционная стойкость и др.). Способ изготовления изделий определяет требования к технологическим свойствам материала (ковкость, литейные свойства, обрабатываемость резанием, свариваемость). Если изделие должно подвергаться термической обработке, следует также учитывать прокаливаемость и закаливаемость.

Приведенные требования накладывают определенные ограничения на выбор материала. Если они оказываются достаточно жесткими, то возможный выбор ограничивается весьма узкой группой материалов. При меньшей жесткости требований выбор становится более широким. В любом случае, когда возможны различные варианты решения задачи выбора материала, окончательный ответ должен дать экономический анализ вопроса. Исходными данными для этого служат цены материалов. Однако выбор наиболее дешевого материала далеко не всегда будет оптимальным. Экономия также может быть получена за счет следующих факторов.

1. Использование более прочного материала. Это дает возможность уменьшить размеры изделия, т.е. позволяет снизить расход материала на единицу готовой продукции. Уменьшение размеров также способствует снижению затрат на транспортирование изделий. Кроме того, появляется возможность повысить мощность и производительность оборудования, изготовленного из более прочных материалов.

2. Применение более технологичного материала, позволяющего применять более экономичные методы изготовления и обработки изделий. При этом экономия может быть получена как непосредственно за счет снижения себестоимости изготовления, так и за счет снижения расхода материала благодаря уменьшению отходов и брака.

3. Применение материала с более длительным сроком службы, что приводит к повышению долговечности готового изделия.

4. Использование материалов, способных работать в более тяжелых условиях (при более высоких нагрузках, более высоких температурах, в более агрессивной среде). Применение таких материалов при изготовлении различных машин и оборудования позволяет изменить рабочие параметры машин (например, повысить давление или температуру), что приводит к повышению производительности и, соответственно, снижению себестоимости единицы работы или продукции.

Перечисленные факторы связаны, прежде всего, с повышением качества используемого материала. Более качественный материал, как правило, является и более дорогостоящим, так как улучшение качества сопровождается увеличением затрат на производство материала. Правильный выбор материала должен учитывать как экономический эффект от повышения качества, так и увеличение стоимости материала. Для этого производится сравнительный расчет экономической эффективности применения различных материалов, по результатам которого и делается окончательный выбор. Только если увеличение цены перекрывается полученным экономическим эффектом, применение более дорогостоящего материала целесообразно

Целесообразность применения пластмасс диктуется техническими соображениями. Свойства пластмасс с одной стороны делают их незаменимыми, а с другой часто не позволяют им конкурировать с металлическими материалами. Если же применение пластмасс по техническим соображениям возможно, оно обычно является экономически эффективным. Благодаря малой плотности пластмассы в 4 раза снижается материалоемкость изделий. Затраты на производство пластмассовых изделий значительно меньше, чем на производство металлических. Это происходит вследствие хорошей технологичности пластмасс: производство пластмассовых изделий происходит путем прессования, литья или выдавливания, а металлические изделия производятся литьем или обработкой давлением, путем механической и термической обработки с большим числом операций. Часто применение пластмасс в машинах и оборудовании приводит к уменьшению затрат на смазку, ремонт, повышению надежности, увеличению срока службы и т. д. Благодаря всему этому себестоимость пластмассовых изделий в 2-3 раза ниже себестоимости аналогичных металлических.

Основные направления экономии материалов

Доля стоимости материалов составляет от 40 -- 70% всех затрат на изготовление готовых изделий. А для изделий, производство которых широко механизировано и автоматизировано (шарикоподшипники, болты, электрокабели) эта доля доходит до 80%. Поэтому экономия материалов -- один из важнейших резервов снижения себестоимости готовой продукции. Еще более важен тот факт, что запасы сырья для производства материалов (различные руды для металлов и сплавов, нефть и газ для полимерных материалов и др.) являются ограниченными. Отсюда ясно, что экономия и повышение эффективности использования материалов являются насущной задачей.

Огромное количество материалов теряется в процессе производства готовых изделий. В нашей стране вследствие устаревших методов разливки стали из каждой ее тонны получалось примерно 750 кг готового проката, а далее в машиностроении из каждой тонны проката около 250 кг уходило в отходы. Потери материала при производстве изделий характеризует коэффициент использования материала, представляющий собой отношение массы готового изделия к массе заготовки. Для профильного проката он составляет 0,7; прутков -- 0,35; горячей штамповки -- 0,45 и свободной ковки -- 0,3. Более высокий коэффициент использования материала характерен для литейного производства: для литья в песчаные формы он составляет 0,7; литья в кокиль -- 0,75; в оболочковые формы -- 0,8; литья по выплавляемым моделям -- 0,9 и литья под давлением -- 0,95. Очень высок коэффициент использования при изготовлении изделий из металлических порошков. Благодаря хорошей технологичности пластмасс для них коэффициент использования материала выше, чем для металлов и сплавов: при прессовании он равен 0,9; при литье и выдавливании -- 0,95.

Из приведенных данных ясно, что основной путь экономии материала в процессе производства изделий --использование современных малоотходных и безотходных технологий: непрерывной разливки стали, малоотходных методов штамповки, специальных способов литья, методов порошковой металлургии.

Другое направление экономии материалов -- максимальное использование вторичных ресурсов. Это не только экономическая, но и экологическая задача, так как скопление отходов наносит огромный вред окружающей среде. Однако следует иметь в виду, что переработка отходов не всегда является технически выполнимой или экономически рентабельной. Использование металлолома в производстве металлов и сплавов не вызывает технических трудностей и экономически выгодно.

Производство стали из металлолома обходится в несколько раз дешевле, чем из чугуна. Кроме того, каждая тонна металлолома экономит 1,5 тонны железной руды. Производство цветных металлов из вторичного сырья также высокоэффективно. На производство тонны алюминия из металлолома затрачивается приблизительно в 20 раз меньше электроэнергии и в 7 раз меньше топлива. Используются отходы и других цветных металлов. Большая часть металлолома -- это промышленные отходы и пришедшие в негодность машины и оборудование. С экологической точки зрения важно также осуществлять переработку металлосодержащих шлаков, находящихся в отвалах и терриконах.

Значительно хуже обстоит дело с повторной переработкой пластмасс. Экологическая проблема заключается в том, что полимерные отходы разлагаются очень медленно или совсем не разлагаются. Некоторые виды пластмасс (термореактивные) вообще не поддаются вторичной обработке. Если же их сжигать, то это вызовет значительное загрязнение атмосферы. Из пластмасс, вторичное использование которых возможно, каждый вид требует своего способа переработки. Поэтому необходимо сортировать отходы по типу пластмасс. Это практически неосуществимо: на глаз распознать тип пластмассы очень трудно, а точный анализ был бы очень дорог.

Возможно использование измельченных отходов пластмасс, независимо от их вида, в качестве наполнителя при производстве строительных материалов и дорожных покрытий. Сказанное не относится к тем случаям, когда тип пластмасс известен (например, отходы пластмасс, получаемые непосредственно при производстве изделий). В этом случае осуществляется их переработка.

Огромные потери металлических материалов вызывает коррозия, которая приводит к долгосрочному выходу из строя изделий и сооружений. Ежегодно от коррозии теряется количество металла, равное 10% от выплавляемого. Поэтому важнейшее направление экономии металлических материалов -- правильная защита их от коррозии. Радикальный метод -- применение коррозионностойких (нержавеющих) сталей. Однако следует иметь в виду, что они в 4-8 раз дороже обыкновенных углеродистых сталей. Поэтому в каждом случае надо применять соответствующий метод защиты от коррозии.

Значительные потери материалов вызывает износ. При этом происходит выход из строя элементов машин, работающих в условиях трения, что вызывает дополнительные материальные потери, связанные с ремонтом техники. Борьба с износом- один из путей экономии материалов.

Размещено на Allbest.ru

...

Подобные документы

  • Рассмотрение правил получения серии однослойных образцов металлов и их сплавов, напылённых на подложки с варьируемой толщиной слоя. Изучение влияние толщины напылённого слоя на соотношение характеристических полос испускания в рентгеновских спектрах.

    дипломная работа [1,2 M], добавлен 20.07.2015

  • Понятие сплавов как сложных веществ, получаемых сплавлением или спеканием двух или нескольких веществ, называемых компонентами. Сплавы в жидком и твердом состоянии. Структурные составляющие сплавов. Особенности состояния железоуглеродистых сплавов.

    презентация [1,2 M], добавлен 02.05.2016

  • Металлические расплавы и их свойства. Характеристика экспериментальных и теоретических методов изучения строения жидких металлов. Результаты дифракционного эксперимента. Современные методы электронографии поверхностных слоев металлической жидкости.

    презентация [2,6 M], добавлен 22.02.2015

  • Основы сканирующей электронной микроскопии. Методические особенности электронно-микроскопического исследования металлических расплавов. Особенности микроскопов, предназначенных для исследования структуры поверхностных слоев металлических расплавов.

    реферат [1,5 M], добавлен 11.05.2013

  • Сущность полиморфизма, история его открытия. Физические и химические свойства полиморфных модификаций углерода: алмаза и графита, их сравнительный анализ. Полиморфные превращения жидких кристаллов, тонких пленок дийодида олова, металлов и сплавов.

    курсовая работа [493,4 K], добавлен 12.04.2012

  • Коэффициент теплопроводности металлов и его зависимость от параметров состояния вещества. Главные особенности калориметрического метода. Методические рекомендации к выполнению лабораторной работы "Определение коэффициента теплопроводности металлов".

    курсовая работа [79,4 K], добавлен 05.07.2012

  • Растворимость водорода в аллотропической форме титана. Влияние водорода на механические свойства титана высокой чистоты. Классификация сплавов титана по легирующим элементам. Сущность механизма и признаки водородного охрупчивания титановых сплавов.

    реферат [2,0 M], добавлен 15.01.2011

  • Методы получения наноразмерных объектов и контроля их характеристик. Изменение механических, электрических, магнитных, оптических и химических свойств металлов при переходе в наносостояние. Определение характеристик наноразмерных частиц в суспензиях.

    реферат [1,2 M], добавлен 26.06.2010

  • Электрификация производственных процессов на участке твердых сплавов, расчет электрического освещения и облучения. Расчет внутренних сетей. Описание изобретения для смешивания сыпучих материалов. Меры безопасности при обслуживании установки, охрана труда.

    курсовая работа [1,5 M], добавлен 20.01.2010

  • Феноменологическая и микроскопическая теория диффузии. Диффузионная релаксация Сноека, Зинера, магнитнаяа также сущность эффекта Горского. Магнитострикция чистых металлов и бинарных сплавов. Рентгенографический метод измерения коэффициента диффузии.

    курсовая работа [481,3 K], добавлен 17.05.2014

  • Расчет кинематического коэффициента вязкости масла при разной температуре. Применение формулы Убеллоде для перехода от условий вязкости к кинематическому коэффициенту вязкости. Единицы измерения динамического и кинематического коэффициентов вязкости.

    лабораторная работа [404,7 K], добавлен 02.02.2022

  • Свойства молибдена и его сплавов. Формирование высокодисперсных жаропрочных структур в молибденовых сплавах с карбидными фазами, образующимися в процессе направленной кристаллизации. Регулярная пространственно-упорядоченная структура микрокомпозита.

    курсовая работа [3,7 M], добавлен 05.06.2011

  • Определение твердости металлов методами Бринелля, Роквелла и Виккерса. Составление диаграммы состояния железо - карбид железа. Описание структуры доэвтектоидного сплава при комнатной температуре. Изучение процессов закалки и отпуска хромистой стали.

    контрольная работа [908,4 K], добавлен 21.07.2013

  • Объяснение перехода теплоты от одного тела к другому на основе калориметрических опытов, произведенных русским ученым М.В. Ломоносовым. Определение теплоемкости металлов (алюминия и железа) при комнатной температуре, сравнение с теоретическими данными.

    презентация [1,6 M], добавлен 19.12.2013

  • Образование непрерывного ряда твердых растворов с никель-арсенидной структурой в системе Co1-xNixTe при закалке от температур, близких к температуре солидуса, их поведение. Измерения удельной намагниченности сплавов системы, ее температурная зависимость.

    реферат [1,1 M], добавлен 26.06.2010

  • Поиск полупроводниковых соединений в современной фотоэлектронной энергетике для замены монокристаллических кремниевых элементов. Изучение сплавов полупроводниковой системы CuInSe2-CuSbSe2 с помощью рентгенофазового анализа и микроструктурных исследований.

    реферат [3,6 M], добавлен 25.06.2010

  • Закон Ома электропроводности металлов. Состояние металла, возникающее в процессе электропроводности. Уравнение энергетического баланса процесса электропроводности в металлах. Деформационная поляризация металлов под действием электрического тока.

    реферат [56,3 K], добавлен 26.01.2008

  • Рентгеновский структурный анализ, его сущность и содержание. Исследование аморфных материалов и частично упорядоченных объектов. Строение реальных металлов и дефекты кристаллического строения. Особенности уширения спектральных линий в газах и плазме.

    курсовая работа [2,0 M], добавлен 27.01.2015

  • Исходные понятия реологии. Описание методов изучения реологических свойств аномальной нефти. Рассмотрение состава и свойств асфальтенов. Определения вязкости нефти и нефтепродуктов. Особенности применения капиллярных и ротационных вискозиметров.

    реферат [502,9 K], добавлен 20.01.2016

  • Исследование металлов, хорошо проводящих электрический ток. Полупроводники - твердые тела с промежуточной электропроводностью. Проявление различия полупроводников и металлов в характере зависимости электропроводности от температуры. Уравнение Шредингера.

    реферат [338,7 K], добавлен 18.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.