Анализ физических явлений в механике

Расчет изменения энтропии при различных изопроцессах. Расчет скорости и ускорения гармонических колебаний. Кинетическая энергия поступательного движения молекул идеального газа. Моменты инерции тонкого диска относительно его главных центральных осей.

Рубрика Физика и энергетика
Вид шпаргалка
Язык русский
Дата добавления 26.02.2016
Размер файла 704,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Следует помнить, что температура -- это макроскопическая характеристика тела, т. е. термодинамическая переменная, в то время как кинетическая энергия характеризует отдельную частицу. Поэтому температура должна быть связана со средней кинетической энергией, приходящейся на одну частицу в системе большого числа частиц. Среднюю кинетическую энергию частиц в системе, состоящей из N частиц, обозначим через <Ek> и определим ее следующим образом:

.(2.1)

Если все частицы одинаковы, массу частицы можно вынести из-под знака суммы:

.(2.2)

Будем считать что температура T ~ 2<Ek>/3 = m<v2>/3.

Для того чтобы выразить температуру в градусах, нужно ввести коэффициент пропорциональности, показывающий, сколько джоулей соответствует одному градусу. Он называется постоянной Больцмана и, как показывают измерения, равен 1,38·10_23 Дж/К, где К означает градус Кельвина -- единицу измерения температуры, используемую в физической шкале. Тогда соотношение между температурой в градусах и энергией в джоулях запишется в виде:

или . (2.3)

Принятая в физике шкала температур называется абсолютной шкалой, или шкалой Кельвина. В этой шкале температура замерзания воды, то есть 0°С, соответствует 273,15 градусов Кельвина, что обозначается 273,15 К. Согласно выражению (2.3) при T = 0 всякое тепловое движение частиц в веществе прекращается. Эта температура имеет название абсолютного нуля.

Подчеркнем статистический характер определения температуры, поскольку она связана со средней энергией частиц. Поэтому можно говорить лишь о температуре системы достаточно большого числа частиц -- макроскопической системы, и нельзя говорить о температуре одной или, допустим, десяти частиц. В процессе измерения температуры происходит обмен теплом между системой частиц -- объектом измерения и измерительным прибором -- термометром. Понятие температуры тела приобретает смысл в том случае, если обмен теплом между телом и прибором в процессе измерения температуры мало изменяет состояние тела.

23. Политропический процесс

Политропическими называют процессы, при которых теплоемкость тела остается постоянной. Таким образом, условие, которое выполняется в ходе политропического процесса заключается в том, что С=const.

Найдем уравнение политропы для идеального газа. Напишем уравнение первого начала термодинамики для одного моля газа. dQ=CdT

CdT=CvdT+pdV

В это уравнение входят все три параметра p, V, T. Один из них можно исключить с помощью уравнения состояния, и получим:

pdV+Vdp=RdT

Исключая из этих двух уравнений dT и производя приведение получим:

(C - Cv - R)pdV + (C - Cv)Vdp=0

Заменим Cv + R на Сp и делим на pV

(С - Сp)

Так как С, Сp, Cv=const, интегрируем

(С - Сp)lnV

Делим на C - Cv

pVn=const

где n= - показатель политропы при политропическом процессе.

При n= это выражение равно нулю.

Процесс

N

Изобара

0

Изотерма

1

Адиабата

Изохора

24. Основное уравнения вращательного движения твердого тела

Твердое тело -- это система материальных точек, расстояние между которыми остается неизменным при взаимодействии системы с другими телами. Движение твердого тела бывает поступательным и вращательным. Всякое движение твердого тела можно представить как сумму движения названных двух типов. Покажем это для случая плоского движения, т. е. такого, при котором все точки тела перемещаются в параллельных плоскостях. В качестве примера плоского движения возьмем качение цилиндра по плоскости.

Скорость каждой точки цилиндра может быть представлена в виде:

где v0 -- скорость поступательного движения, одинаковая для всех точек тела, а v' линейная скорость точки, обусловленная вращением тела и разная для разных точек тела. Линейная скорость точки с радиусом-вектором r:

.

Рассмотрим твердое тело, которое может вращаться относительно некоторой оси (рис.). Момент импульса i-й точки тела относительно этой оси определяется формулой:

.

Выражая линейную скорость точки через угловую скорость тела и используя свойства векторного произведения, получим

Спроектируем момент импульса на ось вращения: -- эта проекция определяет момент относительно этой оси. Получим

.

где zi,- координата i--точки вдоль оси Z, a Ri, -- расстояние точки от оси вращения. Суммируя по всем частицам тела, получим момент импульса всего тела относительно оси вращения:

.

Величина

является моментом инерции тела относительно оси вращения. Момент импульса тела относительно данной оси вращения принимает, таким образом, вид:

Mz = J·щ.

Это и есть основное уравнение динамики вращательного движения.

25. Момент импульса. Момент силы

Мы видели, что механические свойства замкнутой системы не изменяются при ее параллельном переносе в пространстве. Это свойство является следствием однородности пространства, то есть отсутствием каких-либо выделенных точек пространства, физические свойства системы не должны изменяться также и при ее поворотах в пространстве, ввиду отсутствия в пространстве выделенных направлений, что означает изотропность пространства. Оказывается, что неизменность физических свойств системы при ее поворотах в пространстве также приводит к сохранению некоторой новой механической величины -- момента импульса системы.

Рассмотрим систему, состоящую из двух взаимодействующих частиц, на которую действуют также внешние силы. Уравнения движения частиц имеют вид:

Умножим первое уравнение векторно слева на r1, а второе на r2.

Поскольку

,

т.к.

и F12 = _ F21,

Получим

.

Сложим полученные уравнения:

.

Векторы r1 - r2 и F12 коллениарны, поэтому

..

Если система замкнута . Еще одна сохраняющаяся величина, которую называют моментом импульса.

Примеры:

Момент импульса материальной точки, движущейся по прямой, относительно оси О:

Момент импульса точки, движущейся по окружности M = mvr

Моментом силы называют

Момент силы. относительно точки О:

N = r·F·sinб = F·

; N = R·F·si.

Пара сил.

Продифференцируем

по времени:

26. Момент инерции материальной точки

Величина

является моментом инерции тела относительно оси вращения.

Из этого выражения следует, что момент инерции вычисляется путем суммирования по всем частицам тела. В случае непрерывного распределения массы тела по его объему естественно перейти от суммирования к интегрированию, вводя плотность тела. Если тело однородно, то плотность определяется отношением массы к объему тела:

.

Для тела с неравномерно распределенной массой плотность тела в некоторой точке определяется производной

.

Момент инерции представим в виде:

,

где V -- микроскопический объем, занимаемый точечной массой.

Поскольку твердое тело состоит из большого числа частиц, практически непрерывно заполняющих весь занимаемый телом объем, в выражении (1.94) микроскопический объем можно считать бесконечно малым, в то же время полагая, что точечная масса «размазана» по этому объему. Фактически мы производим сейчас переход от модели точечного распределения масс к модели сплошной среды, какой в действительности и является твердое тело благодаря большой его плотности. Произведенный переход позволяет в формуле (2.94) заменить суммирование по отдельным частицам интегрированием по всему объему тела:

.

27. Момент инерции тела. Теорема Штейнера

См. билеты номер 12 и 15.

В общем случае вращения тела произвольной формы вокруг произвольной оси, вычисление момента инерции может быть произведено с помощью теоремы Штейнера: момент инерции относительно произвольной оси равен сумме момента инерции J0 относительно оси, параллельной данной и проходящей через центр инерции тела, и произведения массы тела на квадрат расстояния между осями:

J=J0+ma2.

Например, момент инерции диска относительно оси О' в соответствии с теоремой Штейнера:

28. Момент инерции тонкого диска

.

Рис. Вычисление момента инерции однородного диска

Вычислим момент инерции однородного диска относительно оси, перпендикулярной к плоскости диска и проходящей через его центр (рис.).

Поскольку диск однороден, плотность можно вынести из-под знака интеграла. Элемент объема диска dV = 2рr·b·dr, где b-- толщина диска. Таким образом,

,

где R -- радиус диска. Введя массу диска, равную произведению плотности на объем диска р·R2 b, получим:

.

29. Поле. Силовое поле. Работа и кинетическая энергия

Рассмотрим тело или систему тел в отсутствие внешних сил. Система тел, на которую не действуют внешние силы (или векторная сумма этих сил равна нулю), является замкнутой. В этом случае F=0.

В отсутствие внешних сил сохраняется еще одна скалярная величина. Если умножить уравнение одновременно слева и справа на вектор скорости, в левой части окажется производная от полного дифференциала, и уравнение примет вид

.

Пусть F = 0. Тогда постоянной во время движения является величина

Она называется кинетической энергией частицы. При отсутствии внешних сил, т. е. в замкнутой системе, сохраняется кинетическая энергия как в случае одного тела, так и для системы тел. Когда на частицу действует внешняя сила F, кинетическая энергия не остается постоянной. В этом случае приращение кинетической энергии за время dt равно скалярному произведению . Величина dA = -- это работа, совершаемая силой F на пути dr.

Проинтегрируем соотношениевдоль некоторой траектории от точки 1 до точки 2:

Левая часть представляет собой приращение кинетической энергии на пути между точками 1 и 2, а величина есть работа силы на пути 1--2.

Таким образом, работа сил, действующих на частицу, расходуется на изменение ее кинетической энергии:

Соответственно, изменение кинетической энергии частицы служит мерой работы, произведенной над частицей.

Если частица в каждой точке пространства подвержена действию других тел, то говорят, что эта частица находится в поле сил. В случае силового поля действие силы распределено по всему пространству. Рассмотрим такое поле сил, действие которого на частицу зависит только от положения частицы в пространстве. Такое поле можно описать с помощью некоторой скалярной функции ц(r), зависящей, а соответствии со сказанным, только от координат. Это случай специального, но часто встречаемого в природе потенциального поля, а функция ц(r), характеризующая поле, является потенциалом поля. Сила связана с потенциалом в каждой точке соотношением

,

где постоянная определяется свойствами частицы, взаимодействующей с полем сил.

Подставим соотношение,в и опять проинтегрируем вдоль траектории от точки 1 до точки 2. Получим: T2 - T1 +const2 - ц1) = О,

т.е. величина T2 +const·ц2 = T1 +const·ц1

остается постоянной при движении вдоль траектории. Таким образом, для частицы в потенциальном поле внешней силы сохраняется, т. е. является интегралом движения, величина

E = T+const·ц(r).

Величина U = const·ц(r) называется потенциальной энергией частицы в поле ц(r), а выражение представляет собой полную механическую энергию частицы

E = T + U.

30. Реактивное движение. Формула Циолковского

На принципе отдачи основано реактивное движение. В ракете при сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла с большой скоростью U относительно ракеты. Обозначим массу выброшенных газов через m, а массу ракеты после истечения газов через M. Тогда для замкнутой системы «ракета + газы» можно записать на основании закона сохранения импульса (по аналогии с задачей о выстреле из орудия):, V= - где V - скорость ракеты после истечения газов.

Здесь предполагалось, что начальная скорость ракеты равнялась нулю.

Полученная формула для скорости ракеты справедлива лишь при условии, что вся масса сгоревшего топлива выбрасывается из ракеты одновременно. На самом деле истечение происходит постепенно в течение всего времени ускоренного движения ракеты. Каждая последующая порция газа выбрасывается из ракеты, которая уже приобрела некоторую скорость.

Для получения точной формулы процесс истечения газа из сопла ракеты нужно рассмотреть более детально. Пусть ракета в момент времени t имеет массу M и движется со скоростью V. В течение малого промежутка времени Дt из ракеты будет выброшена некоторая порция газа с относительной скоростью U. Ракета в момент t + Дt будет иметь скорость а ее масса станет равной M + ДM, где ДM < 0 (рис. 1.17.3 (2)). Масса выброшенных газов будет, очевидно, равна -ДM > 0. Скорость газов в инерциальной системе OX будет равна V+U. Применим закон сохранения импульса. В момент времени t + Дt импульс ракеты равен ()( M + ДM)а импульс испущенных газов равен В момент времени t импульс всей системы был равен MV. Предполагая систему «ракета + газы» замкнутой, можно записать:

Величиной можно пренебречь, так как |ДM| << M. Разделив обе части последнего соотношения на Дt и перейдя к пределу при Дt > 0, получим

Величина есть расход топлива в единицу времени. Величина называется реактивной силой тяги Fp Реактивная сила тяги действует на ракету со стороны истекающих газов, она направлена в сторону, противоположную относительной скорости. Соотношение

Ma=Fp=-U

выражает второй закон Ньютона для тела переменной массы. Если газы выбрасываются из сопла ракеты строго назад (рис. 1.17.3), то в скалярной форме это соотношение принимает вид:

Ma = мu

где u - модуль относительной скорости. С помощью математической операции интегрирования из этого соотношения можно получить формулу для конечной скорости х ракеты:

где - отношение начальной и конечной масс ракеты. Эта формула называется формулой Циолковского. Из нее следует, что конечная скорость ракеты может превышать относительную скорость истечения газов. Следовательно, ракета может быть разогнана до больших скоростей, необходимых для космических полетов. Но это может быть достигнуто только путем расхода значительной массы топлива, составляющей большую долю первоначальной массы ракеты. Например, для достижения первой космической скорости х = х1 = 7,9·103 м/с при u = 3·103 м/с (скорости истечения газов при сгорании топлива бывают порядка 2-4 км/с) стартовая масса одноступенчатой ракеты должна примерно в 14 раз превышать конечную массу. Для достижения конечной скорости х = 4u отношение должно быть = 50.

Значительное снижение стартовой массы ракеты может быть достигнуто при использовании многоступенчатых ракет, когда ступени ракеты отделяются по мере выгорания топлива. Из процесса последующего разгона ракеты исключаются массы контейнеров, в которых находилось топливо, отработавшие двигатели, системы управления и т. д. Именно по пути создания экономичных многоступенчатых ракет развивается современное ракетостроение.

32. Кинетическая энергия

Про тела, которые могут совершать работу, говорят, что они обладают энергией. Энергией называют скалярную физическую величину, показывающую, какую работу может совершить тело. Энергия равна той максимальной работе, которую тело может совершить в данных условиях. Механическая работа является мерой изменения энергии в различных процессах. Поэтому энергию и работу выражают в одних и тех же единицах (в СИ - в джоулях). В более общем смысле энергия - это единая мера разных форм движения материи, а также мера перехода движения материи из одной формы в другую. Для характеристики конкретных форм движения материи используют понятия о соответствующих видах энергии: механической, внутренней, электромагнитной и т. д. Механическая энергия является характеристикой движения и взаимодействия тел. Она зависит от скоростей и взаимного расположения тел.

Кинетическая энергия

Рассмотрим случай, когда тело массой m под действием постоянной силы (F=const) движется прямолинейно равноускоренно (а=const). Определим работу силы, приложенной к телу, при изменении модуля скорости этого тела от v1 до v2.

Как было отмечено в §17, работу постоянной силы вычисляют по формуле А=Fscosa. Так как в рассматриваемом нами случае направление силы F и перемещения s совпадают, то cosa=1 и А=Fs. По второму закону Ньютона F=ma. В § 2 было показано, что для прямолинейного равноускоренного движения справедлива формула

v2=vo2+2as.

Из этой формулы при vо=v1 и v=v2 Следует, что

s=(v22-v12)/2a.

Подставив значения F и s в формулу работы, получим

А=mv22/2-mv12/2 (3.12).

Из последней формулы видно, что работа силы, приложенной к телу, при изменении скорости этого тела равна разности двух значений некоторой величины mv22/2.

Выше отмечалось, что механическая работа есть мера изменения энергии. Следовательно, в правой части формулы (3.12) стоит разность двух значений энергии данного тела. Это значит, что величина mv22/2 представляет собой энергию, обусловленную движением тела. Эту энергию называют кинетической. Она обозначается Wк. Следовательно,

Wк=mv22/2. (3.13)

С учетом (3.13) формулу (3,12) можно записать в виде

А=Wk2-Wk1=DWk, (3.14)

т.е. работа, совершаемая силой при изменении скорости тела, равна изменению кинетической энергии этого тела.

Когда направление силы совпадает с направлением перемещения тела, работа силы положительна (т.е. A>0). Из формулы (3.14) видно, что в этом случае Wk2-Wk1>0, т.е. Wk2>Wk1. Следовательно, когда сила совершает положительную работу, кинетическая энергия тела увеличивается. Когда же направление силы противоположно направлению перемещения, то A<0 и Wk2-Wk1<0, т.е. Wk2<Wk1. Следовательно, когда сила совершает отрицательную работу, кинетическая энергия тела уменьшается.

33. Потенциальная энергия

Определим работу, совершаемую силой тяжести Fт при переносе материальной точки массой m по криволинейной траектории ВС из одной точки В поля тяготения Земли в другую точку С (рис 31). Для этого разобьем траекторию движения тела на сколь угодно малые участки Dsk, каждый из которых можно считать прямолинейным.

На произвольно выбранном таком участке сила тяжести Fт составляет с перемещением Dsk угол ak. Поэтому на данном участке работа силы тяжести

DAk=Fт·Dsk·cos(ak). (3.15)

Спроецируем участок Dsk на вертикаль BD. Его проекция

Dhk=Dsk·cos(ak). (3.16)

Из (3.15) и (3.16) имеем DAk=Fт·Dhk. Очевидно, что работа ABC силы тяжести Fт на всем пути ВС равна сумме элементарных работ Dhk на всех участках Dsk этого пути:

ABC=Fт(h1-h2)=mgh1-mgh2 (3.17)

Из последней формулы видно, что работа силы тяжести при переносе материальной точки массой m в поле тяготения Земли равна разности двух значений некоторой величины mgh. Поскольку работа есть мера изменения энергии, то в правой части формулы (3.17) стоит разность двух значений энергии этого тела. Это значит, что величина mgh представляет собой энергию, обусловленную положением тела в поле тяготения Земли.

Энергию, обусловленную взаимным расположением взаимодействующих между собой тел (или частей одного тела), называют потенциальной и обозначают Wп. Следовательно, для тела, находящегося в поле тяготения Земли,

Wп=mgh. (3.18)

С учетом (3.18) формулу (3.17) можно записать в виде

ABC=Wп1-Wп2=-(Wп2-Wп1)=-DWп (3.19)

т. е. работа силы тяжести равна изменению потенциальной энер-гии тела, взятому с противоположным знаком.

Из рис. видно, что работа ABD, совершаемая силой тяжести при перемещении материальной точки массой m из точки B в точку D по вертикали ВD, составляет ABC=mgh1-mgh2. Следовательно, ABD=ABC. Таким образом, работа силы тяжести не зависит от траектории движения тела, а определяется лишь положением в поле тяготения Земли начальной и конечной точек перемещения тела.

В § 12 отмечалось, что силы, работа которых не зависит от траектории движения тела, называют консервативными, а поле таких сил называется потенциальным. Сила тяжести является консервативной, а поле тяготения - потенциальным. Из формулы (3.19) следует, что работа консервативных сил равна изменению потенциальной энергии тела, взятому с противоположным знаком.

Следует отметить, что тела имеют потенциальную энергии не только вследствие их притяжения к Земле. В § 10 было показано, что в результате упругой деформации тело тоже приобретает потенциальную энергию. Если, например, сжимается или растягивается упругая пружина, то ее потенциальная энергия вычисляется по формуле Wп=kх2/2, где k - жесткость пружины, x - ее удлинение, т.е. смещение точки приложения силы упругости.

Работа силы упругости определяется по формуле

A=Wп1-Wп2= kх12/2- kх22/2=-DWп (3.20)

Сумму кинетической и потенциальной энергии тела называют полной механической энергией этого тела и обозначают W.

W=Wп+Wk (3.21)

34. Барометрическая формула

Барометрическая формула определяет зависимость давления или плотности газа от высоты в поле тяжести.

Для идеального газа, имеющего постоянную температуру Т и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения g одинаково), Б. ф. имеет следующий вид:

р = p0exp [-gm.(h - h0)/RT] (1),

где р -- давление газа в слое, расположенном на высоте h, p0 -- давление на нулевом уровне (h = h0), m -- молекулярная масса газа, R -- газовая постоянная, Т -- абсолютная температура. Графически зависимость (1) представлена на рис. Из Б. ф. (1) следует, что концентрация молекул n (или плотность газа) убывает с высотой по тому же закону:

n =n0exp [-mg (h-h0)/kT],

где m -- масса молекулы, k -- Больцмана постоянная.

Б. ф. может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле (см. Больцмана статистика). При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе. Основываясь на этом, французский физик Ж. Перрен в 1908 применил Б. ф. к распределению по высоте частичек эмульсии, что позволило ему непосредственно определить значение постоянной Больцмана.

Б. ф. показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина --mg (h-h0)/kT, определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной kT. Чем выше температура Т, тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести mg (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести mg может изменяться за счёт двух величин: ускорения g и массы частиц m.

Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.

Реальное распределение давления и плотности воздуха в земной атмосфере не следует Б. ф., т.к. в пределах атмосферы температура и ускорение свободного падения меняются с высотой и географической широтой. Кроме того, атмосферное давление увеличивается с концентрацией в атмосфере паров воды.

Б. ф. лежит в основе барометрического нивелирования -- метода определения разности высот Dh между двумя точками по измеряемому в этих точках давлению (p1 и p2). Поскольку атмосферное давление зависит от погоды, интервал времени между измерениями должен быть возможно меньшим, а пункты измерения располагаться не слишком далеко друг от друга. Б. ф. записывается в этом случае в виде: Dh = 18400· (1+at) lg (p1/p2) (в м), где t -- средняя температура слоя воздуха между точками измерения, a -- температурный коэффициент объёмного расширения воздуха. Погрешность при расчётах по этой формуле не превышает 0,1--0,5% от измеряемой высоты. Более точна формула Лапласа, учитывающая влияние влажности воздуха и изменение ускорения свободного падения.

35. Работа и энергия

Работа равнодействующей силы на элементарное перемещение частицы ведет к приращению ее кинетической энергии (теорема о кинетической энергии):

В случае конечного перемещения частицы, будем иметь

,

т.е. работа равнодействующей силы, действующей на частицу, независимо от природы этой силы, равна приращению кинетической энергии частицы. Если работа положительна, то кинетическая энергия частицы возрастает. Силы сопротивления уменьшают кинетическую энергию частицы.

Рассмотрим механическую систему, состоящую из n частиц, которые имеют кинетические энергии

.

Кинетическая энергия i-той частицы равна работе равнодействующей силы, действующей на эту частицу: . Полная работа сил, действующих на систему, будет

,

где величина есть сумма кинетических энергий составляющих систему частиц, и называется кинетической энергией системы. Следовательно, полная работа сил, действующих в системе, равна приращению ее кинетической энергии.

Диссипативные силы, их работа.

Действующие в системе силы мы разделяем на внешние и внутренние, а по характеру совершаемой ими работы - на консервативные и неконсервативные силы. Работу консервативных сил всегда можно представить в виде убыли скалярной функции - потенциальной энергии, зависящей от координат.

К классу неконсервативных сил относятся диссипативные силы.

Диссипативные силы - это силы трения и сопротивления. Выяснение физической природы диссипативных сил выходит за рамки механики. Отметим только, что это сложно устроенные силы электромагнитной природы. Так что, здесь мы ограничимся изложением экспериментально полученных законов трения.

В отличие от сил упругости, кулоновских сил и сил всемирного тяготения, которые зависят только от взаимного положения взаимодействующих частиц, силы трения зависят от относительных скоростей диссипативно взаимодействующих тел. Любую силу диссипативного взаимодействия можно представить в виде

,

где - относительная скорость взаимодействующих тел, а - положительная функция. Диссипативная сила всегда направлена обратно относительному движению тел.

Диссипативные силы также можно делить на внешние и внутренние. Например, в случае движения автомобиля, силы, действующие на него со стороны воздуха и покрытия дороги, это внешние диссипативные силы, а силы трения, действующие во внутренних узлах автомобиля - внутренние диссипативные силы.

Работа внешних диссипативных сил, в зависимости от выбранной системы отсчета, может быть как положительной, так и отрицательной.

Независимо от выбора системы отсчета, работа внутренних диссипативных сил всегда отрицательна.

Полная работа, совершенная в системе диссипативными силами, есть сумма работ всех парных сил диссипативного взаимодействия:

Заметим, что в разных системах отсчета результаты, полученные для работы внутренних диссипативных сил, совпадают

36. Момент инерции шара

Сплошной шар массы m и радиуса R можно рассматривать как совокупность бесконечно тонких сферических слоев с массами dm, радиусом r, толщиной dr (рис.35).

Рассмотрим малый элемент сферического слоя $\delta$ m с координатами x, y, z. Его моменты инерции относительно осей проходящих через центр слоя - $\delta$ Jx, $\delta$ Jy, $\delta$ Jz, равны

Т. е. можно записать

(п.26)

Так как для элементов сферического слоя

x2+y2+z2=r2 то

После интегрирования по всему объему слоя получим

(п.27)

Так как, в силу симметрии для сферического слоя

dJx=dJy=dJz=dJ, а , то

Интегрируя по всему объему шара, получаем

Окончательно (после интегрирования) получим, что момент инерции шара относительно оси, проходящей через его центр равен

(п.28)

37. Моменты инерции тонкого диска относительно его главных центральных осей

Для расчета моментов инерции тонкого диска массы m и радиуса R выберем систему координат так, чтобы ее оси совпадали с главными центральными осями (рис.32). Определим момент инерции тонкого однородного диска относительно оси z, перпендикулярной к плоскости диска. Рассмотрим бесконечно тонкое кольцо с внутренним радиусом r и наружным r+dr. Площадь такого кольца ds=2r $\pi$ dr, а его масса , где S= $\pi$ R2 - площадь всего диска. Момент инерции тонкого кольца найдется по формуле dJ=dmr2. Момент инерции всего диска определяется интегралом

(п.18)

Для определения Jx воспользуемся симметрией диска (Jx=Jy) и утверждением (п.10), полученным при расчете момента инерции прямоугольной пластины. При этом из (п.10) получаем Jz=2Jx (п.19)

Откуда (п.20)

38. Определение момента инерции тонкого стержня, относительно оси, проходящей через его середину

Пусть тонкий стержень имеет длину l и массу m. Разделим его на малые элементы длины dx (рис.27), масса которых . Если выбранный элемент находится на расстоянии x от оси, то его момент инерции , т.е.

Интегрируя последнее соотношение в пределах от 0 до l/2 и удваивая полученное выражение (для учета левой половины стержня), получим

(п.1)

Это выражение может быть получено и другим способом, с помощью метода подобия. Будем считать, что рассматриваемый стержень состоит из двух половин (рис.28). Каждая из них имеет массу m/2 и длину l/2.

Выражение для момента инерции стержня должно включать его массу и длину, так как это единственные параметры, определяющие его инерционные свойства при вращении. Пусть

(п.2)

где k- неизвестный коэффициент.

Для каждой из половин стержня при вращении вокруг оси AA` можно найти момент инерции, используя (п.2) и теорему Гюйгенса-Штейнера.

(п.3)

Полный момент инерции стержня

(п.4)

Но этот же момент инерции, согласно (п.2) равен kml2. Приравнивая (п.4) и (п.2) имеем

(п.5)

или и, следовательно, (п.6)

т.е. , что совпадает с (п.1)

39. Основные кинематические понятия. Материальная точка. Система отсчета, система координат

Механика - наз-ся раздел физики, изучающий закономерности взаимодействия простейших форм движения материи.

Механическое движение - взаимное перемещение тел в пространстве в зависимости от времени.

Кинематика - описывает движение тел в пространстве и времени без выяснения причин их движения.

Материальная точка - это тело размерами которого в процессе движения можно пренебречь. Возможность рассматривать тело как материальную точку зависит не от самого тела, а от характера его движения. Например, при движении Земли вокруг солнца Землю можно считать мат.точкой, если же нас интересует суточное вращение Земли - то нельзя.

Тело отсчета - тело, относительно которого изучается движение рассм-его тела.

Система отсчёта - это тело или совокупность тел, по отношению к которым рассматривается движение других тел. С.О. состоит из тел отсчета, связанной с ним системой координат и прибором для измерения времени (часы).

Радиус-вектор - вектор(r), харак-щий изм-е положения точки за рассм-ый промежуток t.

Вектор перемещения - вектор, харк-щий изменение положения точки за рассм-ый промежуток t.

Система координат - а) если тело движется вдоль прямой линии, то его движение определяется 1 координатой

б) при движении в нек. плоскости:2 координаты

в) при движении в пространстве: 3 координаты

40. Кинематическое уравнение движения. Уравнение траектории. Перемещение, скорость, ускорение мат. Точки

X = x(t) + Vt +

Траектория - линия, описываемая в пространстве точкой при ее движении.

Движение точки по траектории полностью определяется тремя функциями x(t), y(t), z(t) или, что тоже самое, одной ф-ей r(t)

R = ix + jy + kz

X = x(t);

Y = y(t);

Z = z(t).

Перемещением мат. точки за время dt наз-ся вектор S соединяющий начальное положение точки с конечным. Очевидно, что dS = r(t + dt) - r(t), т.е. перемещение равно разности радиус-векторов точки в моменты времени t +dt и t соотвеиственно.

Средняя скорость мат. точки за время dt наз-ся отношение ее перемещения к интервалу t:

Vср = dS/d t.

Мгновенная скорость в момент времени t- это предел, к которому стремиться средняя скорость при неограниченном уменьшении t:

V(t)=

V= = =

V=

Ускорением мат. точки a в момент времени t наз-ся величина:

a=

a= a=

41. Криволинейное движение, нормальное и тангенсальное ускорение

Криволинейное движение - движение мат.точек, траектории которых представляют собой не прямые, а кривые линии.

Криволинейное движение - это всегда движение с ускорением, даже если по модулю скорость постоянна. Кр. движ. с постоянным ускорением всегда происходит в той плоскости, в которой наход-ся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам

частным случаем криволинейного движения - является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением где r - радиус окружности.

Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.

При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих:

,

- нормальное (центростремительное) ускорение, направлено к центру кривизны траектории и характеризует изменение скорости по направлению:

v - мгновенное значение скорости, r - радиус кривизна траектории в данной точке.

- тангенциальное (касательное) ускорение, направлено по касательной к траектории и характеризует изменение скорости по модулю.

Полное ускорение, с которым движется материальная точка, равно:

.

Кроме центростремительного ускорения, важнейшими характеристиками равномерного движения по окружности являются период и частота обращения.

42. Кинематика вращательного движения

Твердое тело -- это система материальных точек, расстояние между которыми остается неизменным при взаимодействии системы с другими телами. Движение твердого тела бывает поступательным и вращательным. Всякое движение твердого тела можно представить как сумму движения названных двух типов. Покажем это для случая плоского движения, т. е. такого, при котором все точки тела перемещаются в параллельных плоскостях. В качестве примера плоского движения возьмем качение цилиндра по плоскости (рис.).

Качение цилиндра по плоскости. Стрелками обозначены линейные скорости различных точек цилиндра.

Скорость каждой точки цилиндра может быть представлена в виде:

(1.81)

где v0 -- скорость поступательного движения, одинаковая для всех точек тела, а v' линейная скорость точки, обусловленная вращением тела и разная для разных точек тела. Линейная скорость точки с радиусом-вектором r:

.(1.82)

Таким образом, скорость точки при сложном движении тела имеет вид:

.(1.83)

Отсюда следует, что существуют точки, суммарная скорость которых равна нулю относительно неподвижной системы отсчета (рис. 46).

Скорость точки А цилиндра равна нулю относительно неподвижной системы отсчета

Геометрическое место точек, неподвижных в каждый рассматриваемый момент времени, образует прямую, которая является мгновенной осью вращения (рис.).

Проекции всех векторов r, лежащих на прямой 00', одинаковы. Прямая. 00' образует мгновенную ось вращения цилиндра.

В случае цилиндра, перемещающегося по плоскости, мгновенная ось совпадает с линией касания цилиндра плоскости. Видно, что мгновенная ось вращения не остается постоянной, а перемещается по мере движения тела. Скорости всех точек тела в каждый момент времени можно считать обусловленными вращением вокруг соответствующей мгновенной оси. Таким образом, плоское движение твердого тела можно рассматривать как ряд последовательных вращении вокруг мгновенных осей. В общем случае движение тела можно представлять как вращение вокруг мгновенной оси и одновременно поступательное движение вдоль этой же оси.

Равномерное движение по окружности.

Пройденный путь S, перемещение dr, скорость v, тангенциальное и нормальное ускорение at, и an, представляют собой линейные величины. Для описания криволинейного движения наряду с ними можно пользоваться угловыми величинами.

Рассмотрим более подробно важный и часто встречаемый случай движения по окружности. В этом случае наряду с длиной дуги окружности движение можно характеризовать утлом поворота ц вокруг оси вращения. Величину

(1.15)

называют угловой скоростью. Угловая скорость представляет собой вектор, направление которого связывают с направлением оси вращения тела (рис.).

Обратим внимание на то, что, в то время как сам угол поворота ц является скаляром, бесконечно малый поворот -- векторная величина, направление которой определяется по правилу правой руки, или буравчика, и связано с осью вращения. Если вращение является равномерным, то щ=const и точка на окружности поворачивается на равные углы вокруг оси вращения за равные времена. Время, за которое она совершает полный оборот, т.е. поворачивается на угол 2р, называется периодом движения Т. Выражение (1.15) можно проинтегрировать в пределах от нуля до Т и получить угловую частоту

.(1.16)

Число оборотов в единицу времени есть величина, обратная периоду, -- циклическая частота вращения

н =1/T.(1.17)

Нетрудно получить связь между угловой и линейной скоростью точки. При движении по окружности элемент дуги связан с бесконечно малым поворотом соотношением dS = R·dц. Подставив его в (1.15), находим

v = щr.(1.18)

Формула (1.18) связывает величины угловой и линейной скоростей. Соотношение, связывающее векторы щ и v, следует из рис. А именно, вектор линейной скорости представляет собой векторное произведение вектора угловой скорости и радиуса-вектора точки r:

.(1.19)

Таким образом, вектор угловой скорости направлен по оси вращения точки и определяется по правилу правой руки или буравчика.

Угловое ускорение -- производная по времени от вектора угловой скорости щ (соответственно вторая производная по времени от угла поворота)

Выразим тангенциальное и нормальное ускорение через угловые скорости и ускорение. Используя связь (1.18),(1.12) и (1.13), получаем

at = в·R, a 2·R.(1.20)

Таким образом, для полного ускорения имеем

.(1.21)

Величина в играет роль тангенциального ускорения: если в = 0.полное ускорение при вращении точки не равно нулю, a =R·щ2 ? 0.

44. Связь линейных и угловых параметров

При рассмотрении поступательного движения мат. точки мы рассмотрим линейные параметры:

S(перемещение)- расстояние от точки до конечной точки

v- скорость с которой двигаются тела

а- ускорение

Эти три величины связаны между собой :

v = s'; a = v'=s''

При рассмотрении вращательного движения мат. точки мы рассмотрим угловые параметры:

- угол отклонения

w- угловую скорость

E - угловое ускорение

Они так же связаны между собой:

w = `; E = w'= ''

В тоже время линейные параметры можно связать с угловыми параметрами:

R-радиус.

V= S= at = ·R, =щ2·R. a=

А именно, вектор линейной скорости представляет собой векторное произведение вектора угловой скорости и радиуса-вектора точки r:

.

Таким образом, вектор угловой скорости направлен по оси вращения точки и определяется по правилу правой руки или буравчика

Поступательное движение

Вращательное движение

Поступательное движение

Вращательное движение

Основной закон динамики

Работа и мощность

Ft = mv2 _ mv1

Mt = J2 _ J1

A=Fs

A=М•ц

F = ma

M = J

N = Fv

N = M

Закон сохранения

Кинетическая энергия

момента импульса

импульса

V=

a=

V=V0+at

r=r0+V0+

=0+0+

45. Законы Ньютона

Законы Ньютона образуют основу динамики -- раздела механики, рассматривающего взаимодействие тел.

Первый закон Ньютона отражает свойство инерции, тел и часто называется законом инерции. Он утверждает, что всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние. Ясно, во-первых, что этот закон выполняется только в инерциальных системах отсчета. Во-вторых, отсюда следует важное заключение, что, поскольку изменение состояния покоя или равномерного движения связано с наличием в системе ускорения, последнее, в свою очередь, возникает как результат воздействия других тел. Это утверждение создает предпосылки для формулирования второго закона Ньютона.

Воздействие одного физического тела на другое характеризуется физической величиной, называемой силой. Сила, действующая на тело, сообщает ему ускорение. Величина полученного ускорения пропорциональна приложенной силе. Но разные тела под влиянием одинаковых сил приобретают разные ускорения. Данный опытный факт есть проявление уже упоминавшегося свойства инерции тела. Это свойство количественно характеризуется инертной массой тела -- коэффициентом пропорциональности между приложенной к телу силой и полученным им ускорением.

Таким образом, второй закон Ньютона может быть записан в форме:

,

где фигурируют вновь введенные физические величины: вектор силы F и инертная масса тела m. В таком виде его можно сформулировать следующим образом: ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе тела. Третий закон Ньютона имеет дело со взаимодействующими, телами.

F12 = F21 m1a1=-m2a2 F1=-F2

Он утверждает, что силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению. Важно подчеркнуть, что силы, о которых идет речь, приложены к разным взаимодействующим друг с другом телам.

46. Преобразования Галилея

Инерциальная система отсчета - такая система отсчета, в которой справедлив закон инерции: любое тело, на которое не действуют внешние силы, находится в состоянии покоя или равномерного прямолинейного движения.

Если наряду с выбранной инерциальной системой, рассмотреть другую, движущуюся относительно первой прямолинейно и равномерно, то свободное движение тела в новой системе будет также происходить с постоянной скоростью. Таким образом, существует бесконечное множество инерциальных систем отсчета. Во всех этих системах свойства пространства и времени одинаковы и одинаковы законы механики. Не существует никакой абсолютной системы отсчета, которую можно было бы предпочесть другим системам. В этом состоит принцип относительности Галилея. Его можно сформулировать и так: никакими механическими опытами невозможно установить, движется ли данная инерциальная система или покоится: оба состояния эквивалентны. Координаты точки в двух системах отсчета, одна из которых K' движется равномерно и прямолинейно относительно другой (K) со скоростью V, связаны соотношением (рис.)

.

При этом считается, что время абсолютно, т.е. течет одинаково в обеих системах: t' = t. Скорость точки в системе К связана со скоростью в системе К' формулой:

.

Математически принцип относительности Галилея можно сформулировать как требование инвариантности (неизменности) уравнений механики по отношению к преобразованию

47. Импульс. Закон сохранения импульса

.

Выражение представляет собой уравнение движения частицы. Если его проинтегрировать, то можно найти траекторию частицы r = r(t, F). Однако часто это не является необходимым. Оказывается, уравнения Ньютона обладают тем свойством, что некоторые величины, характеризующие движение частицы, остаются неизменными во все время движения. О таких величинах принято говорить, что они сохраняются. Их также называют интегралами движения. Знание интегралов движения позволяет получить ряд важных следствий без фактического решения уравнений движения. Получим некоторые сохраняющиеся величины.

Перепишем

в виде

.

Величина называется импульсом тела. Внеся величину m под знак дифференциала в (1.26), закон Ньютона можно записать в форме:

.

Физический смысл импульса становится очевидным, если уравнение проинтегрировать на конечном интервале времени от 0 до t:

.

Изменение импульса служит мерой величины силы, действующей на тело в течение конечного промежутка времени. Численно величина импульса

.

Рассмотрим тело или систему тел в отсутствие внешних сил. Система тел, на которую не действуют внешние силы (или векторная сумма этих сил равна нулю), является замкнутой. В этом случае F=0; как видно из уравнений

или .,

, т.е. величина,

остается постоянной во все время движения. Полученный результат представляет собой закон сохранения импульса, который имеет место как для одного тела, так и для системы тел в отсутствие внешних сил.

Размещено на Allbest.ru

...

Подобные документы

  • Задача на определение ускорения свободного падения. Расчет начальной угловой скорости торможения вентилятора. Кинетическая энергия точки в момент времени. Молярная масса смеси. Средняя арифметическая скорость молекул газа. Изменение энтропии газа.

    контрольная работа [468,3 K], добавлен 02.10.2012

  • Определение положения центра тяжести, главных центральных осей инерции и величины главных моментов инерции. Вычисление осевых и центробежных моментов инерции относительно центральных осей. Построение круга инерции и нахождение направлений главных осей.

    контрольная работа [298,4 K], добавлен 07.11.2013

  • Главные оси инерции. Вычисление момента инерции однородного стержня относительно оси, проходящей через центр масс. Вычисление момента инерции тонкого диска или цилиндра относительно геометрической оси. Теорема Штейнера и главные моменты инерции.

    лекция [718,0 K], добавлен 21.03.2014

  • Кинетическая энергия вращения твердого тела и момент инерции тела относительно нецентральной оси. Основной закон динамики вращения твердого тела. Вычисление моментов инерции некоторых тел правильной формы. Главные оси и главные моменты инерции.

    реферат [287,6 K], добавлен 18.07.2013

  • Скорости газовых молекул. Понятие о распределении молекул газа по скоростям. Функция распределения Максвелла. Расчет среднеквадратичной скорости. Математическое определение вероятности. Распределение молекул идеального газа. Абсолютное значение скорости.

    презентация [1,1 M], добавлен 13.02.2016

  • Два основных вида вращательного движения твердого тела. Динамические характеристики поступательного движения. Момент силы как мера воздействия на вращающееся тело. Моменты инерции некоторых тел. Теорема Штейнера. Кинетическая энергия вращающегося тела.

    презентация [258,7 K], добавлен 05.12.2014

  • Определения молекулярной физики и термодинамики. Понятие давления, основное уравнение молекулярно-кинетической теории. Температура и средняя кинетическая энергия теплового движения молекул. Уравнение состояния идеального газа (Менделеева - Клапейрона).

    презентация [972,4 K], добавлен 06.12.2013

  • Основные понятия и определения молекулярной физики и термодинамики. Основное уравнение молекулярно-кинетической теории. Температура и средняя кинетическая энергия теплового движения молекул. Состояние идеального газа (уравнение Менделеева-Клапейрона).

    презентация [1,1 M], добавлен 13.02.2016

  • Основы динамики вращения твёрдого тела относительно неподвижной и проходящей через него оси, кинетическая энергия его частиц. Сущность теоремы Гюгенса-Штейнера. Расчет и анализ результатов зависимости момента инерции шара и диска от массы и радиуса.

    курсовая работа [213,6 K], добавлен 02.05.2012

  • Определение и физический смысл момента инерции. Моменты инерции простейших 1-D, 2-D и 3-D тел. Рассмотрение теоремы Гюйгенса-Штейнера о параллельных и перпендикулярных осях. Свойства главных центральных осей инерции и примеры использования симметрии тела.

    презентация [766,1 K], добавлен 30.07.2013

  • Определения и классификация колебаний. Способы описания гармонических колебаний. Кинематические и динамические характеристики. Определение параметров гармонических колебаний по начальным условиям сопротивления. Энергия и сложение гармонических колебаний.

    презентация [801,8 K], добавлен 09.02.2017

  • Определение скорости и ускорения точки методами ее простого и сложного движения. Рассмотрение равновесия манипулятора с рукой. Расчет кинетической энергии манипулятора путем подстановки преобразованных выражений в уравнения Лагранжа второго рода.

    контрольная работа [1,9 M], добавлен 27.07.2010

  • Динамика вращательного движения твердого тела относительно точки и оси. Расчет моментов инерции простых тел. Кинетическая энергия вращающегося тела. Закон сохранения момента импульса. Сходство и различие линейных и угловых характеристик движения.

    презентация [4,2 M], добавлен 13.02.2016

  • Расчет тангенциального и полного ускорения. Определение скорости бруска как функции. Построение уравнения движения в проекции. Расчет начальной скорости движения конькобежца. Импульс и закон сохранения импульса. Ускорение, как производная от скорости.

    контрольная работа [151,8 K], добавлен 04.12.2010

  • Динамика вращательного движения твердого тела относительно точки, оси. Расчет моментов инерции некоторых простых тел. Кинетическая энергия вращающегося тела. Закон сохранения момента импульса. Сходство и различие линейных и угловых характеристик движения.

    презентация [913,5 K], добавлен 26.10.2016

  • Практические формы уравнений движения. Коэффициент инерции вращающихся частей поезда. Упрощенная кинематическая схема передачи вращающего момента с вала на обод движущего колеса. Кинетическая энергия, физхическая масса и скорость поступательного движения.

    лекция [129,5 K], добавлен 27.09.2013

  • Работа идеального газа. Определение внутренней энергии системы тел. Работа газа при изопроцессах. Первое начало термодинамики. Зависимость внутренней энергии газа от температуры и объема. Основные способы ее изменения. Сущность адиабатического процесса.

    презентация [1,2 M], добавлен 23.10.2013

  • Механика: основные понятия и аппарат качественного анализа движения динамических систем. Кинетическая и потенциальная энергия механической системы. Обобщенные координаты и скорости. Два способа описания движения в обыкновенных дифференциальных уравнениях.

    презентация [277,8 K], добавлен 22.10.2013

  • Вычисление скорости молекул. Различия в скоростях молекул газа и жидкости. Экспериментальное определение скоростей молекул. Практические доказательства состоятельности молекулярно-кинетической теории строения вещества. Модуль скорости вращения.

    презентация [336,7 K], добавлен 18.05.2011

  • Построение графиков скорости, ускорения. Моменты, приложенные к вращающемуся звену. Степень неравномерности, момент инерции маховика. Индикаторная диаграмма определения давления пара в цилиндре. Закон сохранения энергии. Определение индикаторной мощности.

    контрольная работа [551,8 K], добавлен 18.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.