Фізика елементарних частинок

Аналіз основних моделей атомних ядер. Дослідження штучної радіоактивності. Синтез прискорювачів заряджених систем. Сутність елементарних частинок. Здійснення керованого термоядерного синтезу на основі використання релятивістських електронних пучків.

Рубрика Физика и энергетика
Вид курс лекций
Язык украинский
Дата добавления 21.09.2017
Размер файла 315,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Фізика атомного ядра. Фізика елементарних частинок.

1. Фундаментальні взаємодії

Нуклони. Заряд і масове число. Ізотопи

До 1932 року чіткого розуміння структури ядра не було. Були різні варіанти (ядро складалось із протонів та електронів; тільки з протонів та ін.), але розрахунки показали, що в дійсності ядро було набагато важче.

У 1932 році англійський вчений Д. Чедвік відкрив нейтрон. При бомбардуванні берилію б-частинками був одержаний ізотоп вуглецю. Було виявлено якесь сильне випромінювання, нейтральне, з великою проникною здатністю. Це були окремі частинки, які згодом назвали нейтронами:

.

Після відкриття нейтрону радянський фізик Іванов і незалежно від нього Гейзенберг запропонували протонно-нейтронну модель ядра. Ядро складалося з протонів і нейтронів. Але при цьому не було згадано про те, яким чином розташовуються в ядрі протони і нейтрони.

Протон (р) - позитивно заряджена частинка. Заряд (q), маса (m), радіус (r), час життя (), магнітний момент (р), спін (s), наведені нижче:

(),

,

,

,

,

.

У кожному ядрі мало б міститися стільки протонів, скільки електронів в атомі, і це забезпечувало електронейтральність атома.

Для опису магнітних характеристик нуклонів і ядер користуються ядерним магнетоном (у 1836 разів меншим від магнетону Бора):

.

Нейтрон (n) - нейтральна частинка. Характеристики наведені нижче:

,

,

,

,

,

.

Хоча нейтрон позбавлений заряду, все ж він має магнітний момент, що дорівнює - 1,91 ядерних магнетонів. Знак мінус тут вказує, що за напрямом магнітний момент протилежний спіну нейтрона.

У вільному стані нейтрон нестійкий і самовільно розпадається (період піврозпаду Т = 12 хв): випромінюючи в-частинку і антинейтрино, він перетворюється у протон.

Властивості ядра

Число, яке є найближчим до атомної маси (таблиця Менделєєва) в атомних одиницях маси називається масовим числом (А). Пишеться у верхньому індексі.

Зарядне число визначає заряд ядра в одиницях заряду електрона, тобто показує кількість протонів в ядрі (та кількість електронів в атомі). Пишеться у нижньому індексі:

.

Протони і нейтрони називають ще нуклонами.

Масове число - число нуклонів у ядрі:

(кількість нейтронів).

Протонно-нейтронна теорія будови ядра добре узгоджується з дослідними даними.

Як було показано, маси протона і нейтрона дуже мало відрізняються від атомної одиниці маси. Тому відповідно до системи елементів Д. І. Менделєєва, за протонно-нейтронною теорією, порядковий номер елемента Z визначає число протонів в ядрі атома, а масове число А - сумарну кількість протонів і нейтронів ядра; (А - Z) - число нейтронів у ядрі. Як складові частинки ядра протони і нейтрони виявляють у численних ядерних реакціях поділу і синтезу.

Звичайно, в самовільних і штучних поділах ядер спостерігаються також потоки електронів, позитронів, мезонів, нейтрино і антинейтрино. Маса в-частинки (електрона або позитрона) в 1836 разів менша від маси нуклона. Мезони - позитивні, негативні і нульові частинки за величиною маси займають проміжне місце між в-частинками і нуклонами; час життя їх дуже малий (мільйонні і менші долі секунди). Нейтрино і антинейтрино - елементарні частинки, масу спокою їх беруть такою, що дорівнює нулю. Проте електрони, позитрони і мезони не можуть бути складовими частинками ядра. Ці легкі частинки не можуть бути локалізованими в такому малому об'ємі, яким є ядро з радіусом м. Для доведення цього обчислимо енергію електричної взаємодії, наприклад, електрона з позитроном чи протоном в ядрі:

.

і порівняємо її з власною енергією електрона:

.

Оскільки енергія зовнішньої взаємодії перевищує власну енергію електрона, то він не може існувати і зберігати свою індивідуальність, в умовах ядра він буде зруйнований. Зовсім інше становище у нуклонів, їхня власна енергія понад 900 МеВ, тому в ядрі вони можуть існувати і зберігати свою індивідуальність.

Різними методами встановлено, що радіус ядра з достатньою точністю можна визначати за формулою:

,

де А - число нуклонів у ядрі.

Визначивши об'єм ядра, маємо:

.

Об'єм ядра прямопропорційний числу нуклонів. Інакше кажучи, в усіх ядрах на один нуклон припадає однаковий об'єм; цим самим ядра уподібнюються до нестисливої рідини. Густина ядерної речовини:

.

Значна густина ядерної речовини є також ознакою величезних сил взаємодій між нуклонами.

Легкі частинки випромінюються з ядер у процесі переходів їх з одного стану в інший.

Існують ядра, які мають однакове зарядове число, але різне масове число. Такі елементи повинні знаходитись в одній клітинці періодичної системи.

Елементи, які мають однакове зарядне число і різне масове число, називаються ізотопами:

- дейтерій, - тритій.

2. Дефект маси ядра. Енергія зв'язку ядра. Питома енергія зв'язку

Для кількісної характеристики сильної взаємодії між нуклонами вводиться поняття енергії зв'язку ДЕзв. Під енергією зв'язку розуміють енергію, яку треба затратити, щоб розщепити ядро на складові нуклони без накопичення кінетичної енергії. Енергію зв'язку також можна визначити, коли окремі нуклони об'єднуються в ядро під дією ядерних сил.

Внаслідок об'єднання нуклонів (створення ядра) буде відбуватися випромінювання енергії, а фотони цього випромінювання мають певну масу. Тому маса ядра завжди буде меншою від сумарної маси нуклонів, з яких воно складається.

Дефектом маси називається різниця мас між сумарною масою нуклонів у вільному стані, і масою ядра, яке складається з цих нуклонів:

.

При цьому .

,

.

Якщо , то тоді , тоді питома енергія зв'язку - енергія, яка приходиться на один нуклон в ядрі:

.

Для частинок, які відносяться до середини періодичної системи Менделєєва питома енергія зв'язку дещо більша, ніж 8 МеВ/А, а ті які знаходять на початку або у кінці системи вона менша від 8 МеВ/А (рис. 3.18).

Для легких ядер (початок періодичної системи Менделєєва) питома енергія зв'язку має характерні максимуми і мінімуми. Причому максимум характерний для ядер, які мають парне число протонів і нейтронів, а мінімум - для непарного числа.

Чим більша питома енергія зв'язку, тим «міцнішим» (стабільнішим) вважається ядро.

Із періодичної системи Менделєєва та із закономірності, яка була встановлена для ядер всіх елементів, можна зробити висновок: для того, щоб отримати ядерну енергію, треба або поділити важке ядро на елементи середньої частини таблиці Менделєєва, або синтезувати легкі ядра, внаслідок чого також будуть отримані елементи середньої частини таблиці Менделєєва.

Моделі атомних ядер

Спроби побудувати теорію ядра наштовхувалися на труднощі, які були викликані недостатніми знаннями природи ядерних сил, складністю рівняння квантової задачі, тому виникла необхідність йти по шляху створення ядерних моделей. Жодна з існуючих моделей ядра на сьогоднішній день не може повністю описати ядро. Моделей існує дуже багато, і кожна з них описує окремі властивості ядра.

Розглянемо найбільш досконалі з них - краплинну і оболонкову.

1. Краплинну модель ядра вперше запропонував Я.І.Френкель у 1936 p., розвинули її Н.Бор і К.Вейцзекер. За цією моделлю ядро уподібнюється краплині рідини. Насправді, подібно до рідини енергія зв'язку і об'єм ядра пропорційні кількості його складових частинок - нуклонів. Подібно до молекул рідини, які взаємодіють з обмеженою кількістю інших молекул, взаємодіям нуклонів властиве насичення. В ядрі, як і в рідині, є поверхневий натяг, зумовлений тим, що поверхневі нуклони взаємодіють з меншою кількістю сусідів, ніж внутрішні. Цей фактор є причиною зменшення енергії зв'язку, яка пропорційна площі поверхні ядра і спостерігається у важких ядрах.

Кількісну основу краплинної моделі ядра становить напівемпірична формула Вейцзекера для повної енергії атомного ядра:

де А - кількість нуклонів; Z - заряд ядра (кількість протонів); і, - константи.

Формулу називають напівемпіричною тому, що в ній тільки перші три члени випливають з краплинної моделі, два останні, а також значення констант знаходять експериментально. Перший член формули показує, що енергія зв'язку ядра пропорційна числу нуклонів; другий, що зменшення енергії зв'язку зумовлюється поверхневим натягом. Ця енергія пропорційна площі поверхні; оскільки радіус ядра R ~ А1/3, то поверхня 4R2 ~ А2/3. Третій член визначає зменшення енергії зв'язку, зумовлене силами кулонівського відштовхування. Четвертий член відображує залежність стійкості ядра від співвідношення протонів і нейтронів. Стійкість ядра як системи, за загальною тенденцією, тим більша, чим менша її енергія. Найбільшу стійкість проявляють ядра, в яких кількість протонів і нейтронів однакова NР = NП, або при А = 2Z. Тому відносну кількість протонів і нейтронів виражають . Точний вигляд функції від цього аргументу невідомий. Її вважають незалежною від знака аргументу, тобто від того, що переважає в ядрі, кількість протонів чи нейтронів, тому надають їй квадратичного вигляду. Нарешті, останній член відображує залежність енергії зв'язку від орієнтації спінів нуклонів. Завдяки цьому енергія зв'язку у парно-парних ядер максимальна, а в непарно-непарних - мінімальна. Цей член може набувати додатних і від'ємних значень, що корелюються множником , а саме:

= - 1, якщо А - парне, Z - парне;

= 0, якщо А - непарне;

= + 1, якщо А - парне, Z - непарне.

Константи і мають такі значення в МеВ: 1 = 15,75; 2 = 17,8; 3 = 0,71; 4 = 23,7; 5 = 34.

Краплинна модель ядра успішно пояснює основний і збуджений стани ядра. Основний стан ядра, якому відповідає найменша енергія, зображається сфероподібним; збуджений стан - здеформованим (за формою, а не за об'ємом, оскільки йдеться про модель нестисливої краплини). Такі деформації звичайно супроводжуються коливаннями поверхні ядра, отже, відповідні збуджені стани ядра можна характеризувати енергією цих коливань.

Краплинна модель ядра все ж має обмежений зміст. Вона не дає змоги визначити такі важливі характеристики ядра, як спін і магнітний момент.

2. Оболонкова модель. Моделі ядерних оболонок запропонували у 1948 - 1949 pоках М.Гепперт-Майєр та О.Гаксел, І.Ієнсен і Г.Зюсс. Модель передбачає існування в ядрі системи нуклоних оболонок, подібних до електронних в атомах.

Насправді спостерігається аналогія в періодичності властивостей ядер і атомів. Подібно до того, як при відповідних заповненнях електронних оболонок появляються хімічно стійкі атоми - інертні гази, так при певних числах нуклонів спостерігаються особливо стійкі ядра. Експериментально це виявляють у дослідах з бомбардування ядер нейтронами: одні ядра мають більшу ймовірність захоплення нейтрона, інші меншу (ймовірність захоплення інакше називають нейтронним перерізом ядра).

Встановлено, що дуже малі нейтронні перерізи і найбільшу стійкість мають ті ядра, в яких Z a6o (А - Z) дорівнюють так званим магічним числам - 2, 8, 20, 28, 40, 50, 82, 126. Особливо стійкими є двічі магічні ядра: , , , .

Отже, є підстави вважати, що нуклони в ядрі групуються по оболонкам і що магічні числа відповідають до кінця заповненим оболонкам. Оскільки магічні числа належать як до протонів, так і до нейтронів, то напевно вони утворюють окремі системи оболонок; напевно нуклони ядра поступово займають рівні з найменшими енергіями. Формула Вейцзекера дає тільки середнє значення енергії зв'язку, що припадає на нуклон.

Зауважимо, що, як і в електронах, спін нуклонів дорівнює ± 1/2 в одиницях , отже, вони підлягають статистиці Фермі - Дірака. Згідно з принципом Паулі, енергії всіх нуклонів ядра повинні бути різними. На енергії нуклона позначається величина його моменту імпульсу.

З погляду оболонкової моделі момент імпульсу нуклона, як і електрона, складається зі спінового і орбітального моментів імпульсу. Величину і напрям останнього визначають за аналогічними умовами квантування.

Можна припустити, що кількість станів нуклона в ядрі дорівнює кількості станів електрона в атомі, а оболонкова модель є копією електронної оболонки. Проте насправді це не так, магічні числа ядер не збігаються з кількістю електронів до кінця заповнених шарів. Ці розбіжності зумовлені особливостями ядерних сил. По-перше, йдеться про сильні взаємодії, з якими важко погодити незалежний рух окремих нуклонів на орбітах; по-друге, в ядрі немає центрального тіла - центра притягання.

Правда, вказані фактори можна спростувати тим, що ядерні сили короткодіючі і тому довжина вільного пробігу нуклона в ядрі може перевищувати радіус ядра. Крім того, ядерні взаємодії нормуються принципом Паулі, який забороняє перехід нуклона з одного стану в інший, якщо всі стани зайняті. Нарешті, для пояснення оболонкової структури ядра можна прийняти, що зовнішні нуклони переміщуються у центрально-симетричному полі. Потенціал такого поля можна задати у вигляді:

.

Цю формулу використовували у томсонівській моделі атома, де також немає центрального тіла, але проявляються сили притягання до центра.

Величина 0 у виразі (3.8) має зміст глибини потенціальної ями в центрі ядра і по суті не накладає обмеження на оболонку, оскільки потенціальна енергія завжди визначається з точністю до довільної сталої. Згідно з цією концепцією, нуклони в середині ядра фактично рухаються вільно, а на поверхні ядра зазнають впливу значних центральних сил притягання і групуються в шарові оболонки.

Крім розглянутих краплинної і оболонкової моделей ядра є ще й інші моделі. Вони свідчать про те, що теорія ядра ще не завершена.

3. Радіоактивність. Закони радіоактивного розпаду

Радіоактивність - самовільне перетворення одного ядра в інше, яке супроводжується випромінюванням та вивільненням частинок.

Радіоактивний розпад може супроводжуватись б, в або г-випромінюванням.

б-випромінювання - потік позитивно заряджених частинок (ядер гелію). Властивості: б-випромінювання має низьку проникну здатність та високу іонізуючу здатність.

в-випромінювання - потік електронів та позитронів. Властивості: має більшу (у порівнянні з б-випромінюванням) проникну здатність, але меншу іонізуючу здатність.

г-випромінювання - потік фотонів, електромагнітне випромінювання з довжиною хвилі від 0,01 до 1 Ає. Властивості: серед усіх трьох випромінювань має найбільшу проникну здатність і найменшу іонізуючу.

Радіоактивністю володіють елементи, що мають порядковий номер у періодичній системі, більший від 83. Радіоактивність існує штучна та природна.

Штучна радіоактивність виникла в результаті штучної ядерної реакції.

Природна радіоактивність зумовлена природою ядра.

Період напіврозпаду (Т) - час, за який розпадається половина ядер (атомів) речовини.

Стала розпаду (л) показує, яка частина атомів розпадається за одиницю часу.

Активність (А) показує кількість атомів (ядер) розпаду за одиницю часу:

,

де N - кількість ядер в даний момент часу.

Нехай в момент часу розпадається N ядер, тоді за 1 с , а за час - . Знак «-» показує, що кількість ядер атомів зменшується.

- закон радіоактивного розпаду

в диференціальній формі

При початкових умовах t = 0 (початковий момент часу):

- закон радіоактивного розпаду в інтегральній формі,

де N - кількість ядер, що не розпалися за час t; - початкова кількість ядер (рис.3.18.а).

Знайдемо кількість елементів, що розпалися:

Використаємо властивість періоду піврозпаду:

якщо Т = t, тоді .

;

- період напіврозпаду.

Отримаємо частинний випадок інтегральної формули закону радіоактивного розпаду:

З виразу для періоду напіврозпаду отримаємо, що

Підставимо цей вираз в закон радіоактивного розпаду:

Скористаємося основною логарифмічною тотожністю:

.

Отримаємо,

.

Звідси

.

б-розпад

.

Як відомо, б-частинок в ядрі немає, але вони народжуються в результаті радіоактивного розпаду. Щоб вилетіти з ядра, б-частинці потрібно подолати потенціальний бар'єр. Досліди показують, що енергія б-частинок недостатня для того, щоб подолати цей бар'єр, тобто б-частинка не може покинути межі ядра (з точки зору класичної електродинаміки), але з точки зору квантової фізики існує ймовірність того, що б-частинка може покинути межі ядра навіть тоді, коли її енергія менша потенціального бар'єру. Це явище називається «тунельним ефектом». Саме ним і пояснюється народження б-частинок та виникнення б-розпаду.

Ядро, випромінюючи б-частинки, перетворюється в інше ядро, яке називається дочірнім; а ядро, що розпадається, називається материнським.

При радіоактивному розпаді виділяється енергія у вигляді кінетичної енергії тих частинок, які виникають у результаті розпаду: б-частинки та дочірнє ядро.

Якщо материнське ядро до розпаду було у стані спокою, то після розпаду енергії б-частинок і дочірнього ядра обернено пропорційні їх масам. Це випливає із закону збереження імпульсу.

Радіоактивне ядро випускає б-частинку, яка складається з двох нейтронів і двох протонів, тобто ядро атома гелію . При цьому баріонний заряд материнського ядра зменшується на чотири одиниці, а електричний - на дві одиниці. За цей вид розпаду відповідає сильна взаємодія. Енергетично б-розпад вигідний, оскільки енергія зв'язку дочірнього ядра менша, ніж у материнського. Заважає виходу зарядженої частинки кулонівський потенціальний бар'єр ядра, хоча квантова частинка вміє «просочуватися» через бар'єри.

Якщо відомий коефіцієнт прозорості бар'єра D, можна визначити сталу розпаду , користуючись такими міркуваннями. Швидкість б-частинки масою m, енергією W дорівнює:

.

Кількість зіткнень частинки зі стінкою потенціального бар'єра в одиницю часу:

,

де 2R - діаметр ядра.

Частка зіткнень, які закінчуються подоланням потенціального бар'єра, дорівнює Dn. Але це є ймовірність розпаду, яка дорівнює сталій розпаду . Коефіцієнт прозорості найпростішого прямокутного потенціального бар'єра:

,

.

Як випливає з формули, навіть невелика зміна енергії W б-частинки веде до величезної зміни і періоду піврозпаду. Зі зростанням енергії W від 2 до 9 МеВ період піврозпаду змінюється від років до с.

Зауваження. Вихід складної частинки, утвореної з чотирьох нуклонів, виявляється найбільш імовірним, ніж вихід одного нуклона. Це наслідок насиченості ядерних сил. б-частинка як ціле замкнене утворення пов'язана слабше з іншими нуклонами, ніж окремий нуклон.

Як показали досліди, енергія б-частинки, що вийшла з ядра, не може мати довільного значення. Існує дискретний ряд дозволених значень енергії, як і при випромінюванні фотонів.

Дискретний енергетичний спектр б-частинок - це наслідок існування енергетичних рівнів у ядрі.

Дочірнє ядро звичайно перебуває у збудженому стані і для переходу в основний стан випромінює жорстке короткохвильове електромагнітне випромінювання. Часто говорять, що ядро випускає г-кванти, або г-промені, або г-фотони.

в-розпад

Як відомо, в ядрі електронів немає. При радіоактивному розпаді вилітають електрони, які народжуються внаслідок розпаду ядра.

При в--розпаді в ядрі відбувається перетворення нейтрона в протон:

;

.

При в+-розпаді відбувається перетворення протона в нейтрон:

;

.

При поясненні в-розпаду вчені ще не знали про існування нейтрино і тому результати дослідів приводили до порушення закону збереження енергії, і тому в фізиці була висунута гіпотеза (Паулі), яка говорила, що при кожному в-розпаді вилітає не одна, а дві частинки. Вважали, що окрім електричної частинки, вилітає ще електронейтральна, яка мала дуже малу масу і спін її дорівнював . Цю частинку назвали нейтрино; так її назвав вчений Адерміні, який розробив теорію в-розпаду.

При бета-розпаді баріонний заряд (кількість нуклонів) не змінюється, а електричний заряд змінюється на ±1. З ядра вилітає електрон, або позитрон, або відбувається захоплення протоном електрона власного атома, звичайно з К- оболонки.

При в-розпаді перетворюється окремий нуклон. Тому розпади визначаються не кулонівськими і не ядерними, а тільки слабкими взаємодіями. Наведемо схеми перетворень для трьох видів - розпаду.

1. Електронний розпад чи -розпад:

.

Нейтрон перетворюється на протон, електрон і електронне антинейтрино. Протон залишається в ядрі, а електрон і електронне антинейтрино вилітають із ядра.

2. Позитронний розпад, або -розпад:

.

Протон перетворюється на нейтрон, позитрон і електронне нейтрино. Нейтрон залишається в ядрі, а позитрон і електронне нейтрино вилітають із ядра.

3. К- захоплення:

.

Протон ядра захоплює електрон із найближчої К - оболонки атома і перетворюється на нейтрон і електронне нейтрино. Із ядра вилітають тільки нейтрино. Взагалі взаємні перетворення нейтрона і протона можуть відбуватися і за межами ядра, що підтверджує незалежність таких перетворень від сильних взаємодій. Оскільки інтенсивність слабких взаємодій на двадцять порядків менша, ніж сильних, то й терміни життя - активних ядер мають макроскопічну тривалість. Так, час життя вільного нейтрона становить 11,7 хв.

На відміну від б-розпаду енергетичний спектр електронів або позитронів, які вилетіли з ядра (-спектр), має неперервний характер.

Це нібито не узгоджується з принципами квантування енергії в ядрі. На рис. 3.19 зображено такий спектр. На осі ординат відкладено кількість електронів , які мають енергію , а по осі абсцис - енергію . Бачимо, що електрон може мати енергію від нуля до деякого граничного значення . Існує також найбільш імовірне значення енергії, яке відповідає максимуму функції. Такий характер спектра легко пояснити, знаючи, що енергія розподіляється між електроном і нейтрино. У кожному окремому акті розпаду частка енергії кожної частинки, певна річ, випадкова, але при усередненні за великою кількістю розпадів виявляється стійка статистична закономірність. Кінець спектра при означає, що всю енергію отримав електрон, а на частку нейтрино вже нічого не залишилося. Ці пояснення вельми переконливі, і ми легко погоджуємося з ними. Проте В.Паулі, котрий у 1936 році вивчав експериментальний -спектр, якщо на той час про нейтрино ще нічого не було відомо. І наскільки ж він мав бути впевненим у тому, що ядро може віддавати енергію тільки квантами, щоб припустити існування невідомої частинки і передбачити її основні властивості, які дуже відрізняються від властивостей відомих елементарних частинок. Нейтрино не має електричного заряду, маса спокою нейтрино в десятки мільйонів разів менша за масу спокою електрона. Нейтрино не вступає ні в сильні, ні в електромагнітні взаємодії.

І все ж нейтрино існує! Електронне нейтрино було знайдено експериментально Ф.Райнесом і К.Коуеном у 1953 році.

г-розпад

Цей вид ядерного перетворення, мабуть, важко назвати ядерним розпадом, оскільки ні баріонний, ні електричний заряд ядра при цьому не змінюються. Просто збуджене ядро викидає залишкову енергію у вигляді жорсткого електромагнітного випромінювання.

Переходячи в стаціонарний стан, ядро випромінює г-промені. г-випромінювання можливо пояснити з точки зору оболонкової моделі ядра, тобто коли ядро знаходиться в збудженому стані. Це означає, що нуклони не знаходяться на енергетично більш вигідних рівнях.

Нуклони повинні перейти з якогось рівня m на енергетично більш вигідний рівень n. При цьому народжується г-квант. Він має найбільшу серед усіх фотонів енергію, нейтральний заряд, а також найбільшу проникну здатність.

Проте випромінювання має дискретний спектр. Випромінюються, по суті, частинки-фотони. Їх називають ядерними фотонами. Енергія ядерних фотонів у тисячі разів перевищує енергію фотонів, які випромінюються при переході електронів атома зі збуджених станів. Довжина хвилі де Бройля ядерних фотонів не перевищує м, тоді як довжина хвилі для фотонів оптичного діапазону становить м.

Ядерний фотон, або -фотон, залишає ядро, але не обов'язково залишає межі атома. Іноді він поглинається одним з електронів атома. Таке явище називають внутрішньою конверсією. Електрон, отримавши таку велику енергію, вилітає з атома, і атом перетворюється на іон. Можливий і більш екзотичний варіант: перетворення -фотона на електрон-позитронну пару.

У 1958 році було відкрито і зворотний процес - процес резонансного поглинання -квантів ядром атома.

Цей ефект називається ефектом Месбауера. Буквально за кілька років було виконано величезний обсяг експериментальних робіт і доведено, якою потужною зброєю є цей ефект в багатьох дослідженнях.

Ефект Месбауера

Якщо енергія фотона дорівнює різниці енергій збудженого й основного станів ядра, то він поглинається ядром. Відповідно, при зворотному переході в основний стан ядро буде випромінювати фотон.

Усе як при оптичному випромінюванні атома. Тільки там фотон має набагато меншу енергію і поглинається електроном. При зворотному переході атом випромінює фотон тієї самої частоти або енергії.

Однак існує і суттєва неочікувана відмінність. Виявляється, частота фотона, який поглинається, і частота фотона, який випромінюється ядром , різні. До того ж різниця між ними істотно більша за «природну півширину спектральної лінії». Річ у тім, що частина енергії при поглинанні фотона йде на енергію віддачі ядра :

.

Витрати енергії на віддачу ядра можуть бути різко скорочені, якщо ядра перебувають у зв'язаному стані в кристалічних гратках. Звичайно, енергія віддачі може витрачатися на збудження додаткових коливань гратки або, як кажуть, на народження фононів. Але для деяких ядер, таких як ядро заліза або іридію, можна підібрати умови, при виконанні яких не в усіх актах поглинання фотона ядром народжується фонон. Для таких безфононних актів поглинання внутрішня енергія кристала не змінюється. Кінетична енергія, якої набуває кристал як ціле, сприймаючи імпульс віддачі, дуже мала, оскільки маса кристала нескінченно велика порівняно з масою окремого ядра.

Для таких випадків - а їх звичайно всього кілька відсотків від усіх актів поглинання і випромінювання - ширина резонансних ліній стає дуже малою. Так, для -переходу в відношення ширини спектральної лінії до енергії переходу становить усього . Дуже мала ширина резонансних ліній дає змогу використовувати ефект Месбауера для вимірювання дуже малих зсувів енергії -квантів, викликаних тими чи іншими малими діями на ядро або на самий - квант.

Зауваження. До речі, у лабораторних умовах вдалося виявити гравітаційне зміщення частоти фотона під час його руху в полі гравітації Землі. Але особливо плідним виявилося застосування ефекту Месбауера для вивчення електронних станів домішкових атомів у металах, сплавах та напівпровідниках.

Активність препарату. Доза опромінювання

Важливою характеристикою радіоактивних препаратів є їхня активність. Активністю препарату називають величину, що дорівнює загальній кількості розпадів радіоактивних ядер препарату за одиницю часу.

.

За одиницю активності беруть активність препарату, в якому відбувається один розпад за секунду. Цю одиницю називають бекерель (Бк):

.

Але окрім системних одиниць вимірювання є ще й позасистемні.

Активність 1 г радію (226) дорівнює ; ця активність була прийнята за позасистемну одиницю:

.

Забрудненість радіоактивним пилом малих предметів вимірюють у Бк/дм2, географічних поверхонь у Кі/км2.

Еман - одиниця концентрації радіоактивних нуклідів у рідинах або газах. Наприклад, концентрація радону у воді

Активність зазначають у паспорті препарату. З часом вона зменшується і на це треба робити поправку.

Дозою опромінення називають міру дії радіоактивного випромінювання на речовину. Розрізняють дозу поглинання і дозу експозиційну.

Поглинута доза - енергія випромінювання, яка поглинається одиницею маси опроміненого середовища,

.

Одиницею поглинутої дози є грей (Гр): . Використовується також позасистемна одиниця - рад: . Енергія поглинання спричиняє нагрівання речовини і її хімічні та фізичні перетворення. Поглинута доза залежить від інтенсивності потоку енергії падаючого проміння і в усіх випадках від часу опромінювання. Тому результат дії останньої оцінюють потужністю поглинутої дози - дозою, віднесеною до одиниці час; її одиницею є грей за секунду.

Потужність дози поглинання - це доза, віднесена до одиниці часу; її одиницею є грей у секунду.

Експозиційна доза - міра іонізаційної дії випромінювання в речовині, що чисельно дорівнює відношенню сумарного заряду іонів одного знаку, створених випромінюванням, до маси опроміненого середовища:

.

Одиниця вимірювання експозиційної дози позасистемна одиниця - рентген:

.

Еквівалентна доза. Встановлено, що біологічна дія різних видів випромінювання при тій самій дозі поглинання різна. Біологічні небезпечні ефекти різного іонізуючого проміння характеризують порівняльним коефіцієнтом якості К за дією рентгенівського і гамма-проміння (для них К = 1). Еквівалентна доза визначається добутком поглинутої дози на коефіцієнт якості проміння

.

Її вимірюють в одиницях поглинутої дози - греями; позасистемною одиницею еквівалентної дози є бер, що відповідає поглинутій дозі в 0,01 Гр при К = 1; у СІ за одиницю еквівалентної дози взято зіверт:

.

Коли йдеться про дію випромінювання на живий організм, дозу опромінювання слід суворо контролювати. Особливо це стосується дії рентгенівського та г-випромінювання, яке внаслідок великої проникної здатності може пошкодити органи і тканини людини. Внаслідок опромінювання відбувається іонізація атомів та молекул, які входять до складу організму. Відбувається розрив молекулярних зв'язків і зміни хімічної структури складних органічних сполук. Крім того, іонізуюче опромінювання зумовлює розщеплення молекул води, середній вміст якої в організмі людини становить 75-80%. Іонізація молекул води веде до утворення вільних радикалів і проміжних хімічних сполук, які, в свою чергу, сполучаються з молекулами органічних речовин і, насамперед, з білками. Останні утворення є здебільшого новими хімічними сполуками, які невластиві організму в нормальному стані. Це спричиняє порушення життєдіяльності клітин людського організму.

При великій дозі опромінення в організмі виникають складні необоротні процеси - променева хвороба.

Згідно з санітарними нормами, в Україні встановлена гранично допустима доза - Кл/кг (50 мР) за восьмигодинний робочий день.

Разові дози до Кл/кг (50 Р) не шкідливі для організму. Більші разові дози опромінювання можуть бути причиною променевої хвороби різних ступенів та привести до смерті людини.

Правила зміщення. Радіоактивні ряди

Дослідження показали, що радіоактивне випромінювання є результатом самовільного перетворення ядер атомів одного елемента в ядра атомів іншого елемента. Цей процес відбувається за законами збереження електричного заряду та маси. Спираючись на ці закони, можна, за видом випромінювання даного радіоактивного елемента, визначити основні характеристики новоутвореного ядра - його заряд і масу.

Нехай радіоактивний елемент X з порядковим номером Z і масовим числом A зазнає -розпаду. Оскільки заряд -частинки дорівнює +2е, а маса - 4 атомні одиниці, то в результаті розпаду новоутворене ядро Y, очевидно, матиме заряд +(Z - 2)е і масу (А - 4) атомні одиниці. З таким ядром новий атом розміщуватиметься в таблиці Менделєєва на дві клітинки вліво від вихідного елемента. Символічно процес перетворення ядер при -розпаді записують так:

Наприклад,

.

Якщо радіоактивний елемент з порядковим номером Z i масовим числом А зазнає -розпаду, то заряд новоутвореного ядра дорівнюватиме +Ze - (- 1e) = + (Z + 1)е, тобто заряд ядра збільшиться на +е; його масове число буде таким самим, як і масове число початкового ядра, бо маса -частинки порівняно з одиницею атомної маси дуже мала. Новий атом розміщуватиметься в таблиці Менделєєва на одну клітинку вправо від вихідного елемента. Символічно процес перетворення ядер при -розпаді записують так:

.

Наприклад,

.

Вирази (3.9) і (3.10) можна назвати правилами зміщення радіоактивного елемента в періодичній системі. Їх експериментально встановили в 1913 p. учені К.Фаянс і Ф.Соді; при -розпаді хімічний елемент зміщується в таблиці Менделєєва на два місця вліво, а при - розпаді - на одне місце вправо.

Переважна більшість новоутворених елементів при радіоактивних розпадах - радіоактивна. Застосовуючи правила зміщення, вдалося встановити початковий радіоактивний елемент і кінцевий продукт його розпаду. Така послідовність елементів називається радіоактивним рядом. Відомо чотири радіоактивні ряди.

1. Ряд урану (), що починається з урану () і закінчується стабільним ізотопом свинцю (рис. 3.20). Цей ряд містить 14 радіоактивних перетворень, 8 з яких - розпади і 6 - -розпади.

2. Ряд торію (), що починається з торію () і закінчується ізотопом свинцю .

3. Ряд актинію (), що починається з актиноурану () і закінчується ізотопом свинцю .

4. Ряд нептунію (), що починається з трансуранового елемента нептунію () і закінчується стійким ізотопом вісмуту .

Зазначимо, що хоч період піврозпаду нептунію досить великий, його в природному стані на Землі вже немає, він повністю розпався. Тепер нептуній добувають у результаті штучних ядерних реакцій.

На основі законів збереження зарядів і масового числа були сформульовані такі правила зміщення:

- при б-розпаді елементи зміщуються на дві клітинки до початку періодичної системи Менделєєва;

- при в-розпаді елементи зміщуються на одну клітинку ближче до кінця періодичної системи Менделєєва для в- і на клітинку ближче до початку періодичної системи для в+.

4. Штучна радіоактивність. Трансуранові елементи

Штучна радіоактивність була відкрита в 1934 році французьким подружжям Ірен і Фредеріком Жоліо-Кюрі. Вони досліджували вплив б-частинок на ядро алюмінію. Після того, як опромінення алюмінієвої фольги б-частинками було припинено, фольга залишалася радіоактивною, випромінювала за законом радіоактивного розпаду і мала позитивну радіоактивність.

Явище самовільного розпаду ядер штучно добутих ізотопів має назву штучної радіоактивності:

Згодом Фермі почав опромінювати нейтронами всі елементи по черзі з періодичної системи, внаслідок чого отримав радіоізотопи майже для всіх елементів; на сьогоднішній день їх нараховується понад 1,5 тис., тобто кожен елемент має свої радіоізотопи, які можливо штучно отримати.

До 1925 року періодична система закінчувалася ураном-92, але ще були й пусті місця в таблиці з номерами 43, 61, 85, 87 тощо. Першим елементом, отриманим штучно, яким була заповнена 43 клітинка в таблиці, був технецій:

.

За допомогою штучної радіоактивності були заповнені всі пусті місця періодичної системи.

Елементи, які були одержані після урану, були названі трансурановими.

5. Експериментальні методи ядерної фізики

Методи ядерної фізики

1. Сцинтиляційний метод. При потраплянні швидких б-та в-частинок радіоактивного випромінювання на деякі люмінофори (наприклад, екран, вкритий сірчаним цинком) вони спричиняють такі інтенсивні збудження та випромінювання люмінофора, що в темряві їх можна спостерігати неозброєним оком у вигляді окремих спалахів ? сцинтиляцій. Кожен спалах відповідає удару однієї частинки по екрану. Практично спалахи на екрані Р, зумовлені випромінюванням досліджуваної речовини R, спостерігають у закритій трубі М мікроскопа незначного збільшення (рис. 3.5); для зручності розрахунку в окуляр мікроскопа вводять окулярну сітку. Такий прилад називають спінтарископом Крукса.

Підрахувавши кількість спалахів в одній клітинці окуляра за певний проміжок часу, можна визначити повне число частинок, які випромінюються радіоактивним зразком у всіх напрямах. Для цього число спостережуваних сцинтиляцій треба помножити на , де - тілесний кут, під яким видно клітину екрана. Так було встановлено, що 1 г радію випромінює за секунду частинок. Від - частинок можна звільнитися, розміщуючи прилад у сильному магнітному полі. Як відомо, метод сцинтиляцій Е.Резерфорд використав для дослідження розсіювання - частинок при їх проходженні крізь металічну фольгу.

2. Камера Вільсона - прилад, за допомогою якого можна спостерігати і фотографувати треки елементарних частинок. На своєму шляху заряджена частинка іонізує середовище і залишає після себе слід (трек) у вигляді пар позитивних і негативних іонів. У середовищі пересиченої пари іони стають центрами конденсації пари і на них утворюються краплини рідини, які залишають видимий трек частинки. При підсвічуванні його можна спостерігати візуально та фотографувати.

Камера Вільсона працює за принципом адіабатичного розширення й охолодження суміші повітря з насиченою парою води, спирту або ефіру. Газ у камері розширюється завдяки руху поршня, гумової діафрагми або рухомого дна (рис. 3.6.а). При цьому насичена пара перетворюється в пересичену і конденсується на іонах. Спостерігають треки частинок через скляну кришку камери.

Щоб виділити іони з робочого об'єму, між корпусом камери і її кришкою, покритою знизу желатиною, прикладають електричну напругу 150 - 200 В.

Можливості камери Вільсона були розширені російським фізиком Д.В.Скобельциним, який випробував камеру в сильному магнітному полі, паралельному її осі, та американським вченим Андерсоном, який розробив до камери автоматичний пристрій для її запуску і фотографування в той момент, коли частинка попадає в камеру.

Чіткість треків у камері Вільсона залежить від іонізуючої здатності частинок, зокрема сліди - частинок порівняно тонкі, сліди протонів р товстіші, а - частинок товсті (рис. 3.6.б). У магнітному полі завдяки малій масі сліди - частинок більш викривлені, ніж сліди - частинок; вони відхиляються у протилежні сторони, бо заряди їх мають різні знаки. Довжина сліду частинок того самого типу може бути мірою їхньої енергії.

У магнітному полі на рухому заряджену частинку діє сила Лоренца; якщо частинка рухається в напрямі перпендикулярному до магнітного поля, то сила Лоренца відіграє роль доцентрової сили:

.

За фотознімками для даних частинок при різних значеннях індукції поля В і відомим радіусом кривизни траєкторії можна скласти три рівняння (3.5) і визначити характеристики частинок.

За допомогою камери Вільсона було відкрито елементарні частинки (позитрон та мезон), зафіксовано ядерні реакції, явище перетворення фотона в пару електрон - позитрон тощо.

3. Бульбашкова камера. Недоліком камери Вільсона є мала густина і мала гальмуюча здатність її середовища, через що швидка частинка пролітає камеру, не викликаючи в ній помітних змін. Цей недолік усувається в бульбашковій камері, сконструйованій у 1952 р. Д.Глезером. Вона є прозорою циліндричною посудиною, наповненою ефіром, фреоном або пропаном при температурі кипіння. Підвищений тиск у камері до Па (залежно від рідини) затримує кипіння. Заряджена частинка, пролітаючи через камеру, залишає іонний слід. Після раптового зниження тиску до нормального рідина в камері починає кипіти і на іонах, як центрах кипіння, утворюються пухирці пари. Саме вони дають слід частинки, який при підсвічуванні можна спостерігати візуально та фотографувати.

Оскільки густина рідини значна, в ній довжина пробігу досліджуваної частинки значно менша, ніж у газах. Саме тому за допомогою бульбашкової камери можна досліджувати частинки дуже високих енергій.

4. Іонізаційний лічильник - прилад, в якому заряджена частинка реєструється за імпульсом газорозрядного струму, що зумовлюється іонізаційною дією частинки в газах.

Найбільш поширеним є газорозрядний лічильник Гейгера - Мюллера (рис. 3.7. а). У ньому вмонтовано два електроди: один - це провідний шар на внутрішній поверхні скляного циліндра або просто металевий циліндр 1, другий - металева нитка 2, натягнута вздовж осі циліндра. На електроди лічильника подається електрична напруга, яка близька до розрядної. Завдяки цьому розряд починається лише тоді, коли в лічильник попаде елементарна частинка або - фотон, які спричинять початкову іонізацію газу.

Ядерні частинки або - фотони можна реєструвати лише за початком газового розряду, бо коли розряд уже почався, попадання нових частинок у лічильник істотно не впливатиме на розрядний струм і їх не можна виявити. Тому після кожної частинки, що потрапила в лічильник і зумовлювала розряд, треба автоматично припинити розряд; це зробить лічильник придатним до реєстрації наступної частинки.

За способом припинення розряду лічильники поділяються на несамогасні і самогасні.

У несамогасних лічильниках у коло послідовно з анодом вмикається дуже великий опір ~ 109 Ом. При виникненні розрядного струму на ньому падає переважна частина напруги джерела струму, тоді як між електродами вона різко зменшується і розряд припиняється. Цей процес триває близько с (мертвий час). Отже, максимальна швидкість лічби таких лічильників не перевищує 100 імп/с.

Конструктивно простіші і мають більшу швидкість лічби самогасні лічильники. Припинення розряду в них досягається спеціальним підбором газів; наприклад, беруть 90 % аргону і 10 % пари етилового спирту чи інший багатоатомний газ, іонізаційний потенціал якого менший, ніж для аргону. Загальний тиск їх становить близько 1 кПа.

Суть гасіння розряду така. У лічильнику електричне поле стає сильнішим з наближенням до осі, тут електрони здійснюють ударну іонізацію газу. Проте початковий імпульс іонізації, зумовлений ядерною частинкою, швидко закінчується; електрони вмить досягають анода, а малорухливі позитивні іони ще деякий час оточують нитку анода і настільки послаблюють біля неї поле, що ударна іонізація стає неможливою, лічильник не реагує на нові досліджувані частинки. З наближенням позитивних іонів до катода іони одноатомного газу нейтралізуються внаслідок виривання електронів з багатоатомних молекул. Останні перетворюються у важкі іони, які при наближенні до катода виривають електрони з металу і перетворюються в нейтральні молекули. Мертвий час самогасних лічильників ~ 109 с.

Для реєстрації - частинок малих енергій, порядку 0,2 - 0,1 МеВ, та - частинок, проникна здатність яких дуже мала, використовують торцеві лічильники (рис. 3.7. б). У них нитку аноду замінено голкою, а в передній кінець трубки вмонтовано слюдяне віконце такої товщини, щоб частинки могли проникати в лічильник. Слюдяне віконце в лічильниках для - частинок має товщину близько 0,01 мм, для - частинок - близько 0,005 мм.

5. Метод товстошарових фотопластинок. Цей метод розробили російські фізики Л.П.Мисовський і А.П.Жданов у 1927 p., але особливого поширення він набув з 1945 p., коли було розроблено технологію виготовлення пластинок зі спеціальними емульсіями. Ці пластинки відрізняються від звичайних фотопластинок значно більшою товщиною емульсії (від 0,6 до 1,2 мм проти 0,1 мм у звичайних), більшим вмістом бромистого срібла (до 85 - 87 % за масою). Вони більш дрібнозернисті (розміри зерен бромистого срібла ~ 0,1 мкм проти 0,5 - 5 мкм у звичайних), а також більш однорідні.

Товстошарові пластинки реєструють заряджені частинки, які проходять крізь шар емульсії. Під дією зарядженої частинки на шляху її руху в емульсії відбувається порівняно легке вивільнення електронів з іонів брому. Ці електрони, приєднуючись до іонів срібла, перетворюють останні в нейтральні атоми срібла. Після проявлення і закріплення приховане зображення у вигляді скупчення атомів срібла стає видимим. На світлому фоні пластинки з'являється чорний слід - трек.

Треки вивчають за допомогою мікроскопа великого збільшення. Аналіз треків дає змогу з високим ступенем точності визначити заряд і масу частинки, напрям її руху, енергію і час життя. Зокрема, чим більша енергія частинки, тим більша довжина її пробігу в емульсії; чим більший заряд, тим ширший трек (рис. 3.8). Отже, за треком частинки можна провести повну її ідентифікацію. За допомогою пластинок відкрили - і - мезони, зафіксували «вибухове» розщеплення ядра атома срібла, спричинене космічною частинкою великої енергії (рис. 3.9) та ін.

6. Лічильник Черенкова ґрунтується на фіксуванні світіння, яке випромінює заряджена частинка (електрон, позитрон, протон тощо) в будь-якому прозорому середовищі тоді, коли швидкість частинки більша від фазової швидкості світла в даному середовищі, тобто при

.

Схему лічильника Черенкова зображено на рис. 3.10. Він складається з плексигласового або люцитового блока 1 (у ньому виникає світіння швидкої зарядженої частинки), оптичної збиральної системи 2 та фотопомножувача 3. Лічильник реагує лише на частинку, що переміщується вздовж його осі зліва направо. Від неї світло випромінюється під кутом до швидкості, зазнає на стінках блока повного внутрішнього відбивання і лінзою спрямовується на катод фотопомножувача. За імпульсом струму від фотопомножувача реєструються заряджені частинки, але такі, що мають велику швидкість (енергію) і спричиняють світіння Черенкова (електрони з енергією понад 0,18 МеВ, протони - понад 320 МеВ).

Лічильник Черенкова є єдиним лічильником, який завдяки реєстрації напрямленого випромінювання світла дає змогу встановити точний напрям руху реєстрованої частинки.

6. Прискорювачі заряджених частинок

Для вивчення структури атомного ядра і природи ядерних сил, здійснення штучних ядерних перетворень потрібно мати частинки (електрони, протони, дейтрони, іони) досить великих енергій, які могли б бути «снарядами» для бомбардування ядер. Тому з розвитком ядерної фізики виникла необхідність у створенні спеціальних установок, що називаються прискорювачами заряджених частинок.

В усіх прискорювачах енергія заряджених частинок зростає внаслідок дії на них електричного поля.

За формою траєкторії руху прискорюваних частинок прискорювачі поділяють на дві основні групи: лінійні і циклічні. За способом розгону частинок прискорювачі можуть бути нерезонансними або резонансними. Розглянемо фізичні принципи, на яких ґрунтується дія прискорювачів.

1. Лінійний прискорювач. У цій установці заряджені частинки приводяться у прискорений прямолінійний рух під дією високої електричної напруги, прикладеної на кінцях або окремих ділянках вакуумної трубки (рис. 3.11. а). На одному кінці трубки міститься джерело заряджених частинок, а на другому - мішень.

Проміжні електроди у вигляді пустотних циліндрів відіграють подвійну роль: забезпечують більш рівномірне падіння потенціалу вздовж трубки і запобігають виникненню розрядів на її кінцях; щілини між електродами фокусують іони ближче до осі трубки (ліву половину щілини, яка фокусує іони проходять довший час, ніж праву - дефокусуючу, рис. 3.11. б). У прискорювачі такого типу заряджені частинки проходять електричне поле однократно. Тому поле мусить бути дуже сильним. Для цього використовують високовольтні генератори.

а) У нерезонансному лінійному прискорювачі використовується електростатичний генератор Ван де Граафа (рис. 3.12). Генератор складається з двох сферичних електродів, діаметром до 10 м, укріплених на високих ізоляційних (текстолітових) колонах. Колони кріпляться на візочках, що дає змогу змінювати відстань між електродами. Заряди до електродів переносяться двома нескінченними шовковими або гумовими стрічками і передаються їм через колектори К. Стрічки заряджаються через випрямляч від генератора (до 10 - 20 кВ). Завдяки введенню додаткового колектора К1 стрічка не тільки приносить певну величину позитивного заряду, а й забирає з електрода такий самий негативний заряд; тому заряд електрода зростає швидше.

За допомогою електростатичних генераторів дістають напругу близько В; обмеження напруги зумовлюється пробивним потенціалом навколишнього газу. Для поліпшення ізоляції електродів і зменшення їх розмірів іноді ці електроди розміщують у камері, наповненій азотом, фреоном або елагазом - SF6 під тиском до Па.

б) У лінійних резонансних прискорювачах використовується високочастотна змінна напруга, а рух частинки синхронізується із змінами напруги. Схему прискорювача показано на рис. 3.13.

У циліндричній вакуумній трубці розміщені трубчасті електроди 1, 2, 3, ... різної довжини. На них за допомогою шин В1 і В2 подається змінна напруга U. Довжини і розміщення електродів підбирають так, щоб напрям електричного поля в щілинах збігався з напрямом руху частинки. Протилежний напрям поля у щілинах має припадати на той час, коли частинка рухається всередині трубчастих електродів. Там поля немає і частинка рухається за інерцією.

Якщо заряд частинки q, то в щілині між електродами вона дістане енергію , а на всіх п щілинах - енергію . Отже, при порівняно невеликій напрузі частинка може дістати значну енергію.

Довжину трубчастих електродів визначають з таких міркувань. Довжина трубки повинна дорівнювати шляху, який частинка проходить за час, що дорівнює півперіоду змінної напруги:

.

З формули кінетичної енергії частинки знаходимо:

; ; ;

довжини електродів мають перебувати у відношенні

З 1965 р. у Харкові діє один з найпотужніших у світі лінійний прискорювач електронів на 2 ГеВ.

Хоча лінійні прискорювачі не можуть надавати частинкам таких великих енергій, які тепер використовуються в атомній фізиці, все ж вони залишаються цінними допоміжними установками в ядерних дослідженнях. У лінійних прискорювачах дістають прискорені частинки строго контрольованої енергії.

2. Циклічні прискорювачі. У циклічних прискорювачах використовується спільна дія на заряджену частинку електричного і магнітного полів. Електричне поле прискорює частинки, а магнітне поле утримує їх на певній траєкторії і багато разів повертає у поле, яке прискорює. Траєкторією частинки є спіраль або майже замкнена крива. Циклічні прискорювачі дають змогу отримати частинки дуже великих енергій без застосування надвисоких напруг. Розглянемо принцип дії нерезонансних і резонансних циклічних прискорювачів.

а) Бетатрон - нерезонансний циклічний прискорювач. Використовується для прискорення - частинок (електронів). Теорію бетатрона розробив російський фізик Я.П.Терлецький.

Дія бетатрона ґрунтується на явищі електромагнітної індукції. Як відомо, змінне магнітне поле в будь-якій області простору створює вихрове електричне поле:

,

лінії напруженості якого є замкнені криві, що охоплюють лінії магнітної індукції В (рис. 3.14). Таке вихрове електричне поле використовується для прискорення електронів у вакуумній тороїдальній трубці бетатрона. Звичайно, тороїдальна трубка розміщується між полюсами електромагніту спеціальної форми (рис. 3.15), чим забезпечується стійка колова траєкторія електронів. Електромагніт живиться змінним струмом. Коли магнітне поле починає підсилюватись, у трубку вводять електрони; їх підхоплює вихрове електричне поле і розганяє до високих енергій. За один оберт електрон набуває енергію в кілька десятків електрон-вольт. Через чверть періоду магнітне поле досягає максимуму, і прискорення електронів припиняється. За цей час електрони встигають зробити мільйон обертів, проходять шлях в 300 - 400 км і набувають енергію до 300 МеВ. Прискорені електрони спрямовуються на мішень, яка розміщується у трубці.

Максимальна енергія електронів, прискорюваних у бетатроні, може досягти 500 МеВ. Обмеження енергії електронів зумовлюється швидкими витратами енергії на електромагнітне випромінювання. Теорію цього явища розробили російські вчені Л.А.Арцимович та І.Я.Померанчук.

...

Подобные документы

  • Види класифікації елементарних частинок, їх поділ за статистичним розподілом Фермі-Дірака та Бозе-Ейнштейна. Види елементарних взаємодій та їх характеристика. Методи дослідження характеристик елементарних частинок. Особливості використання прискорювачів.

    курсовая работа [603,0 K], добавлен 11.12.2014

  • Відкриття нових мікроскопічних частинок матерії. Основні властивості елементарних частинок. Класи взаємодій. Характеристики елементарних частинок. Елементарні частинки і квантова теорія поля. Застосування елементарних частинок в практичній фізиці.

    реферат [31,1 K], добавлен 21.09.2008

  • Зв'язок важких заряджених частинок з речовиною. До важких частинок відносяться частинки, маси яких у сотні разів більші за масу електрона. Вільний пробіг важких заряджених частинок у речовині. Взаємодія електронів, нейтронів з речовиною. Кулонівська сила.

    реферат [51,0 K], добавлен 12.04.2009

  • Поняття радіоактивності. Різниця між радіоактивністю і розпадом "компаунд"-ядер, утворених дією деяких елементарних частинок на стабільні ядра. Закономірності "альфа" і "бета" розпаду. Гамма-випромінювання ядер не є самостійним видом радіоактивності.

    реферат [154,4 K], добавлен 12.04.2009

  • Визначення поняття сцинтиляційного спектрометра як приладу для реєстрації і спектрометрії частинок. Основні методи спостереження та вивчення зіткнень і взаємних перетворень ядер і елементарних частинок. Принцип дії лічильника Гейгера та камери Вільсона.

    презентация [975,1 K], добавлен 17.03.2012

  • Загальне поняття про будову лічильника Гейгера-Мюллера, його призначення. Функції скляного віконця трубки. Процес реєстрації нейтронів. Історія винаходу лічильника. Камера Вільсона як детектор треків швидких заряджених частинок. Процес конденсації пари.

    презентация [339,3 K], добавлен 15.04.2013

  • Взаємодія заряджених частинок з твердим тілом, пружні зіткнення. Види резерфордівського зворотнього розсіювання. Автоматизація вимірювання температури підкладки. Взаємодія атомних частинок з кристалами. Проведення структурних досліджень плівок.

    дипломная работа [2,5 M], добавлен 21.05.2015

  • Сутність і основні характерні властивості магнітного поля рухомого заряду. Тлумачення та дія сили Лоуренца в магнітному полі, характер руху заряджених частинок. Сутність і умови появи ефекту Холла. Явище електромагнітної індукції та його характеристики.

    реферат [253,1 K], добавлен 06.04.2009

  • Система броунівських частинок зі склеюванням. Еволюція важкої частинки в системі броунівських частинок зі склеюванням. Асимптотичні властивості важкої частинки. Асимптотичні властивості випадкового процесу. Модель взаємодіючих частинок на прямій.

    дипломная работа [606,9 K], добавлен 24.08.2014

  • Магнетизм, електромагнітні коливання і хвилі. Оптика, теорія відносності. Закони відбивання і заломлення світла. Елементи атомної фізики, квантової механіки і фізики твердого тіла. Фізика ядра та елементарних часток. Радіоактивність. Ядерні реакції.

    курс лекций [515,1 K], добавлен 19.11.2008

  • Квантова механіка описує закони руху частинок у мікросвіті, тобто рух частинок малої маси (або електронів атома) у малих ділянках простору і необхідна для розуміння хімічних і біологічних процесів, а значить для розуміння того, як ми улаштовані.

    реферат [162,5 K], добавлен 22.03.2009

  • Шляхи становлення сучасної фізичної картини світу та мікросвіту. Єдині теорії фундаментальних взаємодій. Фізичні закони збереження високих енергій. Основи кваліфікації суб’ядерних частинок; кварковий рівень матерії. Зв’язок фізики частинок і космології.

    курсовая работа [936,1 K], добавлен 06.05.2014

  • Необходимость управляемого термоядерного синтеза. Плазма и топливный цикл термоядерного реактора. Высокотемпературный нагрев вещества, лазерный управляемый термоядерный синтез. Характеристика особенностей реализации "лазерного" термоядерного синтеза.

    реферат [1,1 M], добавлен 27.05.2012

  • Проходження важких ядерних заряджених частинок через речовину. Пробіг електронів в речовині. Проходження позитронів через речовину. Експозиційна, поглинена та еквівалентна дози. Проходження нейтронів через речовину. Методика розрахунку доз опромінення.

    курсовая работа [248,4 K], добавлен 23.12.2015

  • Історія розвитку фізики. Фізика в країнах Сходу. Електричні і магнітні явища. Етапи розвитку фізики. Сучасна наука і техніка. Використання електроенергії, дослідження Всесвіту. Вплив науки на медицину. Розвиток засобів зв'язку. Дослідження морських глибин

    реферат [999,0 K], добавлен 07.10.2014

  • Вивчення законів, на яких ґрунтується молекулярна динаміка. Аналіз властивостей та закономірностей системи багатьох частинок. Огляд основних понять кінетичної теорії рідин. Розрахунок сумарної кінетичної енергії та температури для макроскопічної системи.

    реферат [122,5 K], добавлен 27.05.2013

  • Управляемый термоядерный синтез при синтезе ядер дейтерия и трития. Преодоление кулоновского барьера путем нагрева и сжатия вещества. Выполнение критерия Лоусона. Подходы к решению проблемы управляемого термоядерного синтеза. Пороговая энергия лазера.

    презентация [49,7 K], добавлен 19.02.2014

  • Вивчення фізичної сутності поняття атомного ядра. Енергія зв’язку і маса ядра. Електричні і магнітні моменти ядер. Квантові характеристики ядер. Оболонкова та ротаційні моделі ядер. Надтекучість ядерної речовини. Опис явищ, що протікають в атомних ядрах.

    курсовая работа [50,2 K], добавлен 07.12.2014

  • Методи дослідження наноматеріалів. Фізичні основи практичного використання квантово-розмірних систем. Особливості магнітних властивостей наносистем. Очищення і розкриття нанотрубок, їх практичне застосування. Кластерна структура невпорядкових систем.

    учебное пособие [5,4 M], добавлен 19.05.2012

  • Изучение современных альтернативных источников энергии. История развития технологии термоядерного синтеза в России и за рубежом. Технология термоядерного синтеза, анализ ее эффективности в будущем, сравнение с другими альтернативными источниками энергии.

    презентация [2,2 M], добавлен 10.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.