Аппроксимационные методы измерений периодических сигналов

Разработка аппроксимационных систем измерения параметров гармонических сигналов, отличающихся точностью и малым временем определения параметров. Классификация методов измерения интегральных параметров. Гармонические сигналы с улучшенной метрологией.

Рубрика Физика и энергетика
Вид магистерская работа
Язык русский
Дата добавления 01.08.2017
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное государственное бюджетное образовательное учреждение

высшего образования

"Самарский государственный технический университет"

Факультет: Автоматики и информационных технологий

Кафедра: Информационно-измертельная техника

Направление: Приборостроение

Магистерская программа:

Тема диссертации:

АППРОКСИМАЦИОННЫЕ МЕТОДЫ ИЗМЕРЕНИЙ ПЕРИОДИЧЕСИХ СИГНАЛОВ

Магистерская диссертация студента:

Таштабанова Булата Наиловича

Научный руководитель:

доктор технических наук,

профессор В.С. Мелентьев

Самара

2016

Реферат

Магистреская диссертация содержит 99 страниц, 57 рисунков, 63 источника, графические документы: 10 листов формата А1.

ПЕРИОДИЧЕСКИЕ СИГНАЛЫ, ПАРАМЕТРЫ, МГНОВЕННЫЕ ЗНАЧЕНИЯ, ДОПОЛНИТЕЛЬНЫЕ СИГНАЛЫ, ГАРМОНИЧЕСКАЯ МОДЕЛЬ, ФАЗОСДИГАЮЩИЙ БЛОК, ПОГРЕШНОСТЬ.

Целью магистерской диссертации является разработка и исследование новых аппроксимационных методов и систем измерения параметров гармонических сигналов, отличающихся высокой точностью и малым временем определения параметров.

В первой части магистерской диссертации рассматриваются вопросы, связанные с оценкой возможности использования аппроксимационного подхода к измерению параметров периодических сигналов.

Во второй части приводятся результаты классификации методов измерения интегральных параметров гармонических сигналов. Приводятся результаты исследования известных методов измерения параметров гармонических сигналов, основанных на формировании дополнительных сигналов.

Третья часть посвящена разработке и исследованию методов и систем измерения параметров гармонических сигналов с улучшенными метрологическими характеристиками.

В четвертой части приводятся результаты анализа погрешностей разработанных мотодов и ситем измерения параметров гармонических сигналов.

Содержание

Введение

1. Оценка возможности использования аппроксимационного подхода для измерения параметров периодических сигналов

2. Исследование методов измерения параметров гармонических сигналов, основанных на формировании дополнительных сигналов

2.1 Классификация методов измерения параметров гармонических сигналов, основаных на формировании дополнительных сигналов

2.2 Метод измерения интегральных параметров на основе сравнения ортогональных составляющих напряжения

2.3 Метод измерения интегральных параметров на основе сравнения ортогональных составляющих и напряжения и тока

2.4 Метод измерения интегральных характеристик по мгновенным значениям ортогональных составляющих, связанным с переходами через ноль дополнительных сигналов напряжения и тока

2.5 Метод измерения интегральных параметров по ортогональным составляющим, связанным с переходами через ноль входных сигналов напряжения и тока

2.6 Метод измерения интегральных параметров по мгновенным значениям ортогональных составляющих сигналов, измеренным в произвольный момент времени

2.7 Метод измерения интегральных параметров по мгновенным значениям входных и дополнительных сигналов, сдвинутых на произвольный угол

Основные результаты и выводы к главе

3. Разработка и исследование методов и систем измерения параметров гармонических сигналов с улучшенными метрологическими характеристиками

3.1 Метод измерения интегральных параметров на основе сравнения мгновенных значений гармонических сигналов, распределенных в пространстве

3.2 Метод измерения параметров гармонических сигналов с коррекцией погрешности формирования дополнительного сигнала

Основные результаты и выводы к главе

4. Анализ погрешностей разработанных мотодов и ситем измерения параметров гармонических сигналов

4.1 Анализ погрешностей методов определения интегральных параметров из-за отклонения реального сигналов от гармонической модели

4.2 Анализ погрешностей реализации методов определения интегральных параметров гармонических сигналов

Основные результаты и выводы к главе

Заключение

Список использованных источников

Введение

Имеется целый ряд задач при проведении операций измерения, испытаний и контроля, в которых вид сигналов характеризуется физическими законами исследуемых процессов, а погрешности результатов измерений очень малы. К таким сигналам, в частности, относятся периодические сигналы.

Среди периодических сигналов, которые очень часто используются как в теории, так и в практических целях, выделяются гармонические сигналы. Это связано с тем, что такие сигналы независимы к преобразованиям, которые производятся линейными системами. При подаче на вход подобной системы гармонического сигнала, выходной сигнал останется гармоническим и будет иметь такую же частоту, а будет отличаться от входного только амплитудным значением и фазой.

Выполненные в работе исследования состава высших гармоник сигналов в цепях ряда энергообъектов и электрического оборудования показали, что: в электрических сетях с номинальным напряжением 110 кВ и более высокими номинальными напряжениями действующие сигналы имеют форму, которая близка к синусоидальной; коэффициенты искажения синусоидальности, которые являются комплексной величиной и характеризуют в целом соотношение между высшими гармониками и первой гармоникой сигналов, меньше 2 %. Кроме того, коэффициенты отдельных гармоник в сигналах, имеют наибольшую амплитуду, меньше 1,5 %. Достаточно близки к гармоническим моделям сигналы, которые имеют место в силовых цепях разных электромеханических систем [1].

Для того, чтобы проводить измерение параметров данных сигналов можно эффективно использовать аппроксимационный подход (АП).

АП - это соединение принципов, а также методов, и реализующих их систем, которые направлены на разработку таких аналитических моделей, параметры которых находятся на основе заранее известной информации и определенного экспериментального материала. Всё это должно быть в непосредственной связи с целями исследований.

Применение такого АП к определению параметров гармонических сигналов обеспечивает возможность значительного сокращения времени измерения, а также использования арифметических операций с мгновенными значениями сигналов вместо достаточно сложных интегральных преобразований.

Основными параметрами периодических сигналов служат следующие: среднеквадратические значения напряжения (СЗН) и тока (СЗТ), активная (АКМ) и реактивная (РЕМ) мощности. Данные параметры обычно называют интегральными характеристиками периодических сигналов (ИПС).

Кроме необходимости обеспечения высокой точности измерения ИПС, другой проблемой является достижение высокого быстродействия процедур измерения, которое определяется требованиями к оперативности выполнению операций контроля и испытаний.

В магистерской диссертации решается задача уменьшения времени определения ИПС при обеспечении высокой точности измерения, что является важной и актуальной задачей.

Разработка и исследование аналоговых методов определения ИПС и, реализующих их приборов и систем, проводились научными коллективами, возглавляемыми Алиевым Т.М., Волгиным В.Л., Зыкиным Ф.А., Кизиловым В.У., Поповым В.С. и многими другими учеными [2 - 8]. Важнейшими недостатками, которые присуще таким аналоговым методам и средствам измерения являются невысокое быстродействие и низкая универсальность.

В середине двадцатого века начали распространяться цифровые методы измерения ИПС. При этом вначале многие цифровые приборы и системы представляли собой некоторое сочетание какого-либо аналогового измерительного преобразователя отдельной интегральной характеристики и аналого-цифрового преобразователя аналоговой выходной величины. Этим вопросам посвящены труды Лаппе Р., Фишера Ф., Безиковича А.Я., Шапиро Е.З. и ряда других ученых [9-11].

В более позднее время начали создаваться, так называемые, комбинированные средства измерения ИПС. Они характеризовались неполным аналоговым преобразованием измеряемых сигналов, добавленным определенными преобразованиями входных сигналов, производимыми в цифровой форме. Подобные исследования проводились Наконечным А.И., Чайковским О.И., Тузом Ю.М., Шаховым Э.К., Шляндиным В.М., Мазеттой Л.A., Гермером Г. и рядом других ученых [12 - 14].

С конца прошлого века широкое распространение для измерения ИПС получили цифровые методы, в основе которых лежит аналого-цифровое преобразование мгновенных значений входных сигналов (МЗС) при их равномерном распределении на периоде, с дальнейшим выполнением обработки кодов. Такие вопросы затрагивались в трудах Клисторина И.Ф., Коршевера И.И., Кларка Ф.Дж.Дж., Стоктона Дж.Р., Янга A.Г., Стейденто П.M. и многих других специалистов [15 - 21].

В этих методах первоначально считается, что мгновенные значения сигналов взяты по периоду равномерным образом. В практических случаях данное предположение не исполняется, что вызывает дополнительную погрешность. Данная разновидность погрешности вызвана изменением частоты входного сигнала и, кроме того, неточным разделением длительности периода на требуемое число временных интервалов дискретизации. Для уменьшения влияния этих факторов и, следовательно, для повышения точности измерения ИПС используются, в основном, только увеличение числа разрядов аналого-цифровых преобразователей и количества точек дискретизации, а также введение процесса автоподстройки частоты дискретизации. Всё это приводит к увеличению времени измерения.

Необходимо отметить ученых, которые в настоящее время занимаются вопросами разработки новых методов и средств определения ИПС, имеющих улучшенные метрологические характеристики, это: Сo Г.К., Хосеини Г., Mусеик A.К., Дуган Р.К., Агалиалов Ю.Р., Желбаков И.Н. и другие [22 - 24].

Однако проводимые ими исследования посвящены, в основном, попыткам увеличить точность определения отдельных ИПС с помощью соответствующей обработки полученных результатов измерений. В работах этих ученых нет системного подхода к измерению комплекса интегральных характеристик. Задача уменьшения времени измерения ими не ставится.

В.С. Мелентьев предложил применять аппроксимационный подход для оперативного измерения ИПС, основанный на определении интегральных характеристик по функциональной связи с параметрами гармонической модели, обоснованный выбор которой возможен только на основе априорной информации о реальном сигнале [25]. При этом он предлагает производить оценку методической погрешности, которая обусловлена отклонением реального сигнала от гармонического.

Но вопросы создания аппроксимационных методов и систем определения ИПС, основанных на формировании одного или нескольких дополнительных сигналов, которые сдвинуты по фазе относительно входных, решены не в полной мере.

Задачей магистерской диссертации является разработка и исследование новых аппроксимационных методов и систем измерения параметров гармонических сигналов, отличающихся высокой точностью и малым временем определения параметров.

Для того, чтобы достичь поставленной цели, в работе были определены и решены следующие задачи:

- классификация известных аппроксимационных методов и систем измерения интегральных параметров гармонических сигналов (ИПГРС), которые основаны на формировании ортогональных составляющих (ОС) сигналов;

- анализ известных аппроксимационных методов и систем измерения ИПГРС, основанных на формировании ОС сигналов;

- разработка новых аппроксимационных методов и систем определения ИПГРС с улучшенными метрологическими характеристиками;

- анализ новых аппроксимационных методов и систем измерения ИПГРС.

Объектом исследования служат сами аппроксимационные методы измерения ИПГРС.

Предметом исследования является метрологический анализ известных методов и систем определения ИПГРС, которые основаны на создании ОС сигналов, а также новых методов.

Научная новизна состоит в следующем:

1. Разработан новый метод измерения ИПГРС с коррекцией погрешности, обусловленных формированием дополнительного сигнала, который позволяет избавиться от частотной, угловой погрешности, возникающей при создании дополнительного сигнала, и погрешности по модулю фазосдвигающего блока (ФСДВБ).

2. Разработан новый метод измерения ИПГРС на основе сравнения мгновенных значений гармонических сигналов, которые имеют пространственное разделение, который не осуществляет выявление точек перехода сигналов через ноль, что позволяет сократить время определения ИПГРС особенно при больших значениях угла сдвига фаз между напряжением и током

3. Проведено исследование метрологических характеристик новых методов и систем определения ИПГРС, основанных на применении дополнительных сигналов, сдвинутых по сравнению с входными на произвольный угол, которое позволило определить их возможности с точки зрения метрологических характеристик.

4. Проведено исследование метрологических характеристик известных методов и систем определения ИПГРС, основанных на применении ОС сигналов, которое позволило определить возможные области применения методов.

Научная и практическая ценность работы.

1. Разработаны новые методы и системы, которые позволяют повысить точность и сократить время определения ИПГРС.

2. Результаты анализа метрологических характеристик известных методов и систем, основанных на применении ОС сигналов, а также вновь разработанных методов и средств определения ИПГРС позволили определить области их возможного применения при известных спектрах реальных сигналов и предъявляемых требованиях к точности и времени измерения.

При написании магистерской диссертации были использованы отдельные разделы теории измерений и численного анализа, положения теории электрических цепей и сигналов, а также методы цифровой обработки сигналов. Для подтверждения основных теоретических выводов использовались методы аналитического и имитационного моделирования.

На защиту магистерской диссертации выносятся следующие основные положения и результаты:

1. Методы и системы определения ИПГРС, использующие формирование дополнительных сигналов и нахождение информативных параметров по МЗС с коррекцией и при отсутствии коррекции.

2. Полученные результаты анализа погрешностей известных и новых методов и систем определения ИПГРС.

Достоверность результатов проведенного исследования обеспечивается за счет правомерного и корректного использования в магистерской диссертации известных теоретических положений, а также методов аналитического и компьютерного моделирования.

По результатам выполненных в магистерской диссертации исследований опубликовано 4 научных работы. Полученные в работе результаты были опробированы на 3 международных конференциях.

Диссертация состоит из введения, 4 глав, заключения и списка литературы из 63 наименований, общим объемом 99 страниц печатного текста.

1. Оценка возможности использования аппроксимационного подхода для измерения параметров периодических сигналов

Существуют задачи измерения, испытаний и контроля, в которых вид сигналов строго обусловлен физическими законами исследуемых явлений, а погрешности измерений невероятно малы. Такими, к примеру, очень часто бывают перепериодические сигналы. На основе измерения их характеристик производиться контроль разного вида электронных и электрических генераторов, оценивается качество электрической энергии, испытываются колебания механических систем.

Использование аппроксимационного метода к данным измерительным задачам, с одной стороны, повышает эффективность их решения, с другой стороны, обеспечивает общеметодологическую платформу для унификации средств измерений и их метрологического анализа [25 - 30].

В математической модели детерминированного сигнала известны все параметры и используется они для описания образцовых сигналов.

Для характеристики неслучайных измерительных сигналов используют квазидетерминированные модели, в которых значение одного или нескольких параметров неизвестны и в большинстве своем считаются случайными величинами с малой случайной компонентой, влияние которой можно не учитывать [25].

Для решения подобных задач используют следующий аппроксимационный подход [25, 29]. Если измерительный сигнал аппроксимируется моделью , то, измеряя m значений сигнала при различных, в общем случае произвольных, значениях аргумента t, возможно скомпоновать систему m уравнений

(1.1)

которая решена относительно этих параметров .

В случае, когда модель считается нелинейной относительно параметров функцией и значения выбраны произвольно, система (1.4) может оказаться сложной для аналитического или явного численного решения. В связи с этим в тех случаях, когда есть альтернатива, следует выбрать модели, линейные относительно параметров. Если это невозможно, упрощение решения системы (1.4) может быть обеспечено соответствующим выбором значений .

Таким образом, привлечение априорной информации о характере сигнала позволяет заменить интегральные преобразования арифметическими операциями с точечными оценками. Рассмотренный подход помогает обобщать известные методы, алгоритмы и средства измерения интегральных характеристик сигналов и изобретать новые.

Одной из основных проблем рассматриваемого здесь метода является анализ точности измерения. Если модель и реальный сигнал совпадают, то методически точный результат неизбежен. При несоответствии модели моделируемуемого сигнала характеристики параметров могут значительно отличаться от оптимальных.

В соответствии с общей методологией метрологического анализа аппроксимационных методов и алгоритмов характеристики результирующей погрешности будут определятся целями обработки и измерений результатов. В общем случае, качество решения аппроксимационных задач оценивается некой результирующей погрешностью, включающей в себя все части, определяющие несоответствие модели и моделируемой зависимости. При случайных сигналах это интегральные, как правило, среднеквадратические характеристики. При квазидетерминированных сигналах могут быть получены более грубые характеристики равномерного приближения. Однако для выявления таких оценок необходимо знать реальную аппроксимирующую зависимость. [31 - 33]

Для выявления аналитических оценок погрешностей предлагается использовать модель более обобщенного вида, включающие используемую интерпретационную модель как исключительный случай. Такими общими примерными моделями могут быть функциональные ряды

(1.2)

В таком случае наиболее значимое отклонение модели от соответствующих значений сигналов определяется так:

. (1.3)

Для характеристики отклонения модели от реального сигнала используют среднеквадратическую погрешность

. (1.4)

При наличии случайных погрешностей в исходных значениях корректнее использовать усредненные характеристики погрешностей. Относительная взвешенная среднеквадратическая погрешность аппроксимации сигнала равна

. (1.5)

Погрешность (1.7) является несоответствием модели виду сигнала и свойствам оценок параметра.

Метрологическая аттестация выводов по суммарной погрешности аппроксимации сигнала моделью в практических задачах используется редко [34, 35]. В большинстве случаев конечной стадией измерений и обработки является числовые, как правило, интегральные характеристики сигналов. В этом случае цель сводится к анализу влияния отдельных переменных на погрешности определения характеристик. В случае детерминированных задач такими влияющими факторами служыт несоответствие модели виду сигнала, нестабильность параметров сигнала. Закон трансформации составляющие погрешность в результирующую определяется последовательностью преобразования результатов отдельных измерений в нужную оценку, что делает задачи специфичными для каждой области приложения.

В общем случайе для характеристики влияния составляющих погрешности, обусловленных несоответствием моделей виду сигналов, на погрешность результата измерения той или иной интегральной характеристикой сигнала , определяемой в соответствии с (1.4), можно использовать следующую методологию [37, 38].

1. С помощью расчитанного значения интегральной характеристики реального сигнала и определения относительной погрешности

, (1.6)

где - расчитанное значение интегральной характеристики, определеляемое для реального сигнала.

Такой метод используют для прогнозирования погрешности и выявления области применяемости методологии определения интегральной характеристики в соответствии (1.4) исходя из требования по точности при известных спектрах реального сигнала.

2. С помощью вычислений погрешности определения интегральных характеристик как функций, аргументы которой заданы приближенно с погрешностью, соответствующей отклонению модели от реального сигнала.

Как известно, погрешность вычисления значения какой-либо функции, аргументы которой заданы приближенно, может служить оценка с помощью которой дифференциала этой функции [39]. Погрешности функции есть не что иное как возможное приращение функций, которое она получит, если ее аргументам дать приращения, равные их погрешностям. Так как погрешности бывают обыкновенно достаточно не значительны, то практически вполне допустима замена приращений дифференциалами. В случае если известны только предельные абсолютные погрешности аргументов, то при расчете дифференциалов необходимо для всех производных брать их абсолютные значения [40].

В зависимости от того как оцениваются отклонения модели от реального сигнала, возможны три варианта к определения погрешности [41, 42].

Считая, что предельная абсолютная погрешность аргументов соответствует наибольшему отклонению, определяемому в соответствии (1.5), то для интегральной характеристики абсолютная погрешность будет равна

. (1.7)

Если думать, что значение абсолютных погрешностей аргументов определяется через среднеквадратическую погрешность в соответствии с (1.6), то

. (1.8)

Если абсолютные погрешности аргументов соответствуют действительным разностям между мгновенными значениями реального сигнала и модели в точках :

; ,

то

. (1.9)

При использовании этого метода относительная погрешность равняется

. (1.10)

3. Третий метод предусматривает экспериментальное определение погрешности. Для этого измеряется интегральная характеристика

образцовыми средствами измерения с метрологическими характеристиками, обеспечивающим возможности его использования в условиях реального сигнала, и сравнение с результатом измерения Y прибором, использующим аппроксимационный метод (1.4).

Практическое использование рассматриваемой методологии характеристики влияния составляющих погрешности, обусловленных несоответствием модели виду сигнала, на результат измерения будет рассмотрено ниже.

Все эти особенности использования аппроксимационного подхода к определению параметров квазидетерминированных сигналов и метрологическому анализу результатов позволяют нам обобщить принцип, метод и средства определения информативных параметров сигналов, основанные на определении этих параметров по функциональной связи с параметрами модели, выбираемой на основе той информации об объекте исследования, и метрологическом анализе результатов измерения из-за несоответствия модели реальному сигналу.

2. Исследование методов измерения параметров гармонических сигналов, основанных на формировании дополнительных сигналов

2.1 Классификация методов измерения параметров гармонических сигналов, основаных на формировании дополнительных сигналов

Уменьшением времени измерения могут служить методы, основанные на выявлении дополнительных сигналов, сдвигаемых по фазе относительно входных, и определении ИПГРС по мгновенным значениям главных и дополнительных сигналов.

При характеристике методов измерения ИПГРС, основанных на формировании определенных сигналов, в качестве классификационных признаков используются: род дополнительных сигналов (формирование ортогональных составляющих сигналов или сигнала, сдвинутого относительно входных на произвольный угол); количество формируемого дополнительного сигнала (один, два и более); связь с характерными точками сигналов (переходы через ноль) и их количество; применение образцовых интервалов времени (рис. 2.1) [43].

Исключая разные друг к другу операции, формирование одного или более дополнительных сигналов; связь или отсутствие связи с характерными точками сигналов; использование или игнорирование образцовых интервалов времени), можно условно отметить шесть групп, характеризующих принципы синтеза методов.

Первая группа состоит из методов, основанных на формировании одного дополнительного сигнала, не использующая характерные точки сигналов.

Для этой группы возможно синтезировать и такие методы.

При использовании ортогональных составляющих сигналов: I-AC-E; I-AC-G (формирование именно дополнительного напряжения); I-BC-E; I-BC-G (формирование именно дополнительного тока); I-AC-BC-E; I-AC-BC-G (формирование дополнительных сигналов как напряжения, так и тока).

Размещено на http://www.allbest.ru/

Рис. 2.1

При использовании других сигналов, сдвинутых на какой-то угол: II-AC-E; II-AC-G (формирование именно дополнительного напряжения); II-BC-E; II-BC-G (формирование именно дополнительного тока); II-AC-BC-E; II-AC-BC-G (формирование дополнительных сигналов как напряжения, так и тока).

Ко второй группе относятся методы, основанные на формировании одного дополнительного сигнала, связанное с характерными точками одного из сигналов.

К этой группе можно отнести следующие методы.

При использовании ортогональных составляющих сигналов: I-AC-EH; I-AC-GH (формирование именно дополнительного напряжения); I-BC-EH; I-BC-GH (формирование именно дополнительного тока.); I-AC-BC-EH; I-AC-BC-GH (формирование дополнительных сигналов как напряжения, так и тока.)

При использовании дополнительных сигналов, сдвинутых на произвольный угол: II-AC-EH; II-AC-GH (формирование именно дополнительного напряжения); II-BC-EH; II-BC-GH (формирование именно дополнительного тока); II-AC-BC-EH; II-AC-BC-GH (формирование дополнительных сигналов как напряжения, так и тока).

Третья группа состоит из методов, основанных на формировании одного дополнительного сигнала, связанных с характерными точками двух и более сигналов.

Для этой группы можно синтезировать следующие методы.

При использовании ортогональных составляющих сигналов: I-AC-EJ; I-AC-GJ (формирование именно дополнительного напряжения); I-BC-EJ; I-BC-GJ (формирование именно дополнительного тока); I-AC-BC-EJ; I-AC-BC-GJ (формирование дополнительных сигналов как напряжения, так и тока).

При использовании дополнительных сигналов, сдвинутых на произвольный угол: II-AC-EJ; II-AC-GJ (формирование только дополнительного напряжения); II-BC-EJ; II-BC-GJ (формирование только дополнительного тока); II-AC-BC-EJ; II-AC-BC-GJ (формирование дополнительного сигнала как напряжения, так и тока).

К четвертой группе отнесены методы, основанные на формировании двух дополнительных сигналов напряжения, либо тока, либо как напряжения, так и тока, не использующие характерные точки сигналов.

С учетом того, что формирование двух дополнительных ортогональных составляющих одного сигнала не возможно, то для этой группы могут быть синтезированы только методы, использующие дополнительные сигналы, сдвинутые на отличный от 90° угол: II-AD-E; II-AD-G (формирование двух дополнительных сигналов напряжения); II-BD-E; II-BD-G (формирование двух дополнительных сигналов тока); II-AD-BC-E; II-AD-BC-G (формирование двух дополнительных сигналов напряжения и одного дополнительного сигнала тока); II-AC-BD-E; II-AC-BD-G (формирование одного дополнительного напряжения и двух дополнительных сигналов тока); II-AD-BD-E; II-AD-BD-G (формирование по два дополнительных напряжения и тока).

Пятую группу составляют методы, основанные на формировании двух дополнительных сигналов напряжения, либо тока, либо как напряжения, так и тока, связанные с характерными точками одного из сигналов.

Поскольку здесь также не могут быть использованы ортогональные части сигналов, то возможно синтезировать следующие методы: II-AD-EH; II-AD-GH (формирование двух дополнительных сигналов напряжения); II-BD-EH; II-BD-GH (формирование двух дополнительных сигналов тока); II-AD-BC-EH; II-AD-BC-GH (формирование двух дополнительных сигналов напряжения и одного дополнительного сигнала тока); II-AC-BD-EH; II-AC-BD-GH (формирование одного дополнительного напряжения и двух дополнительных сигналов тока); II-AD-BD-EH; II-AD-BD-GH (формирование по два дополнительных напряжения и тока).

К шестой группе относится метод, основанный на формировании еще двух дополнительных сигналов напряжения, либо тока, либо как напряжения, так и тока, связанное с характерными точками двух или более сигналов.

Если не будут использованы ортогональные части сигналов, то для этой группы могут быть синтезированы другие методы: II-AD-EJ; II-AD-GJ (формирование двух дополнительных сигналов напряжения); II-BD-EJ; II-BD-GJ (формирование двух дополнительных сигналов тока); II-AD-BC-EJ; II-AD-BC-GJ (формирование двух дополнительных сигналов напряжения и одного дополнительного сигнала тока); II-AC-BD-EJ; II-AC-BD-GJ (формирование одного дополнительного напряжения и двух дополнительных сигналов тока); II-AD-BD-EJ; II-AD-BD-GJ (формирование по два дополнительных напряжения и тока).

Таким образом, если не использовать структурную избыточность, то предоставленная классификация позволяет в частых случаях синтезировать 66 методов.

Огромное количество различных вариантов методов требует использования их дополнительной классификации.

Заметное упрощение реализации обеспечивают методы измеряемые ИПГРС, в которых в качестве вспомогательных используются ортогональные части входных сигналов.

Имеется возможность классифицировать методы измерения интегральных характеристик с использованием ортогональных составляющих сигналов по следующим некоторым признакам: сравнение главного и дополнительного сигналов; связь с основными точками сигналов; сохранение мгновенных значений сигналов для последующего сравнения; раздел мгновенных значений сигналов во времени [44].

На рисунке 2.2 представлена классификация методов измерения ИПГРС, основанных на формировании ортогональных составляющих сигналов.

Рис. 2.2

Исключая противоположные друг к другу связи (связь или отсутствие связи с характерными точками сигналов; использование или отсутствие разделения во времени), а также, принимая во внимание тот факт, что запоминание мгновенных значений сигналов производится только с их последующим сравнением, можно условно разделить три группы, характерные для синтеза методов.

Первая группа состоит из методов, не использующие сравнение основного и дополнительного сигналов. Для этой группы возможно синтезировать такие методы: CH; CJ; DH; DJ; EH; EJ.

Во вторую группу входят такие методы, которые основанны на сравнении основного и дополнительного сигналов напряжения или тока. Для этой группы можно синтезировать такие методы как: ACH; ACJ; ACFH; ADGJ; AEFH; AEFJ; AEGH; AEGJ; АCFJ; ADH; ADJ; AEH; AEJ; ADFH; ADFJ; ADGH;.

Наконец, третья группа состоит из методов, основанных на сравнении основного и дополнительного сигналов и напряжения и тока. Для этой группы можно синтезировать такие методы как: ВCH; ВCJ; ВCFH; ВCFJ; ВDH; ВDJ; ВEH; ВEJ; ВDFH; ВDFJ; ВDGH; ВDGJ; ВEFH; ВEFJ; ВEGH; ВEGJ.

Так, представленная классификация позволяет в общем случае синтезировать 38 методов.

2.2 Метод измерения интегральных параметров на основе сравнения ортогональных составляющих напряжения

Первый метод [45] основанный на том, что формируют ОС напряжения и тока; в момент когда равенство основного и дополнительного сигналов напряжения одновременно измеряет мгновенные значения главного сигнала напряжения, главного и дополнительного сигналов тока и определяют ИПГРС по измеренным значениям.

Временные диаграммы, поясняющие метод, представлены на рисунке 2.3.

Рис. 2.3

Для входного напряжения

и тока

и дополнительных сигналов напряжения

и тока

в момент времени t1, когда главный и дополнительный сигналы напряжения будут равны, выражения для мгновенных значений сигналов примут вид:

;;;,

где б1, - фазы сигналов напряжения и тока в момент времени t1; - угол сдвига фаз между сигналами напряжения и тока; щ - угловая частота входного сигнала.

Мгновенные значения и будут равны при угле

,

где .

В таком случае выражения для определения основных ИПГРС примут вид:

- СКЗ напряжения и тока

; (2.11)

; (2.12)

- АКТМ и РКМ

; (2.13)

. (2.14)

Информационно-измерительная система, показывающая метод, предоставлена на рисунке 2.4.

Рис. 2.4

В составе ИИС: первичные преобразователи напряжения ППН и тока ППТ, аналого-цифровые преобразователи АЦП1, АЦП2 и АЦП3, фазосдвигающие блоки ФСБ1 и ФСБ2, позволяющие сдвиг входных сигналов напряжения и тока на 90°, компаратор КОМ, контроллер КНТ, шины управления ШУ и данных ШД.

В КНТ производятся вычисления в соответствии с выражениями (2.11) - (2.14).

В рассмотренном методе время измерений не зависит от угла сдвига фаз между напряжением и током, а определяется исключительно временным промежутком между моментом начала измерения и моментом равенства текущих значений напряжений и .

Одним из главных недостатков ИИС, реализующих скопление методов, основанных на формировании исключительных ОСС, является погрешность фазосдвигающих блоков. В результате чего при изменении частоты входного сигнала ФСБ сдвигают сигнал на угол, отличный от 90°.

Если принимать, что ФСБ1 (канал напряжения) имеет угол сдвига фазы равный (90°+Дв), а ФСБ2 (канал тока) имеет угол сдвига фазы равный (90°+До), то выражение для мгновенных значений сигналов будет равно [46]:

(2.15)

Рассмотрим исключительный случай, когда ФСБ1 и ФСБ2 имеют схожий угол сдвига фазы равный (90°+Дв).

В соответствии с (2.14) и (2.15), относительная погрешность определения СКЗ напряжения примет вид

. (2.16)

Согласно (2.13) и (2.15) относительная погрешность измерения СКЗ тока выражаеться в виде:

. (2.17)

В соответствии с (2.13) - (2.15) приведенные погрешности определения активной и реактивной мощности будут равны выражениям:

; (2.18)

. (2.19)

На рис. 2.5 представлены графики зависимости относительной погрешности определения СКЗ напряжения от отклонения угла сдвига фазы ФСБ от номинальных значений в соответствии с выражениями (2.16).

Рис. 2.5

Изучение рис. 2.5 показывает, что относительность погрешности измерения СКЗ напряжения от отклонения угла сдвига фазы ФСБ носит линейный характер и увеличиваеться прямо пропорционально Дв.

На рис. 2.6 предоставлены графики относительной зависимости погрешности определения СКЗ тока от угла сдвига фаз между сигналами напряжения и тока в соответствии с выражением (2.17) при различных значениях отклонения угла сдвига фазы ФСБ от нормального значения.

Анализ рис. 2.6 показывает, что при

(где l=0,1,) погрешность равна нулю, а при

- принимает максимальные значения.

На рис. 2.7 и 2.8 предоставлены графики зависимости приведенной погрешности определения АКМ и РЕМ от угла сдвига фаз между сигналами напряжения и тока в соответствии с выражениями (2.18) и (2.19) при различных значениях отклонения угла сдвига фазы ФСБ от номинального значения.

Рис. 2.6

Рис. 2.7

Рис. 2.8

Анализ рис. 2.7 и 2.8 указывает, что при

погрешность приравнивается к нулю, а при

- погрешность принимает наибольшее значение.

ФСБ также могут иметь погрешность по напряжению (погрешность по модулю). Наличие этого вида погрешности приводит к тому, что амплитудные параметры входного и дополнительного сигналов будут отличаться.

Если амплитудное значение сигнала на выходе ФСБ в канале напряжения отличается от входного на величину ДUm, то мгновенное значение дополнительного напряжения имеет вид

.

Так же, при отличии дополнительного тока от входного на значение ДIm, мгновенное значение дополнительного сигнала будет равно

[47].

Оценим влияние этого вида погрешности ФСБ на погрешность результатов измерений ИПГРС.

Поэтому воспользуемся алгоритмом характеристики погрешностей результатов измерений интегральной характеристики как функции, аргументы которых заданы приближенно с погрешностью, соотносящейся к отклонению модели от основного сигнала, рассмотренной в [25].

Если абсолютные погрешности аргументов соответствуют отклонению мгновенных значений дополнительного напряжения и тока на величины ДUm и ДIm то, считая, что мгновенные значения входных сигналов напряжения и тока измерены без погрешности, можно отметить предельные значения абсолютных погрешностей измерения СКЗ тока, АКМ и РЕМ:

; (2.20)

; (2.21)

; (2.22)

. (2.23)

Используя (2.11) - (2.14), с учетом этих погрешностей (2.20) - (2.23) можно определить главные погрешности измерения СКЗ напряжения и тока и приведенные погрешности определения АКМ и РЕМ:

; (2.24)

; (2.25)

, (2.26)

где

.

Например, при

hmU=0,05% дU=0,07%.

На рис. 2.9 и 2.10 представлены графики зависимостей относительной погрешности измерения СКЗ тока и приведенных погрешностей АКМ и РЕМ в соответствии с выражениями (2.25) и (2.26) для hmI=0,05%.

Рис. 2.9 Зависимость погрешности от ц

Рис. 2.10. Зависимость погрешности от ц

Кроме того, как видно в [91], при отличии реального сигнала от гармонической модели возникают погрешности. В частности, при углах сдвига фаз близких к нулю, погрешность измерения АКМ и РЕМ не превышает 1,25 %, СКЗ тока - 0,5 % при коэффициентах пятой гармоники hu5=hi5=0,005. Погрешность измерения СКЗ напряжения в зависимости только от спектра сигнала и при hu5=0,005 составляет около 0,7%.

2.3 Метод измерения интегральных параметров на основе сравнения ортогональных составляющих и напряжения и тока

Второй метод [48] основан на том, что формируют ОС напряжения и тока; в момент равенства основного и дополнительного сигналов напряжения одновременно измеряя мгновенные значения главных сигналов напряжения и тока; в момент равенства основного и дополнительных сигналов тока измеряют мгновенные значения основных сигналов тока и напряжения и определяют ИПГРС по измеренным значениям.

Временные диаграммы, поясняющие методы, представленые на рисунке 2.11.

Рис. 2.11. Временные диаграммы, поясняющие второй метод

В момент времени t1, когда главный и дополнительные сигналы напряжения будут равны, выражения для мгновенных значений сигналов будут иметь вид:

; ; ,

где l=0,1.

В тот момент времени t2, когда будут равны основной и дополнительный сигналы тока, выражения для мгновенных значений сигналов будут иметь следующий вид:

; ; ,

где - фаза сигнала тока в момент времени t2.

Мгновенные значения и будут равны, при угле

.

В этом случае выражения для определения основных ИПГРС будут равны:

; (2.27)

; (2.28)

; (2.29)

. (2.30)

ИИС, реализующая второй метод, представлена на рисунке 2.12.

Рис. 2.12. Структурная схема ИИС, реализующей второй метод

В данном случае время измерения зависит от угла сдвига фаз между сигналами напряжения и тока.

Если считать, что ФСБ в каналах напряжения и тока имеют углы сдвига фаз равные (90°+Дв) и (90°+До) соответственны, то выражения для мгновенных значений сигналов в моменты времени t1 и t2 примут вид [49]:

(2.31)

(2.32)

Посмотрим частный случай анализ погрешностей определения интегральных характеристик вследствии нестабильности углов сдвига фаз ФСБ, приняв

Дво.

В соответствии с (2.27) - (2.32) такие погрешности измерения СКЗ напряжения и тока и представленные погрешности определения АКМ и РЕМ определяются в соответствии с выражениями:

(2.33)

(2.34)

(2.35)

(2.36)

Анализ выражений (2.33) - (2.36) указывает, что погрешности измерения СКЗ напряжения и тока определены непосредственно отклонением угла сдвига фаз ФСБ от 90°, а погрешность определения АКМ и РЕМ также зависят и от угла сдвига фаз между напряжением и током.

Графики зависимостей относительных погрешностей измерений СКЗ напряжения и тока аналогичны представленным на рис. 2.5.

На рис. 2.13 и 2.14 превидены графики зависимостей приведенных погрешностей измерения АКМ и РЕМ в соответствии с выражениями (2.35) и (2.36) для различных значений угла Дв.

Рис. 2.13. Зависимость погрешности от ц

Если амплитуда значений выходных сигналов ФСБ в канале напряжения и тока отличаются от входные на величины ДUm и ДIm, то мгновенные значения дополнительных сигналов соответственно примут вид:

, .

Рис. 2.14. Зависимость погрешности от ц

Предельные показатели абсолютных погрешностей измерений СКЗ напряжения и тока, АКМ и РЕМ в соответствии с выражениями (2.27) - (2.30) будут равнятся:

; (2.37)

; (2.38)

; (2.39)

. (2.40)

Используя (2.27) - (2.30), с учетом абсолютных погрешностей (2.37) - (2.40) относительно погрешностей измерения СКЗ напряжения и тока и приведенные погрешности измерения АКМ и РЕМ примет вид:

; (2.41)

; (2.42)

; (2.43)

. (2.44)

Например, при

hmU=hmI=0,05 % дU=дI=0,07%.

Анализ выражений (2.43) и (2.44) показывает, что погрешности определения АКМ и РЕМ зависит не только от погрешности по модулю ФСБ, но и от угла сдвига фаз между сигналами напряжеия и тока.

На рис. 2.15 и 2.16 представлены графики зависимостей приведенных погрешностей измерения АКМ и РЕМ в соответствии с (2.43) и (2.44) для hmI=0,05%.

Рис. 2.15 Зависимость погрешности от ц

Рис. 2.16. Зависимость погрешности от ц

Кроме того, при соответсвии в сигналах напряжения и тока высших гармоник, появляется погрешность. Относительная погрешность измерения СКЗ сигналов относительна только от наличий высших гармоник, и при hu5=hi5=0,5% она составляет 0,7%. Приведенная погрешность измерения АКМ и РЕМ еще зависит и от угла сдвига фазы между сигналами напряжения и тока. При ц=0 она составляет порядка 1,5% и возрастает с увеличением ц.

2.4 Метод измерения интегральных характеристик по мгновенным значениям ортогональных составляющих, связанным с переходами через ноль дополнительных сигналов напряжения и тока

Третий метод [50] основанный на том, что в момент перехода дополнительного сигнала напряжения, сдвинутого относительно входного на 90°, через ноль одновременно проверяют первые мгновенные значения входного напряжения и тока; в момент перехода дополнительного сигнала тока, сдвинутого относительно входного на 90°, через ноль измеряются вторые мгновенные значения входного тока и определяются ИХГРС по измеренным значениям.

Временные диаграммы, объясняющие метод, представлены на рисунке 2.17.

Рис. 2.17. Временные диаграммы, поясняющие третий метод

Выражения для мгновенных значений сигналов в моменты времени t1 и t2 имеют следующий вид:

(2.45)

В этом случае выражения для определения основных ИПГРС примут вид:

; (2.46)

; (2.47)

; (2.48)

. (2.49)

Информационно-измерительная система, реализующая метод, представлена на рисунке 2.18.

Рис. 2.18. Структурная схема ИИС, реализующей третий метод

ИИС содержит те же блоки, что и предшествущие схемы, дополнительно в каналы напряжения и тока добавлены нуль-органы НО1 и НО2 для определения переходов сигналов через ноль.

В этом методе время измерений также зависитят от угла сдвига фаз между сигнала напряжения и тока.

Если принимать, что ФСБ в каналах напряжения и тока имеют угол сдвига фазы равный (90°+Дв), то выражения для мгновенных значений сигналов равны:

(2.50)

В соответствии с (2.46) - (2.50) выражения для выявления относительных погрешностей измерения СКЗ напряжения и тока и приведенных погрешностей измерения АКТМ и РКМ будут иметь вид:

(2.51)

(2.52)

(2.53)

Анализ выражений (2.51) - (2.53) показывает, что погрешности измерения интегральных характеристик соответсвенно зависят от отклонения угла сдвига фаз ФСБ от 90°, кроме того, погрешности измерений АКТМ и РКМ зависят от угла сдвига фаз между сигналами напряжения и тока ц.

На рис. 2.19 - 2.21 приведены графики зависимостей погрешностей измерения ИХГРС в соответствии с выражениями (2.51) - (2.53).

Рис. 2.19 Зависимость погрешности от Д в

Погрешности по модулю ФСБ отсутствует, так как дополнительные сигналы применяются только для выявления переходов через ноль.

В [51] показано, что при отличии правдивого сигнала от гармонической модели возникает погрешность. К примеру, при наличии пятых гармоник в сигналах напряжения и тока с коэффициентами

hu5=hi5=0,5%,

относительная погрешность измерений СКЗ составляет около 0,5%; приведенная погрешность определения АКМ изменяется в диапазонах от 0,5 до 1%, принимая минимальные значения при

и максимальные при ; приведенная погрешность измерения РЕМ имеет минимальное значение 1 % при

.

2.5 Метод измерения интегральных параметров по ортогональным составляющим, связанным с переходами через ноль входных сигналов напряжения и тока

Четвертый метод [52] построен на определении ИПГРС по двум мгновенным значениям напряжения и одному мгновенному значению тока. В данном методе мгновенные значения тока взяты в моменты перехода через ноль сигнала напряжения, мгновенные значения напряжений взяты одновременно в момент перехода сигнала тока через ноль, причем второе мгновенное значение напряжения сдвинуто относительно первого на 90є.

Временные диаграммы, поясняющие метод, представлены на рисунке 2.22.

Для данного метода мгновенные значения сигналов имеют вид:

(2.54)

Для гармонических моделей напряжения и тока примеры для определения интегральных характеристик сигналов имеют такой вид:

- СКЗ напряжения и тока

; (2.55)

; (2.56)

- АКМ и РЕМ

; (2.57)

. (2.58)

Рассматренный метод заметно сокращает время измерений при ц=0 или ц=р.

Если в моменты перехода сигнал напряжения через ноль I1=0, то это означает, что угол сдвига фаз между напряжением и током принимает одно из двух значений: ц1=0 или ц2= р, что соответствует cosц1=1 или cosц2=-1.

В этом случае для определения ИПГРС производится измерение мгновенных значений тока и напряжения u'(t) в момент времени t2=t1+Дt.

Временные диаграммы при ц=0

При этом РКМ приравнена нулю, а остальные интегральные характеристики определяют в соответствии с выражениями:

(2.59)

(2.60)

(2.61)

Где

, ,

.

В данном методе время измерения также зависит от угла сдвига фаз между сигналами напряжения и тока.

Структурная схема ИИС, реализующей, метод представленна на рисунке 2.24.

В состав ИИС входят так же блоки, что и у предшествующтх схем.

Если считать, что ФСБ в канале напряжения имеет угол сдвига фазы равный (90°+Дв), то выражения для мгновенных значений сигналов равны [53]:

(2.62)

В соответствии с (2.55), (2.56) и (2.62) относительные погрешности измерения СКЗ напряжения и тока определяется соответственно выражениями:

(2.63)

В соответствии с (2.57), (2.58) и (2.62) приведенные погрешности измерения АКМ и РЕМ соответствуют выражениям:

(2.64)

(2.65)

На рис. 2.25 представлены графики зависимостей относительных погрешностей определения СКЗ напряжения и тока от угла сдвига фаз между сигналами и отклонения угла сдвига фазы ФСБ от 90° в соответствии с выражением (2.40).

Анализируя рис. 2.25 кажется, что при погрешность равна нулю, а при - принимает максимальные значения.

На рис. 2.26 и 2.27 представлены графики зависимости приведенной погрешности определения АКМ и РЕМ от угла сдвига фаз между сигналами напряжения и тока в соответствии с выражениями (2.90) и (2.91) для различных значений угла Дв.

при значении

l=0,1,

погрешность имеет минимальные значения.

Анализ рис. 2.27 указывает, что при погрешность практически равна нулю, а при

погрешность задает максимальные значения.

Когда амплитудное значение сигнала на выходе ФСБ в канале напряжения отличаются от входного на величину ДUm, то мгновенное значение дополнительного напряжения будет иметь вид:

.

Предельные значения абсолютных погрешностей измерения СКЗ напряжения и тока, АКМ и РЕМ имеют вид:

; (2.66)

; (2.67)

; (2.68)

. (2.69)

Используя (2.55) - (2.58), с учетом абсолютных погрешностей (2.66) - (2.69) можно определить относительные погрешности измерения СКЗ напряжения и тока и приведенные погрешности определения АКМ и РЕМ (при ц?рl):

; (2.70)

; (2.71)

; (2.72)

. (2.73)

Анализ выражений (2.70) - (2.73) указывает, что погрешности определения ИПГРС зависят не только от погрешности по модулю ФСБ в канале напряжения, но и от угла сдвига фаз между сигналами напряжения и тока ц.

На рис. 2.28 - 2.31 предоставлены графики зависимостей относительного погрешностей определения СКЗ напряжении и тока и приведенных погрешностей измерений АКМ и РЕМ от угла сдвига фаз между сигналами ц при

hmU=hmI=0,05%.

Анализ показывает прибыль погрешностей при углах сдвига фаз между сигналом напряжения и тока в пределах

ц=.

В [52] показано, что при наличии в сигналах высших гармоник появляется погрешность. Например, при hu5=hi5=0,5% относительные погрешности измерения СКЗ напряжения и тока имеют минимальные значения, равные 0,22% и 0,5% соответственно. Приведенные погрешности измерения АКМ и РЕМ при тех же значениях коэффициенты пятых гармоник равно 0 и 1% соответственно.

2.6 Метод измерения интегральных параметров по мгновенным значениям ортогональных составляющих сигналов, измеренным в произвольный момент времени

Пятый метод [54, 55] основан на определении интегральных характеристик сигналов по двум мгновенным значениям напряжения и тока, одновременно измеренным в произвольный момент времени, причем вторые мгновенные значения напряжения и тока сдвинуты относительно первых на угол 90° в сторону опережения.

Если сигналы напряжения и тока в исследуемой цепи имеют гармонические модели, то их точные значения в произвольный момент времени t1 равны:

(2.74)

Выражения для определения ИПГРС принимают следующий вид:

- СКЗ напряжения и тока

; (2.75)

; (2.76)

- АКМ и РЕМ

; (2.77)

. (2.78)

Временные диаграммы, поясняющие метод, приведены на рисунке 2.32.

Время измерений ИПГРС в данной ИИС не зависит от момента начала измерения и угла сдвига фаз между током и напряжением, а определяется только временем аналого-цифрового преобразования мгновенных значений сигналов, ввода кодов в контроллер и выполнения вычислительных операций.

В связи с наличием в составе схемы ФСБ, методу свойственна угловая погрешность. Значения погрешностей измерения ИПГРС похожи приведенным в разделе 2.3.

...

Подобные документы

  • Мостовой и косвенный методы для измерения сопротивления постоянного тока. Резонансный, мостовой и косвенный методы для измерения параметров катушки индуктивности. Решение задачи по измерению параметров конденсатора с использованием однородного моста.

    контрольная работа [156,9 K], добавлен 04.10.2013

  • Определения и классификация колебаний. Способы описания гармонических колебаний. Кинематические и динамические характеристики. Определение параметров гармонических колебаний по начальным условиям сопротивления. Энергия и сложение гармонических колебаний.

    презентация [801,8 K], добавлен 09.02.2017

  • Общие свойства средств измерений, классификация погрешностей. Контроль постоянных и переменных токов и напряжений. Цифровые преобразователи и приборы, электронные осциллографы. Измерение частотно-временных параметров сигналов телекоммуникационных систем.

    курс лекций [198,7 K], добавлен 20.05.2011

  • Импульсный метод измерения дальности и частоты сигнала. Оценка амплитуды детерминированного сигнала. Потенциальная точность измерения угловых координат. Задача нелинейной фильтрации параметров сигнала. Оптимальная импульсная характеристика фильтра.

    реферат [679,1 K], добавлен 13.10.2013

  • Общая характеристика методов, применяемых для измерения параметров капилляров фильер: голографической интерферометрии, Фурье-оптики, микроскопический. Сравнительный анализ рассмотренных методов, определение их основных преимуществ и недостатков.

    контрольная работа [450,0 K], добавлен 20.05.2013

  • Основные понятия и определения систем передачи дискретных сообщений. Сигнальные созвездия при АФМ и квадратурная АМ. Спектральные характеристики сигналов с АФМ. Модулятор и демодулятор сигналов, помехоустойчивость когерентного приема сигналов с АФМ.

    дипломная работа [1,9 M], добавлен 09.07.2013

  • Основные параметры электромагнитного поля и механизмы его воздействия на человека. Методы измерения параметров электромагнитного поля. Индукция магнитного поля. Разработка технических требований к прибору. Датчик напряженности электромагнитного поля.

    курсовая работа [780,2 K], добавлен 15.12.2011

  • Согласование средства измерения с объектом измерения. Влияние наблюдателя. Методы сопряжения. Влияние окружающей среды и помехи. Совершенствование методики измерения. Использование методов компенсации. Изменение формы входного сигнала или его спектра.

    презентация [10,7 M], добавлен 02.08.2012

  • Понятие и общая характеристика фотоупругого эффекта и его применение для получения картины распределения напряжения. Основные методы измерения физических величин: параметров светового излучения, давления и ускорения с помощью фотоупругого эффекта.

    курсовая работа [2,3 M], добавлен 13.12.2010

  • Применение методов обработки сигналов и математической статистики для построения моделей изучаемых процессов. Природа ошибок, методы их идентификации. Качественное пояснение среднего и погрешностей как коридоров рассеяний. Прямые и косвенные измерения.

    реферат [92,7 K], добавлен 19.08.2015

  • Характер и основные причины повреждений в кабельных линиях, порядок и методы их определения: дистанционные, кратковременной дуги, волновые, измерения частичных разрядов. Виды зондирующих сигналов. Помехи импульсной рефлектометрии и борьба с ними.

    контрольная работа [519,1 K], добавлен 20.03.2011

  • Характеристика и назначение измерений, проводимых в процессе летных испытаний и эксплуатации объектов ракетно-космической техники. Сущность внешнетраекторных и радиотелеметрических измерений параметров объектов. Критерии выбора принципов построения РТС.

    реферат [723,8 K], добавлен 08.10.2010

  • Понятие измерения в теплотехнике. Числовое значение измеряемой величины. Прямые и косвенные измерения, их методы и средства. Виды погрешностей измерений. Принцип действия стеклянных жидкостных термометров. Измерение уровня жидкостей, типы уровнемеров.

    курс лекций [1,1 M], добавлен 18.04.2013

  • Измерение мощности низкочастотных и высокочастотных колебаний электрических сигналов. Диагностирование мощности колебаний сверхвысокочастотного излучения ваттметрами (поглощающего типа и проходящей мощности). Основные цифровые методы измерения мощности.

    контрольная работа [365,0 K], добавлен 20.09.2015

  • Понятие о физической величине как одно из общих в физике и метрологии. Единицы измерения физических величин. Нижний и верхний пределы измерений. Возможности и методы измерения физических величин. Реактивный, тензорезистивный и терморезистивный методы.

    контрольная работа [301,1 K], добавлен 18.11.2013

  • Суть физической величины, классификация и характеристики ее измерений. Статические и динамические измерения физических величин. Обработка результатов прямых, косвенных и совместных измерений, нормирование формы их представления и оценка неопределенности.

    курсовая работа [166,9 K], добавлен 12.03.2013

  • Выбор измерительного прибора для допускового контроля параметров. Определение доверительных границ неисключенной доверительной погрешности результата измерения. Назначение и принцип действия цифровых универсальных вольтметров и их составных частей.

    курсовая работа [1,7 M], добавлен 14.04.2019

  • Действие параметров периодического сигнала на амплитудно-частотный и фазочастотный спектры периодического сигнала. Спектр периодической последовательности прямоугольных видеоимпульсов. Влияние изменения времени задержки на спектр периодического сигнала.

    лабораторная работа [627,1 K], добавлен 11.12.2022

  • Магнитоэлектрические измерительные механизмы. Метод косвенного измерения активного сопротивления до 1 Ом и оценка систематической, случайной, составляющей и общей погрешности измерения. Средства измерения неэлектрической физической величины (давления).

    курсовая работа [407,8 K], добавлен 29.01.2013

  • Прямые и косвенные измерения напряжения и силы тока. Применение закона Ома. Зависимость результатов прямого и косвенного измерений от значения угла поворота регулятора. Определение абсолютной погрешности косвенного измерения величины постоянного тока.

    лабораторная работа [191,6 K], добавлен 25.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.