Електричні системи і мережі

Класифікація електричних мереж. Параметри і схеми заміщення елементів електричної мережі. Характеристики і параметри електричних навантажень. Визначення втрат потужності в електричних мережах. Техніко-економічні розрахунки в системах електропостачання.

Рубрика Физика и энергетика
Вид курс лекций
Язык украинский
Дата добавления 16.07.2017
Размер файла 959,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Міністерство освіти і науки, молоді та спорту України

Криворізький технічний університет

Кафедра електропостачання та ресурсозбереження

КОНСПЕКТ ЛЕКЦІЙ

з дисципліни

«Електричні системи і мережі»

для студентів спеціальності 6.050701

«Електротехнічні системи електроспоживання» всіх форм навчання

Кривий Ріг

2011

Конспект лекцій з дисципліни «Електричні системи і мережі» для студентів спеціальності 6.050701 «Електротехнічні системи електроспоживання» всіх форм навчання / Уклад.: Р.О.Пархоменко. - Кривий Ріг : КТУ , 2011.

Методичні вказівки містять лекції з теоретичними відомостями з дисципліни «Електричні системи та мережі» та список рекомендованої літератури.

ЗМІСТ

1. ЛЕКЦІЯ № 1 ВВЕДЕННЯ

2. ЛЕКЦІЯ № 2. КЛАСИФІКАЦІЯ ЕЛЕКТРИЧНИХ МЕРЕЖ

3. ЛЕКЦІЯ № 3. ЕЛЕМЕНТИ ЕЛЕКТРИЧНОЇ МЕРЕЖІ

4.ЛЕКЦІЯ № 4. ПАРАМЕТРИ І СХЕМИ ЗАМІЩЕННЯ ЕЛЕМЕНТІВ ЕЛЕКТРИЧНОЇ МЕРЕЖІ

5.ЛЕКЦІЯ № 5. ХАРАКТЕРИСТИКИ І ПАРАМЕТРИ ЕЛЕКТРИЧНИХ НАВАНТАЖЕНЬ

6.ЛЕКЦІЯ № 6. МЕТОДИ РОЗРАХУНКІВ СТАЛИХ РЕЖИМІВ ЕЛЕКТРИЧНОЇ МЕРЕЖІ

7.ЛЕКЦІЯ № 7. ВИЗНАЧЕННЯ ВТРАТ ПОТУЖНОСТІ В ЕЛЕКТРИЧНИХ МЕРЕЖАХ

8.ЛЕКЦІЯ № 8. РОЗРАХУНОК РЕЖИМІВ ЕЛЕКТРИЧНИХ МЕРЕЖ

9.ЛЕКЦІЯ № 9. РОЗРАХУНОК РЕЖИМІВ СКЛАДНОЗАМКНЕНИХ ЕЛЕКТРИЧНИХ МЕРЕЖ

10.ЛЕКЦІЯ № 10. УПРАВЛІННЯ РЕЖИМАМИ ЕЛЕКТРИЧНИХ СИСТЕМ І МЕРЕЖ

11.ЛЕКЦІЯ № 11. НАДІЙНІСТЬ ЕЛЕКТРОПОСТАЧАННЯ

12.ЛЕКЦІЯ № 12. ТЕХНІКО-ЕКОНОМІЧНІ РОЗРАХУНКИ (ТЕР) В СИСТЕМАХ ЕЛЕКТРОПОСТАЧАННЯ

СПИСОК РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ

електричний мережа потужність навантаження

ЛЕКЦІЯ № 1. ВВЕДЕННЯ

Актуальність : ознайомлення з задачею вивчення курсу та засвоєння основних понять і визначень.

План :

1. Вступ.

2. Основні поняття і визначення.

3. Вимоги до електричних мереж.

4. Питання для самоконтролю.

Вступ.

Електрична енергія , завдяки своїм достоїнствам (відносна простота виробництва , передачі , подрібнення і перетворення) отримала широке розповсюдження в народному господарстві і побуті. Для виробництва, передачі, розподілення і перетворення електричної енергії від джерел її виробництва і споживання використовують електричні системи і мережі.

Основною задачею вивчення курсу являється засвоєння основ побудови і функціонування, аналізу сталих режимів і управління ними, а також проектування електричних систем і мереж.

Початкові відомості

Основні поняття і визначення.

У СЕП споживачів можна виділити 3 види пристроїв:

а) для виробництва електричної енергії (електростанції);

б) для передачі і розподілення (електричні мережі);

в) для використання електричної енергії (приймачі);

Схематично виробництво, розподілення і використання електричної і теплової енергії можна представити:

1-електрична частина електростанції;

2-електричні мережі;

3-споживання електричної енергії;

4-теплові мережі;

5-споживання теплової енергії.

Відповідно вказаному малюнку можна відобразити принципову електричну схему:

Енергетичною системою називається сукупність установок і пристроїв для виробництва, передачі , розподілення, перетворення і використання електричної і теплової енергії, об'єднаних загальним процесом та режимом.

До цієї сукупності відносяться електростанції, електричні і теплові мережі , споживачі, з'єднані між собою, а також пристрій захисту і управління системи.

Електроенергетичної (електричної) системою називається частина енергосистеми, без теплових мереж і споживачів теплової енергії.

Електрична мережа - сукупність електричних установок для передачі електричної енергії від електростанції споживачам і розподіл ії між споживачами.

Вона складається із пунктів прийому електричної енергії ( підстанцій), розподільних пунктів (РП) і ЛЕП (лінії електропередачі), працюючих на визначеній території.

Споживачами електричної енергії називається електричний приймач або їх група, об'єднана технологічним процесом і розташована на визначеній території.

На електростанціях для синхронізації генераторів застосовують номінальну напругу Uном =6 21 кВ.

У більш вузькому понятті під енергосистемою розуміють виробничі енергетичні об'єднання або великі виробничі одиниці.

Структура енергетики України включає в себе :

- електростанції як окремі підприємства;

- електричні мережі як окремі підприємства:

а) магістральні мережі (U >150кВ),

б) електричні мережі.

У балансі виробки електроенергії України питома вага різних електростанцій:

1. ГЕС 5%,

2. ТЕС 44%,

3. АЕС 51%.

Основні принципи побудови енергетики країни - створення об'єднаних енергетичних систем. Основні переваги об'єднаних енергосистем:

1 - підвищення надійності роботи (можливість резервування);

2 - використання більш великих агрегатів з меншими питомими затратами енергії (агрегат = турбіна - генератор);

3 - велика маневреність (тобто можливість перерозподілу енергії протягом доби).

В окремих випадках на виробництвах , де є необхідність у великій кількості теплової енергії, а також є споживачі особливої групи 1 категорії, споруджують комбіновані станції з виробництва електричної та теплової енергії - ТЕЦ (в особливої групи - 3 незалежні джерела, один з них - автономний).

Схема спільної роботи ТЕЦ і енергосистеми має такий вигляд:

Вимоги до електричних мереж.

Існує 5 вимог:

1. Надійність роботи;

2. Якість електроенергії;

3. Економічність;

4. Безпека і зручність експлуатації;

5. Можливість подальшого розвитку.

Питання для самоконтролю.

1. Як формулюється основна задача вивчення курсу?

2. Що називається енергетичною системою?

3. Що називається електричною системою?

4. Що таке електрична мережа?

5. У чому полягає принцип об'єднаних електричних мереж?

6. Назвіть основні вимоги до електричних мереж.

Висновки: В результаті засвоєння матеріалу студенти повинні мати уяву про задачу вивчення курсу та засвоїти основні поняття і визначення.

ЛЕКЦІЯ № 2. КЛАСИФІКАЦІЯ ЕЛЕКТРИЧНИХ МЕРЕЖ

Актуальність : вивчення визначень та ознайомлення з класифікацією електричних мереж за різноманітними ознаками.

План :

1. Класифікація електричних мереж за ознаками і показниками.

2. Питання для самоконтролю.

Класифікація електричних мереж

за ознаками і показниками.

Класифікацію здійснюють за різними ознаками і показниками:

- вид струму і напруги;

- конструктивне виконання;

- за характером споживачів і виконуючих ними функцій;

- конфігурація схем тощо.

За видом струму - змінного (~) і постійного (-) струму. (Пререважно використовують трьохфазні мережі з f= 50Гц. Постійний струм головним чином використовується в електротранспорті, для глибокого регулювання швидкості і частоти, електроліз, зварювання).

Під напругою - мережі до 1кВ і вище 1кВ (за правилами пристрою електричних установок ПУЕ за техніко-економічними критеріями є стандартна шкала порівняльно невеликої кількості стандартних Uн. Для зручності всі мережі змінного струму за напругою підрозділяються на декілька класів (зон).

У різних елементів електричної системи є своя номінальна напруга. Тому розрізняють наступну номінальну (міжфазну) напругу:

- генераторів

- трансформаторів і автотрансформаторів

- електричні мережі і електричні приймачі

Для пояснення цього питання повернемося до схеми передачі електроенергії:

За конструктивним виконанням:

- повітряні;

- кабельні;

- струмопроводи (приватний випадок - шинопровод) гнучкі і жорсткі;

- проводки.

За характером споживачів і місцем розташування розрізняють мережі:

- промислові;

- сільські;

- міські;

- електрифікованого транспорту;

- електричних систем.

Мережі електропостачання підприємств, які живляться від енергосистеми , підрозділяються на мережі зовнішнього і внутрішнього електропостачання. Зовнішні -сукупність всіх елементів від точки підключення до мережі енергосистеми до шин вторинного напруження ГЗП (головна знижуюча підстанція).

Внутрішні - решта.

За призначенням електричні мережі умовно підрозділяються на дві групи:

- місцеві

- районні.

До місцевих відносяться мережі, які характеризуються відносно невеликим районом з радіусом дії 15-20км і Uном <35кВ або Uном=35кВ.

До районних відносяться мережі, які охвачують відносно великі райони та мають Uном=110кВ або Uном>110кВ.

За виконанням функції в схемі електропостачання мережі ділять на:

- живлячі

- розподільні.

За конфігурацією (по схемі з'єднання елементів мережі) електричні мережі класифікуються за різними ознаками :

1. за принципом побудови і схемам з'єднання ділять на:

а) розімкнені

б) замкнуті.

Розімкнені - мережі, в яких живлення кожного навантаження можна здійснити тільки з однієї сторони, тобто передача енергії здійснюється тільки в одному напрямку. Такі мережі можуть бути нерезервовані або резервовані.

Нерезервовані розімкнені мережі виконують одноланцюговими лініями.

В розімкнених ланцюгах резервування здійснюють шляхом застосування або двох одноланцюгових, або однієї одноланцюгової лінії.

Ланцюг - сукупність трьох проводів - фази а, b і с.

Схеми розімкнених мереж ділять на 3 типа:

- радіальні

- магістральні

- комбіновані (змішані)

схема радіальної мережі:

В радіальній мережі кожний споживач живиться по своїй лінії.

Перевага: надійність

Недоліки: велика довжина ліній, наявність комутуючих апаратів для кожної лінії.

Умовне позначення:

Схема магістральної мережі:

В магістральній схемі мережі від однієї лінії живиться декілька споживачів, розташованих в одному напрямку.

Недоліки: низька надійність.

Перевага: мінімальна довжина ліній.

В комбінованих схемах містяться магістральні і радіальні лінії.

Замкнуті - мережі, в яких кожний споживач отримує живлення із двох або більшого числа сторін, а схема містить хоч би один замкнений контур.

Ці мережі діляться на:

- прості,

- складні (складно-замкнені).

В простих замкнених мережах, які складаються із одного контуру, кожний споживач живиться не більше ніж з двох сторін. Такі мережі поділяються на мережі з двостороннім живленням (від двох ДЖ) і кільцеві мережі (один ДЖ), де кожний споживач пов'язаний з ДЖ двома лініями.

Схеми названих мереж:

Мережа з двостороннім живленням

Мережа кільцева

Із-за складності виконання РЗіА (релейний захист і автоматика) в кільцевих мережах, то вони, як правило, працюють в нормальному режимі як розімкнені, а в аварійному як замкнуті. Тому схеми кільцевої мережі, як правило, виконують наступним чином:

Складні замкнені мережі містять декілька (2 і більше) замкнених контурів і джерел, і можуть мати різні конфігурації.

Наприклад:

В порівнянні з розімкненими, замкнуті мережі наділенні наступними перевагами:

1. Надійність електропостачання (що важко для відповідальних споживачів, які не терплять довгострокових перерв електропостачання);

2. Велика економічність завдяки можливостям мінімалізації затрат потужності і електроенергії.

Питання для самоконтролю.

1. За якими ознаками і показниками здійснюють класифікацію електричних мереж?

2. Дайте визначення розімкнених та замкнених електричних мереж.

3. Що таке радіальні і магастральні мережі?

4. В чому полягають переваги складнозамкнених мереж?

Висновки: В результаті засвоєння матеріалу студенти повинні вивчити визначення та ознайомитися з класифікацією електричних мереж за різноманітними ознаками.

ЛЕКЦІЯ № 3. ЕЛЕМЕНТИ ЕЛЕКТРИЧНОЇ МЕРЕЖІ

Актуальність : ознайомлення з елементами електричних мереж.

План :

1. Основні елементи ЛЕП.

2. Основні види ПС.

3. Основні елементи ПС.

4. Питання для самоконтролю.

Основні елементи ЛЕП.

До основних елементів електричної мережі відносяться лінії електричних передач (ЛЕП) і підстанції (ПС).

Повітряні лінії складаються з:

- опор,

- проводів,

- лінійної арматури,

- грозозахисного тросу.

Опори бувають (по розташуванню та виконуємим функціям):

- проміжкові,

- кутові,

- кінцеві,

- спеціальні.

Опори бувають (по використаному матеріалу):

- залізобетоні,

- металеві (і дерев'яні в низьковольтних мережах)

За конструктивним виконанням:

- одно ланцюгові,

- дволанцюгові.

На ПЛ використовують багатодротові алюмінієвий та сталеалюмінієві проводи.

Проводи і троси на опорах одноланцюгових і дволанцюгових ПЛ розміщують наступним чином:

Ізолятори :

- штирьові ( в основному до 20 кВ );

- підвісні (тарілчасті).

На 1 тарілку приблизно 1015кВ (бувають і більше).

Основні види ПС.

Підстанції призначені для перетворення і перерозподілу електроенергії. Вони являються елементами мережі, які визначають її структуру і властивості. ПС класифікують за різними ознаками ( підвищуючи і понижуючі ). За місцем і способом під'єднання трансформатора до мережі ПС поділяють на:

- глухі (кінцеві),

- відгалуженні,

- прохідні,

- вузлові.

Глухі ПС під'єднуються в кінці однієї або двух ліній (магістральних, радіальних або змішаних).

Відгалуженні ПС - під'єднуються через відгалуження до однієї або двох магістральних ліній з одностороннім або двостороннім живленням.

ПС з одностороннім живленням ( розімкнена мережа ).

ПС з двостороннім живленням ( або замкнена проста мережа ).

Прохідна ПС - під'єднується до мережі шляхом заходження на неї однієї або двох ліній з двостороннім живленням (застосовується в простих замкнених мережах).

В окремих випадках прохідна ПС може бути транзитною.

Вузлова ПС - під'єднується до мережі не менше ніж за трьома живлючими лініями. Ці ПС застосовуються в складнозамкнених мережах. Вони також можуть бути транзитними.

За призначенням ПС ділять на:

- ПС споживачів (вузлові РП, ГЗП, ТП),

- ПС системні ( в основному районні ПС (РПС).

За кількістю трансформаторів ПС можуть бути одно- та багатотрансформаторні.

Основні елементи ПС.

Основні елементи ПС:

1.Трансформатор(и),

2.Автотрансформатор(и), які служать для мереж різних номінальних напруг.

Т і АТ характеризується каталожними даними: Uн, Рн і іншими параметрами.

На підстанціях застосовують двох - і трьохобмоткові трансформатори, а також різновид двохобмоткового трансформатора - трансформатор з розщепленою обмоткою.

Sвн=Scн=Sнн=100%

Scн +Sнн=Sвн

Sнн1=Sнн2=0,5Sвн

(Двухобмотковий з розщепленою обмоткою)

Автотрансформатори

АТ - це трансформатор, у якого обмотка середньої напруги (С) є частиною обмотки вищої напруги (В), тобто АТ - це трансформатор, дві або більше обмотки якого гальванічно (електрично) пов'язані так, що вони мають загальну частину.

Принципіальна схема однофазного автотрансформатора:

Двухобмотковий Трьохобмотковий

Випускають однофазні і трифазні АТ.

Uв-вища напруга (загальна)

Uc-середня напруга

Іоб=Ів -Іс

Іпосл=Ів

Якщо б цю задачу вирішували за допомогою звичайного трансформатора, то схема мала б вигляд:

У трансформаторах розрізняють:

- номінальну (прохідну) потужність. Це потужність при електричному (гальванічному) з'єднанні обмоток. Вона означає граничну потужність, яка може бути передана через трансформатор на стороні ВН.

- типова потужність автотрансформатора. Це така потужність, яка була б , якщо обмотки працювали б окремо, тобто автотрансформатор отримали б з трансформатора з окремо працюючими обмотками.

.

Значення типової потужності визначає габарити, масу, затрати та інші показники

,

де Ктр - коефіцієнт трансформації;

- коефіцієнт доцільності застосування автотрансформатору.

ЗазвичайSтип Sном, а коефіцієнт доцільності застосування 1.

Значення Ктр змінює співвідношення між Sтип і Sном. При цьому, чим менше Ктр тим більш вигідно застосовувати автотрансформатор ( з точки зору маса-габаритних показників і витрат потужності ).

Наприклад: при Uв=220кВ і Uc=110кB або Uв=330кВ, Uc=150кВ, то

Ктр ?2, б =0,5 , Sном=2Sтип

Якщо Uв=330кВ, Uс=35кВ, то

Ктр?10, б=0,9, .

Недоліки автотрансформаторів:

1. Електричний (гальванічний) зв'язок між обмотками вищої і середньої напруги.

2. Мережі зазвичай працюють з різними режимами нейтрали, тому автотрансформатори застосовують переважно в мережах 110кВ і вище.

3. Автотрансформатор має менший індуктивний опір ніж трансформатор (а це значить, що у нього гірше обмеження струмів короткого замикання).

Порівняльні техніко-економічні показники автотрансформатора АТ 220/110/6кВ з аналогічним трьохобмотковим трансформатором дають питому економію міді (кг/кВА) ?1525%, економію активної сталі ?50 60%, а вага приблизно в 1,5 рази менше, ніж трансформатора; втрати потужності (У втрати потужності) менше на ? 3035%.

Автотрансформатори випускають потужністью від 63 до 250 МВА, на напругу 110кВ і вище.

Умовні позначення.

Умовні позначення (маркування).

Ці позначення складаються із літер і цифр, які відображають їх конструкцію, потужність і напругу обмоток:

А-автотрансформатор трьохфазний,

О-автотрансформатор однофазний,

Т-трьохфазний трансформатор,

Н-з регулювання під напругу (АТ або Т),

Т-трьохобмотувальний,

Р-трансформатор з розщепленою обмоткою,

Д-охолодження дуттям,

Ц-примусове охолодження циркуляцією оливи,

М-масляне охолодження.

Приклад: ТДТН-10000/100/6 - трьохфазний трьохобмотковий з РПН, охолодження дуттям.

Питання для самоконтролю.

1. З яких основних елементів складаються повітряні лінії електропередач?

2. Для чого призначені підстанції та на які види вони підрозділяються?

3. Назвіть основні елементи підстанцій.

4. Що таке автотрансформатор, які він має переваги та недоліки?

5. Які умовні позначення та маркування мають елементи ПС?

Висновки: В результаті вивчення матеріалу студенти повинні засвоїти визначення, умовні позначення та маркування елементів електричних мереж .

ЛЕКЦІЯ № 4. ПАРАМЕТРИ І СХЕМИ ЗАМІЩЕННЯ ЕЛЕМЕНТІВ ЕЛЕКТРИЧНОЇ МЕРЕЖІ

Актуальність : вивчення параметрів для розрахунку, аналізу і управління режимами реальної електричної мережі та створення їх розрахункових моделей мереж - еквівалентних схем заміщення .

План :

1. Загальні положення.

2. Схеми заміщення ЛЕП.

3. Параметри схем заміщення ЛЕП.

4. Схеми заміщення Т і АТ.

5. Параметри схем заміщення трансформаторів.

6. Схеми заміщення трьохобмоткових трансформаторів.

7.Схеми заміщення двохобмоткових трансформаторів з розщепленою обмоткою.

8.Питання для самоконтролю.

Загальні положення.

Для розрахунку, аналізу і управління режимами реальної електричної мережі створюють їх розрахункові моделі. З цією метою реальну електричну мережу замінюють еквівалентною схемою заміщення.

Схемою заміщення мережі називається її графічне зображення, яке показує послідовність з'єднання її ділянок і відображає їх властивості.

Схеми заміщення мережі складають із схем заміщення її елементів (ЛЕП, ПС, навантаження і ін.) на одну фазу трьохфазної марежі.

Схеми заміщення розрізняють:

- повздовжні (зі струмом навантаження),

- поперечні (на повну напругу гілки). Цим гілкам відповідають повздовжні та поперечні параметри.

Схеми заміщення ЛЕП.

Необхідність обліку тих чи інших параметрів ЛЕП в схемі заміщення залежить від рівня напруги, конструктивного виконання, а також вимоги до точності розрахунку.

В загальному випадку схема заміщення ЛЕП містить повздовжні та поперечні параметри.

Розглянемо різноманітні схеми заміщення ЛЕП :

ПЛ з напругою кВ та довжиною км, та КЛ з напругою кВ представлені звичайною симетричною П-образною схемою заміщення (повна схема заміщення):

Зі зменшенням класу напруги ліній зневажають деякимиі параметрами:

- для ПЛ: Uн=110220кВ (втратами потужності на корону зневажають),

- для КЛ: Uн<35кВ (зневажають діелектричними втратами ).

Схема заміщення спрощується:

- для більшості розрахунків режимів в мережах з Uн=110-220кВ ЛЕП представляється більш простою схемою заміщення. В ній замість ємністної провідності ліній враховується зарядна реактивна потужність, що генерується ємністю лінії та направлена на неї.

- для ПЛ з Uн=35кВ або < 35кВ не враховують поперечну гілку (місцеві мережі)

- для КЛ з Uн=10кВ або < 10кВ (враховується тільки активний опір повздовжньої гілки)

Параметри схем заміщення ЛЕП.

При розрахунку складових схем заміщення ЛЕП використовують питомі (погонні) параметри: опори та провідності .

1.Активний опір.

Омічний опір (при постійному струмі)

; , де F- переріз.

Активний опір при змінному струмі в порівнянні з R:

r > R (із-за поверхневого ефекту)

при f = 50Гц в елементах, які не містять сталі (сердечника) різниця між R i r не більше 1% тому r ? R.

Питомий активний опір

,

де l - довжина;

r0, Ом/км

В довіднику визначення опору дають при и=20єС.

Як правило , поправочний коефіцієнт при розрахунку не вводиться.

2.Індуктивний опір

Погонний індуктивний опір фаз ЛЕП залежить від взаємного розташування і потоку щеплення дротів.

В загальному випадку індуктивний опір ліній визначається:

- значення Х0 ПВ з одиночними проводами визначається залежністю від двух величин:

X0=f(Rп, Dср)

де Rп - зовнішній радіус дроту,

Dср - середнє геометричне розташування між дротами

Для одноланцюгової трьохфазної лінії:

, де

D12, D23, D31, - відстань між сусідніми дротами

В залежності від розташування дротів на опорах значення Dср - наступне:

а) розташування дротів у вершинах рівностороннього трикутника

б) якщо дроти розташовані горизонтально

Із ТОЕ погонний індуктивний опір ЛЕП :

,

де: - магнітна проникність матеріалу дроту,

L - індуктивність.

, ,

де: Х'0 і Х"0 відповідно зовнішні і внутрішні індуктивні опір лінії.

Для дротів із кольорових металів:

Х'0 >> Х"0, Х0?Х'0

У кабелях Dср дуже маленькі, тому індуктивною складовою зневажають.

Для зменшення затрат напруги та потужності в мережах виникає задача зменшити Х0 .

Аналіз виразу (1) показує, що значення Х0 можна знизити шляхом:

а) зменшення Dср ,

б) збільшити Rn .

Зменшення Dср збільшує небезпеку пробою ,збільшення Rn збільшує затрати металу. Але, збільшення Rn можливо шляхом розщеплення дроту фази на декілька паралельних (¦) дротів. Розщеплення дротів виконується на ПЛ з Uн?330кВ.

3.Активна провідність ЛЕП( g )

Ця складова обумовлена двома видами втрат активної потужності :

1. - від струму витоку (із-за недосконалого ізолятора)

2. - від втрат на корону

*розряд - приватний випадок пробою (тільки в газах)

*пробої можуть бути частковими і повними.

Поле між двома проводами неоднорідне, тобто у поверхні проводів Е вище.

(Е?соnst)

4.Ємністна провідність ЛЕП.

- обумовлена наявністю ємності зв'язків між проводами різних фаз, а також між проводами і землею.

, [Ф]

,

, [См/км]

Наявність ємнісної провідності визиває в лінії протікання ємнісного струму і ємнісної потужності, яка називається відповідно зарядним струмом і зарядною потужністю ліній.

- зарядний струм ;

- зарядна потужність.

Із цього виразу виходить, що значення Qc суттєво (в квадраті) залежить від напруги мережі.

Для ПЛ ємнісна провідність і зарядна потужність враховується при Uн?110кВ.

В районних мережах ( Uн ? 110кВ ) завжди враховується Qc, а якщо мережа місцева то не враховується.

В ПЛ надвисоких напруг значної протяжності ліній (сотні км.)утворюють таке значення Qc, що її треба компенсувати, бо в іншому випадку можливі високі рівні перенапруги. З цією метою для компенсації використовують шунтуючі реактори.

У КЛ відстань між фазними проводами і заземлюючими оболонками мала, а також в них велика величина Е - це значить, що Свл «Скл => Вкл»Ввл.

Схеми заміщення Т і АТ (трансформаторів і автотрансформаторів).

Одна фаза двообмоткового трансформатора з достатнім ступенем точності представлена Г - образною схемою заміщення:

Активна провідність gT обумовлена втратами активної потужності в магнітопроводі (на вихрові потоки, які значно більше витрат на гістерезис).

Реактивна провідність Вт обумовлена взаємною індуктивністю між обмотками трансформатора.

У трансформатора з напругою до 220 кВ схема заміщення може бути представленна продольною гілкою, а замість поперечної гілки використовують навантаження, рівне сумарним втратам потужності хх.

.

При розрахунках місцевих мереж (Uн<110кВ) в схемах заміщення трансформатора враховують тільки продольну гілку.

Параметри схем заміщення трансформаторів.

Опір та провідність визначають за паспортними даними. Для двообмоткових трансформаторів в каталогах вказуються:

Активний опір rТ визначається з даних досліду к.з.:

, ,

Але, так як в паспорті не вказується Ін, то його можна визначити за іншими заданими параметрами:

, , ,

беремо UH первинної обмотки:

, тоді

=,

Індуктивний опір ХТ визначається відносним падінням напруги в індуктивному опору однієї фази. (В % відносно Uф)

, (%); ,

підставимо значення Ін, тоді:

,

Так як напруга Uк (в %, Uн)=, в трансформаторах хТ>>rТ =>Uа<< Uр, тоді Uр? Uк, а

Активна провідність gT визначається:

,

Реактивна провідність b визначається:

Так як bТ>gT, то можливо прийняти, що весь струм хх проходить через Вт, тоді намагнічується первинна обмотка трансформатора (вторинна розімкнена) і втрати реактивної потужністі складають:

, %

.

Прирівнюємо праві частини цих виразів, знаходимо, що:

Схеми заміщення трьохобмоткових трансформаторів.

Схема заміщення цього трансформатора представляє собою трьохпроменеву зірку:

- поперечна гілка цих трансформаторів має теж значення, що і в двохобмоткового трансформатора.

Активний опір трансформатора при рівних потужностях обмоток - опір променів еквівалентної схеми, приведених до сторони ВН, приблизно одинаковий.

Для трьохобмоткових трансформаторів в каталогах задається значення ДРк для випадків максимальних втрат.

Таким гіршим випадком являється протікання повного (номінального) струму по двом обмоткам при розімкненій третій. Наприклад, по обмоткі ВН і СН при розімкненій НН. В цьому випадку продольна гілка схеми заміщення перетворюються в послідовне з'єднання двох обмоток, і тоді при розрахунках rT можна приймати: , тому, враховуючи вираз для rT, отриманний для двообмоткового трансформатора можна записати:

.

Індуктивний опір Хт - визначається за виразом, аналогічним як для двообмоткового трансформатора, але окремо для кожної обмотки.

, ,

Але в паспортних даних для трьохобмоткових трансформаторів значення Uк(%) вказується не для кожної з обмоток, а для кожної пари обмоток, тому вихідні значення Uк знаходяться в результаті трьох рівнянь з трьома невідомими.

Кінцеві значення вихідних Uк:

Uкв=0,5(Uквс+Uквн - Uксн)

Uкс=0,5(Uксн+Uквс - Uквн)

Uкн=0,5(Uксн+Uквн - Uквс)

Якщо в результаті розрахунків виявиться, що одне із значень буде від'ємним числом, то воно приймається рівним нулю. Параметри поперечної гілки визначаються як і у двохобмоткового трансформатора.

Схеми заміщення двообмоткових трансформаторів з розщепленою обмоткою.

Трансформатор з розщепленою обмоткою - такий трансформатор, який може працювати як з паралельним з'єднанням гілок, так і з включенням кожної гілки на своє навантаження. При || з'єднанні обмоток НН трансформатор з розщепленою обмоткою буде працювати як двообмотковий трансформатор, а при роздільній праці гілок - як трьохобмотковий.

Тому схеми заміщення трансформаторів з розщепленою обмоткою аналогічні схемам заміщення дво- і трьохобмоткових трансформаторів.

Однією із основних характеристик трансформаторів з розщепленою обмоткою являється коефіцієнт розщеплення Кр. Він характеризує електромагнітний зв'язок між вторинними обмотками.

Особливістю конструкції являється те, що гілки вторинних обмоток НН розміщенні симетрично по відношенню до обмотки ВН, одна на іншій на магнітопроводі трансформатора. При такому розташуванні обмоток магнітний зв'язок між ними практично відсутній, значення Кр ?3,5.

Тому при визначені параметрів схем заміщення трансформаторів з розщепленою обмоткою треба враховувати особливості:

1. В каталожних даних наведенні данні, коли їх обмотки працюють паралельно.

2. При роботі трансформатора на роздільне навантаження параметри визначаються як для трьохобмоткового, але з урахуванням своїх особливостей.

Вирази для розрахунку опору променів зірки на схемі заміщення:

1. Індуктивний опір:

2. Активний опір:

Так як потужність кожної обмотки НН дорівнює 0,5Sвн, тобто 0,5Sн, то

Значення rB визначається так як і для трьохобмоткового трансформатора, але при цьому:

Втрати потужності в режимі к.з.:

,

при цьому значення параметрів в обмотках ВН і НН, наведені в каталогах, віднесені до повної номінальної потужності трансформатора.

3. Провідності трансформаторів з розщепленою обмоткою визначаються також як для двообмоткового трансформатора.

Трансформатори з розщепленою обмоткою мають підвищене значення індуктивного опору на стороні НН. За рахунок цього потужність к.з. на шинах НН знижується майже в 2 рази, що дозволяє в багатьох випадках відмовитись від струмообмежувальних реакторів.

Питання для самоконтролю.

1. Що назівають еквівалентною схемою заміщення мережі?

2. Що в загальному випадку уявляє собою схема заміщення ЛЕП та які параметри вона містить?

3. Що в загальному випадку уявляє схема заміщення Т і АТ та які параметри вона містить?

4. Які особливості має схема заміщення трьохобмоткових трансформаторів?

5. Які особливості має схема заміщення двообмоткових трансформаторів з розщіпленою обмоткою?

6. Які переваги мають двообмоткові трансформатори з розщіпленою обмоткою?

Висновки: В результаті вивчення матеріалу студенти повинні мати уяву про параметри для розрахунку, аналізу і управління режимами реальної електричної мережі та мати уяву про створення їх розрахункових моделей - еквівалентних схем заміщення .

ЛЕКЦІЯ № 5. ХАРАКТЕРИСТИКИ І ПАРАМЕТРИ ЕЛЕКТРИЧНИХ НАВАНТАЖЕНЬ

Актуальність: вивчення характеристик і параметрів електричних навантажень, що є основними вихідними даними для розрахунку електричних систем і мереж .

План :

1. Графіки електричних навантажень.

2. Статичні характеристики навантажень споживачів.

3. Способи представлення навантаження в розрахункових схемах ЕС і М.

4. Схеми заміщення електричної мережі в цілому.

5. Приведення схеми заміщення до базисної напруги.

6. Питання для самоконтролю.

Графіки електричних навантажень.

Для розрахунку електричних систем і мереж основними вихідними даними являються електричні навантаження споживачів. Зміни електричних навантажень в часі характеризуються графіком, який відображає залежність потужності або струму в часі:

P(t); Q(t); I(t).

Розрізняють змінні, добові, сезонні і річні графіки.

Приблизний добовий графік навантаження енергосистеми має вигляд:

Конфігурація графіка навантаження має загальні закономірності.

На ньому можна побачити три ділянки:

1. - ранковий максимум;

2. - вечірній максимум;

3. - нічна зона (провал).

На цьому графіку виділяють також три зони :

1. - пікова (вечірній ранковий максимум)

2. - напівпікова (час між ранковим і вечірнім максимумом)

3. - зона провалу.

Тарифікація електроенергії здійснюється по зонному тарифу: сама дорога - пікова, дешева - провал.

При проектуванні електричних мереж та систем використовують режими з найбільшими сумарними зимовими навантаженнями Pmax і Qmax та з найменшими сумарними літніми Pmin і Qmin.

Для отримання достовірної інформації про графіки навантажень енергосистема 2 рази на рік в 20-х числах грудня і червня разом з споживачами проводить «дні вимірів».

Статичні характеристики навантажень споживачів.

Споживання навантаження активної і реактивної потужності Pнав. та Qнав. в загальному випадку залежить від :

Рнав, Qнав = f(U,f) .

В залежності Рн(U), Qн(f), Qн(U), Рн(f) в сталих режимах представляють собою статичні характеристики навантаження по напругі і частоті. Для різних видів електричних приймачів (СД, АД ...)статичні характеристики будуть різними, тому в розрахунках із-за великої різноманітності електричних приймачів використовують узагальнені (типові) статичні характеристики по U і f.

Ці характеристики визначаються як властивостями окремих електричних приймачів, так і відношенням їх потужностей. Ці характеристики, як правило, нелінійні.

В якості прикладу покажемо узагальнені статичні характеристики для деякого вузла навантаження з Uн=110кВ.

Способи представлення навантаження в розрахункових схемах ЕС і М.

Таким чином узагальненні характеристики представляють собою лінійні залежності між I і U, для їх використання необхідно визначення дійсної (фактичної) напруги в різних точках мережі. Це ускладнює розрахунок, тому в практичних розрахунках режимів статичні характеристики замінюють умовними, в яких потужність навантаження прийнята незмінною, тобто:

P=const, Q=const.

Способи представлення навантаження в розрахункових схемах мереж залежать від виду мереж і мети розрахунку. Навантаження може бути представлене струмами, потужностями, провідністю або опором.

1.Навантаження утворюється постійним по модулю і по фазі струмом:

при завданні навантаження струмами, вони визначаються по заданому значенню потужності навантаження і прикладеній напрузі в кожному режимі.

Така форма представлення навантаження приймається при усіх розрахунках місцевих мереж напругою до 1кВ, окрім того, як правило, в мережах напругою ?35кВ.

2.Навантаження задається постійною по величині потужністю Рн=const, Qн=const, незалежною від напруги в точці прикладення навантаження.

Така форма навантаження приймається при розрахунках сталих режимів районних і розподільчих мереж високої напруги.

3.Навантаження представлене постійною комплексною провідністю або опором.

Така форма використовується при розрахунках перехідних електромеханічних режимів.

В розрахункових схемах використовуються умовні зображення елементів мережі. Місця генерації і споживання енергії зображають колами, а шляхи передачі енергії відмічають стрілками. При цьому в пунктах споживання стрілки направляють від вузлів мережі, а в пунктах генерації - до вузлів мережі. У стрілок вказується відповідне значення повної потужності як комплексної величини.

Схеми заміщення електричної мережі в цілому.

Загальні розрахункові схеми заміщення отримують в результаті об'єднання її різнорідних елементів у відповідності з їх електричними схемами, тобто електричний зв'язок в реальній мережі. При цьому схема заміщення мережі може бути представлена у вигляді електричного ланцюга або у вигляді схеми з навантаженням. В якості прикладу розглянемо схему заміщення мережі, вказану на малюнку.

Приведення схеми заміщення до базисної напруги.

Спільний розрахунок мереж з різним номінальним напругами, тобто мережі, яка містить елементи трансформації, проводиться різними способами.

Один із них знаходиться в приведенні параметрів схеми заміщення до одної базисної напруги.

За базисну напругу може бути прийнята будь яка напруга мережі. Так як навантаження в основному створюються зі сторони НН трансформатора, то за Uбаз приймаємо Uвн, тобто: Uбаз=Uвн, тоді параметри схем заміщення приводяться до сторони ВН трансформатора.

Наведення дійсних параметрів елементів схем заміщення мережі до Uбаз виконується за виразом:

- для прокольної гілки;

- для поперечної гілки.

В якості прикладу наведення розглянемо схема мережі двох номінальних напруг. Мережа складається з ліній Л1 вищої напруги, трансформатора Т і Л2 (нижчої напруги):

Після приведення параметрів схеми заміщення до Uбаз розрахунок робочих режимів проводиться аналогічно мережі однієї напруги.

Питання для самоконтролю.

1. Яку конфігурацію має графік навантаження енергисистеми, та які на ньому можна бачити зони і ділянки?

2. Як здійснюється тарифікація електроенергії?

3. Що уявляють собою статичні характеристики навантажень споживачів?

4. Від чого залежать способи представлення навантаження в розрахункових схемах? Назвіть способи представлення навантаженнь.

5. Як отримують загальні розрахункові схеми заміщення мереж?

6. Навіщо здійснюють приведення схеми заміщення до базисної напруги?

Висновки: В результаті вивчення матеріалу студенти повинні мати уяву про характеристики і параметри електричних навантажень , які є основними вихідними даними для розрахунку електричних систем і мереж .

ЛЕКЦІЯ № 6. МЕТОДИ РОЗРАХУНКІВ СТАЛИХ РЕЖИМІВ ЕЛЕКТРИЧНОЇ МЕРЕЖІ

Актуальність: вивчення методів розрахунків сталих режимів електричної мережі та засвоєння поняття про режими та параметри, які їх характеризують.

План :

1. Поняття про режими.

2. Вихідні данні і задачі розрахунку режимів мережі.

3. Класифікація і характеристика методів розрахунку робочих режимів.

4. Питання для самоконтролю.

Поняття про режими.

Режимом мережі називаэться такий її стан, який має місце в будь який момент часу.

Розрізняють 3 основних режими мережі:

1- нормальний (робочий режим),

2- аварійний,

3- післяаварійний (робочий режим).

Розглянемо тільки робочі режими. В цих режимах ми вважаємо, що напруга і майже не змінюються, крім того, ми розглядаємо симетричні і синусоїдальні режими. В розрахунках приймають найбільш важкі для роботи мережі післяаварійні режими, які виникають при найбільших навантаженнях після відключень, вирваних пошкодженням електричної мережі.

До самих важких післяаварійних режимів відносяться:

1. При дволанцюгових ЛЕП - пошкодження однго з ланцюгів лінії.

2. В мережах з двухстороннім живленням - пошкодження одного із джерел.

3. В двотрансформаторних ПС - відключення одного з трансформаторів.

Параметри сталих режимів визначаються параметрами нормального max і min режимів навантаження і післяаварійного.

Режим роботи мережі характеризується рядом параметрів:

- струми,

- напруга,

- повна потужність, або її складові.

Параметри режимів мереж змінюються протягом часу. Тому для кожного елемента мережі і електричного приймача зазвичай регламентуються зміни вказаних параметрів.

Вихідні данні і задачі розрахунку режимів мережі.

Вихідними даними являються:

1. Схема електричних з'єднань (електрична схема).

2. Параметри елементів (z; y).

3. Значення навантаження (S; P; Q).

4. Напруга одного із пунктів мережі (або ДЖ, або електричний приймач).

Задача розрахунку робочих режимів мережі заключається у визначенні її параметрів (параметрів режиму мережі).

Ці розрахунки необхідні для перевірки припустимих значень струму і напруги і для оцінювання економічності роботи мережі, а також для визначення втрат потужності і енергії. При розрахунку визначають потокорозподілення потужностей або струмів по ділянкам мережі. Необхідно вміти визначати напругу на різних елементах і інших ділянках мережі, тобто напругу в різних точках мережі.

Класифікація і характеристика методів розрахунку робочих режимів

Методи розрахунку вибираються за вимагаємою точністю і основними витратами часу.

Методи розрахунку сталих режимів мережі ділять на:

- традиційні,

– формалізовані.

Традиційні методи базуються на прямому використанні законів електричних ланцюгів і залежностей, що з них витікають. Співвідношення між параметрами режиму інтерпретуються у векторні і кругові діаграми. Розрахунок класичними методами здійснюється за допомогою простих обчислювальних засобів.

Формалізовані методи застосовуються для складних електричних мереж. Ці методи базуються на топології мережі, а в якості математичного апарату використовують теорію графів і матричну алгебру. Розрахунки цими методами проводять з використанням ЕОМ.

Питання для самоконтролю.

1. Що називають режимом електричної мережі?

2. Що таке параметри режиму?

3. У чому полягає задача розрахунку робочих режимів мережі, та що є вихідними даними для цієї задачі?

4. Назвіть і дайте характеристику методів розрахунку робочих режимів.

Висновки: В результаті вивчення матеріалу студенти повинні мати уяву прометоди розрахунків сталих режимів електричної мережі та засвоїти поняття про режими та параметри, які їх характеризують.

ЛЕКЦІЯ № 7. ВИЗНАЧЕННЯ ВТРАТ ПОТУЖНОСТІ В ЕЛЕКТРИЧНИХ МЕРЕЖАХ

Актуальність: Передача активної і реактивної потужності по проводам і перетворення напруги в трансформаторах супроводжується частковою втратою потужності і енергії. Втрати при передачі досягають 15% від виробляємої енергії, тому точний розрахунок втрат потужності - важлива задача.

План:

1. Втрати потужності в ЛЕП .

2. Визначення втрат потужності на окремих ділянках мережі.

3. Розрахунок втрат електроенергії в елементах електричної мережі.

4. Векторна діаграма струму і напруги в лінії з однієї дільницею.

5. Питання для сомоконтролю.

Втрати потужності в ЛЕП.

Втрати потужності в ЛЕП - це втрати на нагрів провідників ЛЕП змінним струмом, вони можуть бути знайдені за допомогою виразу:

,

Активна та реактивна потужності:

;

; .

Будьяка індуктивність яка споживає струм, є споживач реактивної потужності.

Втрати реактивної потужності трифазних ЛЕП визначаються аналогічно виразу втрат активної потужності:

.

Будьяка ємність, до якої прикладено напругу мережі, є генератор реактивної потужності. Генерована ємнісною провідністю поперечної гілки схеми заміщення ЛЕП зарядна потужність дорівнює:

.

Qс зменшує реактивну потужність ліній QL (як би частково компенсує) і тим самим знижує витрати потужності ДP та ДQ (Q=QL - Qc).

Із виразу (4) і (5) можна зробити висновки:

1 - втрати ДР і ДQ залежать як від передаваємої в лінії Р так і від Q,

2 - втрати потужності зворотньопропорційні квадрату напруги, тому навіть невелике підвищення напруги (U) призводить до значного зниження втрат потужності.

Втрати потужності в лінії з декількома навантаженнями визначаються шляхом підсумовування втрат на кожній ділянці.

На цій схемі S1, S2, S3 - лінійні потужності (які транспортуються).

Sa, Sb, Sc - загрузочні потужності (які відбираються).

Визначення втрат потужності на окремих ділянках мережі.

В лініях районних мереж значення комплексної повної потужності у передавального і приймального кінців повздовжньої гілки ділянки неоднакові (із-за втрат). Тому визначають потужність наприкінці і на початку ділянки.

Розглянемо району мережу з П-образною симетричною схемою заміщення.

де: т. a, b - передавальний і приймальний кінці ділянки,

т. b, c - передавальний і приймальний кінці повздовжньої гілки схеми заміщення,

- комплексне значення повної потужності у передавального і приймального кінців повздовжньої гілки схеми заміщення,

- комплексна повна потужність у передавального кінця ділянки,

Њ - потужність навантаження.

Вказані потужності можна виразити:

Струм повздовжньої гілки може визначатися як по даним передавального, так і по даним приймального кінця ділянки.

Зі схеми визнчаємо значення потужності:

,

.

Значення відрізняється від потужності ,

У цьому зв'язку втрати потужності в повздовжній гілці можна визначити по даним початку і кінця лінії.

.

В місцевих мережах при розрахунку не враховуються:

- поперечні гілки (зарядна потужність),

- втрати потужності в мережах.

Тому, в місцевих мережах:

, тоді

Втрати потужності в трансформаторах:

Існують 4 види втрат потужності:

1- втрати активної потужності (витрати в міді)

,

2- втрати реактивної потужності в міді (ХТР)

,

3- втрати активної потужності в сталі (gтр)

,

4- втрати реактивної потужності в індуктивній провідності (Втр) в режимі xx:

.

Сумарні втрати потужності в трансформаторі:

,

· при розрахунках втрат потужності в трансформаторі використовуються каталожні данні.

Для двообмоткового трансформатора:

,

де - коефіцієнт завантаження трансформатора.

,

,

,

Коли потужність ПС (потрібна) перевищує потужність трансформатора (номінальну), на ПС встановлюють декілька трансформаторів.

При паралельній роботі однакових трансформаторів на ПС сумарні втрати потужності ПС:

(одного трансформатора).

Розрахунок втрат електроенергії в елементах електричної мережі.

Втрати енергії в ЛЕП:

В лініях з постійним навантаженням (P(t)=const) втрати енергії за деякий час t складають:

В реальній мережі, в якій навантаження постійно змінюється, тобто Р(t)?const, втрати електроенергії можна визначити:

, де

ТГ - річний час; в році 8760 годин.

* щоб розрахувати втрати енергії по останньому виразу, треба мати графік навантаження, який, як правило, при проектуванні відсутній. Тому цей вираз не використовується.

*розрахунок витрат ведеться приблизними методами: одним з них є метод, оснований на введенні умовного поняття «час максимальних витрат» - .

Цей час визначається за графіком або приблизному виразу:

, де

Тmax - це час (число годин) використання max навантаження на рік.

Для розуміння поняття Тmax розглянемо графік залежності активної передаваємої потужності Р від часу t:

Е - енергія; Егод=Р(t) Тгод = Рmax*Тmax.

Тmax - час максимальних навантажень,

- це деяка умовна величина, яка при множенні на Рmax дає таке ж значення, як і Р(t) Тгод,

- значення приймається за довідниковою літературою в залежності від галузі промисловості і змінності роботи підприємства.

Втрати енергії в трансформаторі залежать від двох параметрів, залежних і незалежних від навантаження:

,

де: t - час підключення трансформатора до мережі.

Річні втрати електроенергії в трансформаторах підраховують з використанням каталожних даних.

Для двообмоткових трансформаторів використовують вираз:

,

де: - коефіцієнт завантаження.

Векторна діаграма струму і напруги в лінії з однієї ділянкою.

Розглянемо лінію і схему її заміщення, в якій для спрощення поперечні провідності не враховуємо.

Дані по лінії:

Напруга наприкінці лінії і на живлячому кінці відрізняються на величину падіння напруги ДU, яка викликана струмом навантаження.

Векторна діаграма струму і напруги:

При побудові векторної діаграми за початковий приймаємо вектор U. Використовуючи векторну діаграму розглянемо поняття:

- падіння напруги і втрата напруги,

- продольна і поперечна складова падіння напруги.

Під падінням напруги розуміють геометричну різницю комплексних напруг на початку і наприкінці лінії ( відрізок mk)

.

Під втратою напруги розуміють алгебраїчну різницю цих же напруг

.

Вектор падіння напруги може бути представлений у вигляді двух складових: повздовжньої і поперечної складовою

На векторній діаграмі ці складові позначенні:

; .

Падіння напруги може бути записано так:

.

Вираз для визначення повздовжньої і поперечної складової падіння напруги може бути визначений графічно із векторної діаграми або аналітично з використанням виразів, відомих із ТОЕ:

.

Відомо, що , де - комплексне значення струму навантаження, S - комплексне сполучення значної потужності ; U - комплексне сполучення значної напруги.

Значення струму навантаження можна виразити через відомі значення S і U.

...

Подобные документы

  • Визначення розрахункового навантаження будинків. Розроблення схеми внутрішньоквартального електропостачання електричної мережі, електричних навантажень на шинах низької напруги. Вибір кількості, коефіцієнтів завантаження та потужності трансформаторів.

    дипломная работа [4,8 M], добавлен 07.02.2012

  • Загальні положення проектування електричних мереж. Покриття потреб мережі в активній та реактивній потужності. Вибір трансформаторів. Критерії раціональної схеми електромережі на підставі техніко-економічного порівняння конкурентоздатних варіантів.

    курсовая работа [725,2 K], добавлен 21.02.2012

  • Розроблення конфігурацій електричних мереж. Розрахунок струмів та напруг на ділянках без урахування втрат та вибір проводів для схем. Особливість вибору трансформаторів. Визначення потужності та падіння напруги на ділянках мережі для схем А і Б.

    курсовая работа [4,9 M], добавлен 17.12.2021

  • Характеристика об'єкта електропостачання, електричних навантажень, технологічного процесу. Класифікація будинку по вибуховій безпеці, пожежній електробезпечності. Розрахунок електричних навантажень, вибір трансформаторів, розподільних пристроїв.

    курсовая работа [97,8 K], добавлен 28.11.2010

  • Специфіка проектування електричної мережі цеху з виготовлення пiдiймальних пристроїв машинобудівного заводу. Розрахунок електричних навантажень. Вибір кількості і потужності силових трансформаторів КТП з урахуванням компенсації реактивної потужності.

    курсовая работа [778,9 K], добавлен 14.03.2014

  • Розрахунок електричних навантажень. Визначення потужності та кількості трансформаторів знижувальних підстанцій. Перевірка електричної мережі на коливання напруги під час пуску електродвигунів. Вибір плавких запобіжників, автоматів та перерізу проводів.

    методичка [456,9 K], добавлен 10.11.2008

  • Аналіз трансформаторної підстанції і її мереж на РТП 35/10 "Ломоватка", існуючих електричних навантажень. Електричні навантаження споживачів, приєднаних до існуючих мереж 10 кВ. Розрахунок необхідної потужності та вибір трансформаторів на підстанції.

    курсовая работа [348,1 K], добавлен 20.03.2012

  • Визначення електричних навантажень на вводах споживачів електричної енергії. Електричний розрахунок мережі 10 кВ, струмів короткого замикання лінії 10кВ. Вибір електричної апаратури розподільного пристрою. Релейний захист комірки лінії 10 кВ підстанції.

    курсовая работа [692,1 K], добавлен 04.09.2014

  • Дослідження принципів побудови електричних мереж. Визначення координат трансформаторної підстанції. Вибір силового трансформатора. Розрахунок денних та вечірніх активних навантажень споживачів. Вивчення основних вимог та класифікації електричних схем.

    курсовая работа [370,6 K], добавлен 07.01.2015

  • Вивчення принципів побудови і загальна характеристика трифазних електричних систем. Опис основних видів з'єднань в трифазних електричних системах: сполучення зіркою і з'єднання трикутником. Розв'язування завдань і визначення потужності трифазного круга.

    контрольная работа [303,5 K], добавлен 06.01.2012

  • Вибір оптимальної схеми цехової силової мережі, розрахунок електричних навантажень, вибір кількості та потужності трансформаторів цехової підстанції. Вибір перерізу провідників напругою понад і до 1 кВ, розрахунок струмів короткого замикання і заземлення.

    курсовая работа [844,7 K], добавлен 12.03.2015

  • Характеристика споживачів електричної енергії. Вихідні дані і визначення категорії електропостачання. Розрахунок електричних навантажень підприємства і побудова графіків навантажень. Економічне обґрунтування вибраного варіанту трансформаторів.

    курсовая работа [283,4 K], добавлен 17.02.2009

  • Розрахунок режиму та застосування методу динамічного програмування для визначення оптимальної схеми електричної мережі. Вибір потужності трансформаторів для підстастанцій, схеми розподільчих пристроїв. Визначення витрат на розвиток електричної мережі.

    курсовая работа [1,8 M], добавлен 10.05.2012

  • Визначення електричних навантажень. Компенсація реактивної потужності. Вибір числа і потужності трансформаторів, типу підстанцій і їх місцезнаходження. Вибір живильних і розподільчих мереж високої напруги. Розрахунок заземлення і релейного захисту.

    курсовая работа [1,1 M], добавлен 23.09.2014

  • Розрахунок електричних навантажень населеного пункту. Компенсація реактивної потужності. Визначення координат трансформаторної підстанції та аварійних режимів роботи мережі. Вибір апаратури захисту від короткого замикання, перевантаження та перенапруги.

    курсовая работа [361,3 K], добавлен 07.01.2015

  • Вибір числа й потужності трансформаторів ТЕЦ-90. Техніко-економічне порівняння структурних схем. Вибір головної схеми електричних сполук, трансформаторів струму і струмоведучих частин розподільних пристроїв. Розрахунок струмів короткого замикання.

    курсовая работа [210,4 K], добавлен 16.12.2010

  • Огляд сучасного стану енергетики України. Розробка системи електропостачання підприємства. Розрахунок графіків електричних навантажень цехів. Вибір компенсуючих пристроїв, трансформаторів. Розрахунок струмів короткого замикання. Вибір живлячих мереж.

    курсовая работа [470,0 K], добавлен 14.11.2014

  • Призначення та склад системи електропостачання стаціонарного аеродрому. Схеми електричних мереж і аеродромні понижуючі трансформаторні підстанції. Визначення розрахункового силового навантаження об’єктів електропостачання аеропорту, їх безпечність.

    дипломная работа [1,8 M], добавлен 22.09.2011

  • Визначення, основні вимоги та класифікація електричних схем. Особливості побудови мереж живлення 6–10 кВ. Визначення активних навантажень споживачів, а також сумарного реактивного і повного. Вибір та визначення координат трансформаторної підстанції.

    курсовая работа [492,4 K], добавлен 28.12.2014

  • Розрахунок струмів та напруг на ділянках без урахування втрат та вибір проводів. Техніко-економічне порівняння двох схем електричної мережі. Визначення довжин ліній. Аварійний режим роботи електричної схеми Б. Режим мінімального її навантаження.

    курсовая работа [1,3 M], добавлен 27.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.