Основы механики

Представления о строении материи в современной физике. Механика - наука о движении и равновесии тел. Содержание и структура курса общей физики. Перемещение и путь тела при равномерном и равноускоренном движении. Векторы угловой скорости и ускорения.

Рубрика Физика и энергетика
Вид курс лекций
Язык русский
Дата добавления 26.09.2017
Размер файла 917,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

При противоположном движении скорость света должна быть равна (с + V ). На самом деле это не наблюдается. Из опытов следует, что с - скорость света в вакууме в различных инерциальных системах отсчета имеет одно и то же значение.

Впервые постоянство скорости света было обнаружено в опытах Майкельсона и Морли, поставленных в период с 1880 по 1887 г. В этих опытах в качестве движущейся системы отсчета использовалась Земля, которая движется по орбите вокруг Солнца со скоростью . Скорость света вдоль направления движения Земли сравнивалась со скоростью света поперек этого направления. Скорости оказались одинаковыми.

Из уравнений Максвелла, описывающих электромагнитные явления, также вытекает постоянство скорости света.

В 1905 г. Эйнштейн предложил отказаться от поиска объяснений, почему скорость света во всех инерциальных системах отсчета оказывается одинаковой. Им была высказана смелая мысль о том, что постоянство скорости света является фундаментальным свойством природы, которое нужно констатировать как факт.

Постоянство скорости света в вакууме во всех инерциальных системах отсчета известно под названием постулата Эйнштейна. Постулат это то же самое, что и аксиома: "бесспорная, не требующая доказательств истина".

Другим постулатом является принцип относительности Эйнштейна:

законы природы одинаковы во всех инерциальных системах отсчета или уравнения, выражающие законы природы, инвариантны к преобразованиям Лоренца.

Из этого постулата следует, что никакими опытами (механическими, электрическими, оптическими и др.), проведенными внутри данной системы отсчета, нельзя установить находится ли она в покое, или движется равномерно и прямолинейно.

3. Преобразования Лоренца

Постулаты Эйнштейна требовали коренного пересмотра представлений о свойствах пространства, времени и движения. Покажем это на простом примере.

Представим себе, что движущейся системой отсчета K', является поезд. Пусть в момент, когда его хвостовой вагон поравнялся со стрелочником (система отсчета K), стоящим на насыпи, из этого вагона был послан световой сигнал машинисту. Через время машинист этот сигнал регистрирует, тогда скорость света , где - длина поезда в системе K'.

Обозначим через время, отсчитываемое стрелочником. Что касается пути, пройденного светом с точки зрения стрелочника, то он состоит из длины поезда , движущегося со скоростью V, и расстояния Vdt, на которое за время хвостовой вагон отъедет от стрелочника.

Итак, с точки зрения стрелочника

.

Очевидно, что (7)

несовместимо с условиями .

Нужно либо считать, что , т. е. поезд с точки зрения стрелочника стал короче, либо время в движущейся системе идет медленнее, т. е. . Оказывается, имеет место и то и другое одновременно.

Покажем, что движущиеся часы идут медленнее. Для этого рассмотрим две инерциальные системы отсчета K и K'. Систему K будем считать покоящейся, а систему K' - движущейся со скоростью V, (см. рис. 2).

Предположим, что в системе K находятся часы в виде двух параллельных зеркал и источника света. Они неподвижны в системе K'. Свет включается на короткое время и начинает двигаться вверх и вниз, попеременно отражаясь от верхнего и нижнего зеркал, (см. рис. 2.). В таких часах качающимся маятником является луч света.

Рассмотрим один из полупериодов, когда свет движется сверху вниз. Пусть с точки зрения наблюдателя системы K' это происходит за время t', тогда расстояние между зеркалами будет , причем оно будет поперечным, как по отношению системы K', так и системы K, и поэтому одинаковым в этих системах. Однако с точки зрения наблюдателя системы K свет распространяется наклонно, т. е. свет будет снесен вправо на расстояние Vt.

Из рис. 3 по теореме Пифагора находим

, откуда

, (8)

где ,

т. е. движущиеся часы идут медленнее, чем неподвижные.

Подтверждением этого служит время жизни движущихся мюонов; собственное время их жизни мкс, а по часам неподвижным относительно Земли - значительно больше:

, (9)

где V - скорость мюона относительно Земли,

- коэффициент Лоренца, .

Подобным образом можно показать, что размеры тел в направлении движения сокращаются, т. е.

. (10)

Исходя из двух постулатов, Эйнштейн в 1905 г. вывел преобразования Лоренца (полученные Лоренсом в 1904 г. как преобразования, по отношению к которым уравнения классической микроскопической электродинамики - уравнения Лоренца- Максвелла сохраняют свой вид).

Напишем их подобно преобразованиям Галилея:

, (11)

. (12)

Для медленных движений, когда преобразования Лоренца переходят в преобразования Галилея. Используя соотношения (11), (12), можно показать, что пространственные расстояния при преобразованиях Лоренца изменяются, т. е. , где

(13)

. (14)

Этот эффект называется лоренцевым сокращением длины.

Неизменным (инвариантным) при преобразованиях Лоренца остается так называемый интервал между событиями

. (15)

4. Закон сложения скоростей в релятивистской механике

Дифференцируя (11) по , а (12) по можно найти скорости

В случае движения частицы параллельно осям ОХ и O'X' в направлении скорости

. (16)

Эта формула выражает закон сложения скоростей в релятивистской механике. При =c, из (16) найдем, что

.

Или пусть =c, а ,

где - малая величина, то

.

5. Понятие о релятивистской динамике

Масса в ньютоновской и релятивистской механике

При изучении движения тел, скорости v которых пренебрежимо малы по сравнению со скоростью света с (v/c > 0), имеет место нерелятивистское приближение. В этом случае, масса т определяет инерционные ( или

и гравитационные

свойства тел - от макроскопических объектов до атомов и элементарных частиц. Она служит мерой содержащегося в теле вещества. В этом приближении (v/c > 0) соблюдаются законы сохранения и аддитивности массы:

масса изолированной системы тел не меняется со временем и равна сумме масс тел, составляющих эту систему.

При изучении движения тел (обычно элементарных частиц, например, электронов, протонов) с относительно большими скоростями взгляды на массу тела изменились. Так, например, в конце XIX века изучалось движение электронов (катодных лучей) в магнитных и электрических полях. Электрон (заряд е, масса т), пройдя разность потенциалов U между катодом и анодом вакуумной трубки, приобретал кинетическую энергию

и скорость ,

которая должна быть пропорциональной корню из напряжения. Это наблюдалось только при относительно малых напряжениях U, при которых v/c << 1. С дальнейшим ростом напряжения U скорость электронов v увеличивалась медленнее, не пропорционально , и асимптотически стремилась к скорости света с. Этот факт привел в 1898 году немецкого ученого В. Кауфмана к заключению, что с ростом скорости v электрона увеличивается его масса.

В миллионах учебников, во множестве статей, монографий на протяжении почти ста лет, вплоть до наших дней, утверждалось, что масса тела возрастает с ростом его скорости, и приводились соответствующие формулы.

В последние годы ряд ученых физиков-теоретиков (см., например, 2 статьи: Л. Б. Окунь, Успехи физических наук, т. 158, №3, 1989 г., стр. 511-530; т. 170, №12, 2000 г., стр. 1366-1371) выступили с критикой ложных представлений о теории относительности, о массе тел.

С точки зрения теории относительности масса тела т характеризует его энергию покоя , согласно соотношению Эйнштейна:

. (17)

То есть энергия покоя тела пропорциональна его массе. Именно утверждение о том, что в инертной покоящейся материи таятся огромные (благодаря квадрату скорости света ) запасы энергии, сделанное Эйнштейном в 1905 г., является главным практическим следствием теории относительности. На соотношении (17) основана вся ядерная энергетика и вся ядерная военная техника (а также и вся обычная энергетика).

Энергия, импульс в релятивистской механике

Если тело движется со скоростью v относительно инерциальной системы отсчета (ИСО) K, то помимо энергии покоя

,

оно обладает кинетической энергией и полная энергия его

.

Преобразования Лоренца для энергии Е и импульса р тела имеют вид:

, , , . (18)

Если к покоящемуся телу в системе отсчета применить преобразования Лоренца (18) (при этом следует учесть, что

то получается связь энергии и импульса с его скоростью:

, (19)

. (20)

Отсюда, . (21)

Из (19), (20) следует важное соотношение между энергией Е, импульсом и массой т тела:

. (22)

Из (22) следует, что масса тела не меняется при переходе от одной ИСО к другой ИСО. В этом легко убедиться, если использовать для Е и преобразования Лоренца (18).

Таким образом, в отличие от Е и , которые являются компонентами 4-мерного вектора, масса т является лоренцевым инвариантом, и, следовательно, она не зависит от скорости тела. Поэтому не следует употреблять широко распространенные выражения «релятивистская масса », «масса покоя т0». Следует говорить о массе т, которая для обычных тел в теории относительности и ньютоновской механике одна и та же, что в обеих теориях масса т не зависит от системы отсчета, т.е. масса - инвариантна. Заметим, что среди элементарных частиц есть такие частицы, масса которых равна нулю, например, фотоны (кванты электромагнитного излучения, в узком смысле - частицы света), глюоны (переносчики взаимодействия между кварками), возможно, некоторые типы нейтрино.

Для таких безмассовых частиц из (22) и (21) следует, что

. (23)

В теории относительности, как и в ньютоновской механике, выполняются законы сохранения импульса, энергии.

В теории относительности энергия и импульс аддитивны, но закон аддитивности массы не выполняется. Покажем это.

Суммарная энергия Е двух свободных тел равна сумме их энергий, то есть

.

Аналогично,

.

С учетом этого из (22) находим:

, (24)

то есть суммарная масса зависит от угла между импульсами и . Так, масса системы двух фотонов (безмассовых частиц) с энергией Е у каждого, равна , если они летят в противоположные стороны и равна нулю, если они летят в одну сторону. Этот пример иллюстрирует, что в теории относительности массы не аддитивны. Следует отметить, что понимание природы массы частиц остается одной из важнейших проблем современной физики. Основное уравнение релятивистской динамики

Согласно (20), релятивистский импульс

,

при этом обе формулы справедливы для «тяжелых», т.е. имеющих не нулевую массу частиц. Для безмассовых частиц (т = 0)

.

Основное уравнение релятивистской динамики имеет вид

или, более подробно:

. (25)

В силу однородности пространства в релятивистской механике выполняется закон сохранения релятивистского импульса:

релятивистский импульс замкнутой системы сохраняется.

Кинетическая энергия релятивистской частицы

Согласно (19), полная энергия тела (частицы) в релятивистской механике , она складывается из энергии покоя тела [см. (17)] и кинетической энергии , т.е.

, отсюда,

. (26)

v/c << 1

и ,

т.е. получаем выражение кинетической энергии частицы, которое используется в ньютоновской механике.

Заметим, что энергия покоящегося тела в ньютоновской механике , а в релятивистской .

В силу однородности времени в релятивистской механике, как и в ньютоновской механике, выполняется закон сохранения энергии:

полная энергия замкнутой системы сохраняется.

Итак, длительность события (времени), размеры тела не являются абсолютными величинами, а зависят от скорости тела, т. е. являются относительными. Кроме того масса и энергия оказались связанными друг с другом, хотя они являются качественно различными свойствами материи. Основной вывод теории относительности сводится к тому, что пространство и время взаимосвязаны и образуют единую форму существования материи: пространство-время. Наиболее общая теория пространства-времени называется общей теорией относительности или теорией тяготения, т.к. согласно этой теории свойства пространства-времени в данной области определяются действующими в ней полями тяготения

.В изложенной выше теории действием тяготения Эйнштейн пренебрег. Поэтому она называется частной (или специальной) теорией относительности т. к. она является частным случаем общей теории относительности, завершенной Эйнштейном позже, в 1915 г.

Лекция 6. Система материальных точек. Силы внешние и внутренние. Движение системы материальных точек. Центр масс и центр тяжести механической системы. Движение центра масс. Замкнутые системы. Закон сохранения импульса замкнутой механической системы. Постоянство скорости центра масс и замкнутой системы

До сих пор мы изучали взаимодействие двух тел и часто, рассматривая движение одного тела, заменяли другое, с которым первое взаимодействует, соответствующей силой. Но изучение законов движения одного или двух тел не исчерпывает всех возможных задач о механическом движении, с которыми мы сталкиваемся при изучении природы или в технике. Нередко приходится иметь дело с движением совокупности взаимодействующих между собой тел, или с движением, как говорят, механической системы. Пример механических систем; любая машина, тепловоз с вагонами, Солнце и планеты, ракетный поезд и т. п., а также любое тело, если в данной задаче его приходится рассматривать как совокупность частиц.

Если движение таково, что размеры и форма отдельных тел, образующих систему, не играют роли, то рассматривается задача о движении системы материальных точек.

Силы, действующие между телами системы, называются внутренними для данной системы силами.

Силы, действующие на тела системы со стороны тел, не входящих в данную систему, называются внешними силами.

Одна и та же сила в зависимости от постановки задачи может быть внутренней или внешней. Например, силы взаимного притяжения планет и Солнца -- внутренние силы, если мы рассматриваем солнечную систему как целое, и внешние по отношению к каждой отдельно взятой планете, когда, скажем, мы решаем задачу о движении Земли и Луны, о приливных явлениях на поверхности Земли и т. п.

Под воздействием сил каждая из материальных точек системы, вообще говоря, как-то изменяет состояние своего движения, перемещаясь относительно других точек. Чтобы исследовать движение системы в целом, надо, очевидно, исследовать движение каждой ее точки. Мы могли бы воспользоваться для этого законами Ньютона, составить уравнения движения каждой точки системы и решить их. Но такой путь решения задачи о движении системы часто оказывается весьма сложным либо вследствие того, что трудно определить внутренние силы в виде известной функции (например, при быстро протекающих взаимодействиях тел типа удара), либо потому, что исследуемая система состоит из очень большого числа материальных точек (например, при исследовании движения некоторого объема жидкости). Однако в ряде известной функции (например, при быстро протекающих взаимодействиях тел типа удара), либо потому, что исследуемая система состоит из очень большого числа материальных точек (например, при исследовании движения некоторого объема жидкости). Однако в ряде случаев более общее понятие, не зависящее от силы тяжести,-- центр масс системы. Центром масс двух материальных точек называется точка, делящая расстояние между ними в отношении, обратно пропорциональном их массам (рис. 1).

Пусть имеем две материальные точки массой m1 и m2, координаты которых в неподвижной системе отсчета соответственно x1, y1, z1 и x2, y2, z2. По известному правилу аналитической геометрии координаты точки x, y, z, делящей отрезок в заданном отношении , связаны с координатами концов отрезка следующим соотношением:

(1)

Решая эти равенства относительно x, y, z, получим:

(2)

Центром масс трех материальных точек называется точка, которая делит расстояние между центром масс двух из них и третьей точкой в отношении, обратно пропорциональном сумме масс двух первых точек и массе третьей из них (рис. 1).

Легко получить координаты центра масс трех материальных точек,

подобно тому как это сделано выше для двух точек:

Прибавляя к системе четвертую, пятую и т. д. точки, получим, что координаты центра масс системы n материальных точек:

(4)

Рассмотрим действие друг на друга двух изолированных тел не взаимодействующих с другими телами. Будем считать силы во все время взаимодействия постоянными. В соответствии со вторым законом динамики изменение количества движения первого тела Д(mх)1 равно импульсу силы F12, действующей на него со стороны второго тела:

(5)

где Дt -- интервал времени взаимодействия.

Изменение количества движения второго тела:

(6)

где F12 -- сила, действующая со стороны первого тела на второе. Согласно третьему закону Ньютона

и, кроме того, очевидно,

Следовательно,

(7) или

(8)

Независимо от природы сил взаимодействия и длительности их действия общее количество движения двух изолированных тел остается постоянным.

Полученный результат может быть распространен на любое число взаимодействующих тел и на силы, меняющиеся со временем. Для этого интервал времени Дt, в течение которого происходит взаимодействие тел, разобьем на столь малые промежутки dt, в

течение каждого из которых силу можно с заданной степенью точности считать постоянной. В течение каждого промежутка времени будет выполняться соотношение (8). Следовательно, оно будет справедливо и для всего интервала времени Дt.

Для обобщения вывода на n взаимодействующих тел введем понятие замкнутой системы.

Замкнутой называется система тел, для которой результирующая внешних сил равна нулю.

Пусть n материальных точек массами m1, m2,…, mn образуют замкнутую систему. Изменение количества движения каждой из этих точек в результате взаимодействия ее со всеми остальными точками системы соответственно:

...; .

Обозначим внутренние силы, действующие на точку массой m1 со стороны других точек, через F12, F13,..., F1n, на точку массой m2 -- F21, F23,..., F2n и т. д. (Первый индекс обозначает точку, на которую действует сила; второй индекс указывает точку, со стороны которой действует сила.)

Запишем в принятых обозначениях второй закон динамики для каждой точки в отдельности:

(9)

Число уравнений равно числу n тел системы. Чтобы найти общее изменение количества движения системы, нужно подсчитать геометрическую сумму изменений количества движения всех точек системы.

Просуммировав равенства (9), мы получим в левой части полный вектор изменения количества движения системы за время dt, а в правой части -- элементарный импульс результирующей всех сил, действующих в системе.

Но так как система замкнута, то результирующая сил равна нулю.

В самом деле, по третьему закону динамики каждой силе Fik в равенствах (9) соответствует сила Fki причем

Fik = -- Fki т. е.

и результирующая этих сил равна нулю. Следовательно, во всей замкнутой системе изменение количества движения равно нулю:

(10)

(11)

Полное количество движения замкнутой системы -- величина постоянная во все время движения (закон сохранения количества движения).

Закон сохранения количества движения -- один из фундаментальных законов физики, справедливый как для систем макроскопических тел, так и для систем, образованных микроскопическими телами: молекулами, атомами и т. п.

Если на точки системы действуют внешние силы, то количество движения, которым обладает система, изменяется.

Напишем уравнения (9), включив в них результирующие

внешних сил действующих соответственно на

первую, вторую и т. д. до n-й точки:

(12)

Сложив левые и правые части уравнений, мы получим: слева -- полный вектор изменения количества движения системы; справа -- импульс результирующей внешних сил:

или, обозначая результирующую внешних сил F:

(13)

т. е.изменение полного количества движения системы тел равно импульсу результирующей внешних сил.

Равенство (13) может быть записано в другом виде:

(14)

т. е. производная по времени от общего количества движения системы точек равна результирующей внешних сил, действующих на точки системы.

Проецируя векторы количества движения системы и внешних сил на три взаимно перпендикулярные оси, вместо векторного равенства (14) получим три скалярных уравнения вида:

(15)

Если вдоль какой-либо оси, скажем OY, составляющая результирующей внешних сил равна нулю, то количество движения вдоль этой оси не изменяется, т. е., будучи вообще незамкнутой, в направлении 0Y система может рассматриваться как замкнутая.

Мы рассмотрели передачу механического движения от одних тел к другим без перехода его в другие формы движения материи. Величина «mх оказывается здесь мерой просто перенесенного, т. е. продолжающегося, движения...».

Применение закона изменения количества движения к задаче о движении системы тел позволяет исключить из рассмотрения все внутренние силы, что упрощает теоретические исследования и решения практических задач.

1. Пусть на покоящейся тележке неподвижно стоит человек. Количество движения системы человек -- тележка равно нулю. Замкнута ли эта система? На нее действуют внешние силы -- сила тяжести и сила трения между колесами тележки и полом. Вообще говоря, система не замкнута. Однако, поставив тележку на рельсы и соответствующим образом обработав поверхность рельсов и колес, т. е. значительно уменьшив трение между ними, можно силой трения пренебречь.

Сила тяжести, направленная вертикально вниз, уравновешивается реакцией деформированных рельсов, и результирующая этих сил не может сообщить системе горизонтального ускорения, т. е. не может изменить скорость, а следовательно, и количество движения системы. Таким образом, мы можем с известной степенью приближения считать данную систему замкнутой.

Положим теперь, что человек сходит с тележки влево, имея скорость х1. Чтобы приобрести эту скорость, человек должен, сократив свои мышцы, подействовать ступнями ног на площадку тележки и деформировать ее. Сила, действующая со стороны деформированной площадки на ступни человека, сообщает телу человека ускорение влево, а сила, действующая со стороны деформированных ступней человека (в соответствии с третьим законом динамики), сообщает тележке ускорение вправо. В результате, когда взаимодействие прекратится (человек сойдет с тележки), тележка приобретет некоторую скорость х2.

Для нахождения скоростей х1 и х2 с помощью основных законов динамики надо было бы знать, как меняются силы взаимодействия человека и тележки со временем и где приложены эти силы. Закон сохранения количества движения позволяет сразу найти отношение скоростей человека и тележки, а также указать их взаимную направленность, если известны значения масс человека m1 и тележки m2.

Пока человек неподвижно стоит на тележке, общее количество движения системы равно нулю. С точностью, позволяющей пренебречь действием внешней силы трения, после того как человек сходит с тележки со скоростью х1 количество движения системы остается равным нулю:

Скорости, приобретенные человеком и тележкой, обратно пропорциональны их массам. Знак «минус» указывает на их противоположную направленность.

2. Если человек, двигаясь со скоростью х1 вбегает на неподвижно стоящую тележку и останавливается на ней, то тележка приходит в движение, так что общее количество движения ее и человека оказывается равным количеству движения, которым обладал раньше человек один:

3. Человек, движущийся со скоростью х1 вбегает на тележку, перемещающуюся ему навстречу со скоростью х2, и останавливается на ней. Далее система человек -- тележка движется с общей скоростью х. Общее количество движения человека и тележки равно сумме количеств движения, которыми они обладали каждый в отдельности:

4. Использовав то обстоятельство, что тележка может перемещаться только вдоль рельсов, можно продемонстрировать векторный характер изменения количества движения. Если человек входит и осколичеств движения, которыми они обладали каждый в отдельности:Использовав то обстоятельство, что тележка может перемещаться только вдоль рельсов, можно продемонстрировать векторный характер изменения количества движения. Если человек входит и осе, чем в первом (cos 45°~0,7), а в третьем случае тележка неподвижна (cos 90°=0).

Покажем ,что поступательное движение механической системы как целого можно характеризовать движением одной точки- центра масс системы, считая, что в ней сосредоточена масса всех тел, входящих в систему.

Перепишем равенства(4) в виде

(16)

продифференцируем по времени:

(17)

В равенствах (17) слева стоит произведение суммарной массы тел ,образующих систему, а справа -- компоненты вектора полного количества движения тел системы:

(18)

Полное количество движения механической системы равно количеству движения материальной точки массой, равной массе тел системы и движущейся, как движется ее центр масс.

Продифференцируем равенство (18) по времени и сравним с выражением (14). В равенстве (18) после дифференцирования справа, а в равенстве (614) слева стоит одна и та же величина -- производная от вектора полного количества движения тел системы. Следовательно,

(19)

где (M) -- количество движения центра масс системы, F -- вектор результирующей внешних сил, действующих на тела системы.

Центр масс механической системы движется так же, как двигалась бы материальная точка, в которой сосредоточена масса всех тел системы, под действием результирующей внешних сил, приложенных к телам, образующим систему.

Если механическая система замкнута, т. е. F=0, то

Центр масс замкнутой механической системы находится в покое или движется равномерно и прямолинейно.

Закон движения центра масс механической системы не дает полной картины движения отдельных ее тел, но позволяет установить некоторые важные особенности движения системы в целом.

Рассмотрим, например, движение солнечной системы. С большой степенью точности ее можно считать замкнутой, пренебрегая взаимодействием с другими космическими телами. Следовательно, центр масс солнечной системы можно считать движущимся прямолинейно и равномерно.

Рассмотрим твердое тело, находящееся в покое. Положим, на него одновременно подействовали двумя силами, равными по величине, но противоположно направленными и приложенными в двух точках А иВ, не совпадающих с центром масс (рис. 3). Такая система сил называется парой сил. Каков характер движения тела?

Рис. 21 Тело под действием пары сил поворачивается вокруг центра масс.

Результирующая приложенных к телу внешних сил равна нулю. Следовательно, центр масс тела должен остаться в покое. Тело, одна точка которого неподвижна, может, очевидно, только вращаться вокруг этой точки. И, следовательно, тело под действием приложенной пары сил будет поворачиваться вокруг центра масс С. Иногда, руководствуясь только интуицией, приходят к ошибочному заключению, что в описанном случае тело должно вращаться вокруг точки О, расположенной между точками приложения пары сил.

Лекция 7. Движение тела переменной массы. Уравнение Мещерского и Циолковского

В природе и современной технике мы нередко сталкиваемся с движением тел, масса которых меняется со временем. Масса Земли возрастает вследствие падения на нее метеоритов, масса метеорита при полете в атмосфере уменьшается в результате отрыва или сгорания его частиц, масса дрейфующей льдины возрастает при намерзании и убывает при таянии и т. д. Движение якоря с якорной цепью, когда все большее число звеньев цепи сходит с лебедки,-- пример движения тела переменной массы. Ракеты всех систем, реактивные самолеты, реактивные снаряды и мины также являются телами, масса которых изменяется во время движения.

Общие законы динамики тел с переменной массой были открыты и исследованы И. В. Мещерским и К. Э. Циолковским. Циолковским были разработаны фундаментальные проблемы реактивной техники, которые в наши дни служат основой для штурма человеком межпланетных пространств.

Для вывода основного уравнения движения тела переменной массы рассмотрим конкретный случай движения простейшей ракеты (рис. 4).

Мы будем рассматривать ракету как достаточно малое тело, положение центра тяжести которого не меняется по мере сгорания пороха. В этом случае мы можем считать ракету материальной точкой переменной массы, совпадающей с центром тяжести ракеты.

Не рассматривая физико-химическую природу сил, возникающих при отбрасывании от ракеты газов, образованных при сгорании пороха, сделаем такое упрощающее вывод предположение: будем считать, что отбрасываемая от ракеты частица газа dM взаимодействует с ракетой М только в момент их непосредственного контакта. Как только частица dM приобретает скорость относительно точки М, ее воздействие на нее прекращается. Предположим далее, что изменение массы ракеты М происходит непрерывно, без скачков. (Это значит, что мы не рассматриваем многоступенчатые ракеты, масса которых меняется скачкообразно.) Это предположение позволяет считать, что существует производная от массы по времени.

Пусть в момент t масса ракеты М, а ее скорость относительно неподвижной системы координат (рис. 5). Положим, за время dt от ракеты отделилась частица массы (--dM) со скоростью (относительно той же неподвижной системы координат), равной и. Знак «минус» перед приращением массы указывает на то, что приращений это отрицательное, масса ракеты убывает.

Положим, равнодействующая внешних сил, действующих на ракету (силы тяжести и сопротивления среды), F. Как сказано выше, в момент отделения частицы массы (--dM) между ней и ракетой действует неизвестная нам реактивная сила Fp. Сила Fp для системы ракета -- частица является внутренней. Чтобы исключить

Рис. 22

ее из рассмотрения, воспользуемся законом изменения количества движения. Количество движения системы ракета -- частица в момент t , т. е. перед отделением частицы:

Количество движения системы в момент t+dt (после отделения частицы) складывается из количества движения массы [М--(--dM)], получившей скорость (), и количества движения массы частицы -- dM, летящей со скоростью :

(20)

Изменение количества движения системы за время dt:

Величина dP должна быть приравнена импульсу равнодействующей внешних сил

(21)

Отсюда, перегруппировав члены и разделив на dt, получим основное уравнение движения точки переменной массы:

(22)

Это уравнение иначе называют уравнением Мещерского. Для ракеты <0, так как при полете масса ее убывает. Если масса тела во время движения увеличивается, то > 0. При =0 уравнение (22) переходит в уравнение второго закона Ньютона для случая постоянной массы.. Величина u -- есть скорость выбрасываемых ракетой частиц относительно системы координат, движущейся с ракетой.

Эту скорость называют обычно просто относительной скоростью V. Тогда равенство (22) запишется в виде

(23)

Для любого момента времени произведение массы тела на его ускорение равно векторной сумме равнодействующей приложенных к телу внешних сил и реактивной силы. При движении ракеты вблизи Земли равнодействующая внешних сил представляет собой сумму силы тяжести и силы сопротивления воздуха. Ускорение ракеты зависит еще и от реактивной силы, изменяя величину и направление которой можно управлять полетом ракеты.

Если относительная скорость отбрасываемых частиц равна 0, то следует

M

Важный вклад в механику тел переменной массы применительно к конкретным задачам реактивной техники внесен знаменитым русским ученым Константином Эдуардовичем Циолковским. В 1903 г. была издана его работа «Исследование мировых пространств реактивными приборами», в которой К. Э. Циолковский исследовал ряд случаев прямолинейных движений ракет. К. Э. Циолковским обоснована и доказана возможность практического использования реактивного движения. Им найдены условия, при которых можно получить скорости, достаточные для осуществления космического полета. Полученная им формула, связывающая скорость ракеты с ее начальной массой, до сих пор используется для предварительных расчетов. В работах 1911--1914 гг. он изучил вопрос о величине запасов топлива, необходимых для преодоления сил тяготения Земли, и предложил высококалорийное топливо, позволяющее получить большие скорости истечения газовых струй. К. Э. Циолковского по праву считают изобретателем жидкостных ракет дальнего действия и основоположником теории межпланетных полетов.

Ему принадлежит идея разработки теории так называемых многоступенчатых ракет, когда на некоторых интервалах времени масса ракеты меняется непрерывно, а в некоторые моменты -- скачком.

Им проведены большие исследования по оценке сил сопротивления при движении тел переменной массы. К. Э. Циолковским поставлен целый ряд оригинальных проблем, имеющих решающее значение для развития реактивной техники.

Для того чтобы выяснить основные факторы, создающие возможность реактивного движения с большими скоростями, рассмотрим движение точки переменной массы в безвоздушном пространстве (отсутствует сопротивление движению тела), без действия внешних сил (силы тяготения). Предположим, что скорость истечения частиц направлена прямо противоположно вектору скорости тела . Эти условия соответствуют так называемой первой задаче Циолковского. В результате получаем формулу Циолковского и следствие из нее. Найдем при сделанных предположениях скорость движения тела (точки) и закон ее движения.

При сформулированных условиях уравнение движения приобретает вид:

M (25) или

(26)

Положим, M=Mof(t),

где f(t)-- функция, определяющая закон изменения массы.)=1. Подставив в (26) значение М и проинтегрировав, получим:

Для определения постоянной С учтем, что при t==0 f(0)=1 и , тогда C= и

(27)

Эта формула носит название формулы Циолковского. Из формулы следует, что скорость, приобретенная точкой переменной массы, зависит от относительной скорости V и отношения начальной массы к остающейся к концу процесса горения. Если масса точки в конце процесса горения M, а отброшенная масса (масса топлива)-- m, то при нулевой начальной скорости получаем для расчета скорости в конце процесса горения выражение:

Отношение

называют числом Циолковского. Для современных ракет можно положить V=2000 м/сек. Тогда при числе Циолковского Z=0,250; 9,000; 32,333; 999,000 получим соответственно cкорости =446; 4605; 7013; 13 815 м/сек. Из формулы Циолковcкого (27) следует, что:

1) скорость точки переменной массы в конце активного участка тем больше, чем больше скорость отбрасывания частиц;

2) скорость в конце активного участка тем больше, чем больше скорость отбрасывания частиц число Циолковского;

3)скорость точки переменной массы в конце активного участка не зависит от закона изменения массы (режима горения). Заданному числу Циолковского соответствует определенная скорость точки в конце процесса горения независимо от того, быстро или медленно шло горение. Это следствие является проявлением закона сохранения количества движения;

4)для получения возможно больших скоростей точки переменной массы в конце активного участка выгоднее идти по пути увеличения относительной скорости отбрасывания частиц, чем по пути увеличения запасов топлива.

Из уравнения (27) можно найти закон изменения расстояния излучающей точки от начала координат; полагая V=const, полчим:

(28)

после интегрирования:

s=s+t-V (29)

Отсюда следует, что закон расстояния в отличие от закона скорости зависит от закона изменения массы, т. е. от функции f(t).

Лекция 8. Работа силы, мощность энергия. Консервативные и неконсервативные силы и системы. Независимость работы консервативной силы от траектории. Кинетическая энергия. Потенциальная энергии. Связь силы с потенциальной энергией. Закон сохранения механической энергии в консервативной системе. Внутренняя энергия. Закон сохранения энергии в неконсервативной системе. Применение законов сохранения импульса и энергии при анализе упругих и неупругих ударов

Если под действием некоторой силы тело совершает элементарное перемещение , то говорят, что сила совершает элементарную работу (рис. 1). Вектор силы можно разложить на две составляющие, одна из которых совпадает по направлению с вектором перемещения, другая перпендикулярна ему.

Очевидно, что перемещать тело, а, следовательно, совершать работу будет только составляющая силы . Таким образом, элементарная работа

, (1)

где - угол между вектором силы и элементарным перемещением.

Так как скалярное произведение двух векторов равно произведению их модулей на косинус угла между ними, то

. (2)

Для того чтобы определить работу по всей траектории движения, необходимо просуммировать работы на каждом элементарном участке

. (3)

Единицей работы в СИ служит работа, совершаемая на пути в один метр с силой в один ньютон, действующей в направлении перемещения. Эта единица называется джоулем (Дж), т.е. 1 Дж = 1 Н1 м.

Заметим, что в джоулях измеряется также энергия , количество теплоты.

Работа, совершаемая в единицу времени, называется мощностью:

. (4)

Единицей мощности в СИ является ватт (Вт) - это такая мощность, при которой за одну секунду совершается работа, равная одному джоулю, т. е. 1 Вт = 1 Дж/1с. Заметим, что 1 кВт = 103 Вт, 1 МВт = 106 Вт, 1 ГВт = 109 Вт (приставка М читается как «мега», а приставка Г - как «гига»). В технике иногда применяется единица мощности, именуемая лошадиной силой (л. с.) и равная 736 Вт.

Все силы, встречающиеся в механике , принято разделять на консервативные и неконсервативные.

Сила, действующая на материальную точку, называется консервативной (потенциальной), если работа этой силы зависит только от начального и конечного положений точки. Работа консервативной силы не зависит ни от вида траектории, ни от закона движения материальной точки по траектории (см. рис. 2):

.

Изменение направления движения точки вдоль малого участка на противоположное вызывает изменение знака элементарной работы

, следовательно,

. Поэтому работа консервативной силы вдоль замкнутой траектории 1a2b1 равна нулю:

.

Точки 1и 2, а также участки замкнутой траектории 1a2 и 2b1 можно выбирать совершенно произвольно. Таким образом, работа консервативной силы по произвольной замкнутой траектории L точки ее приложения равна нулю:

или . (5)

В этой формуле кружок на знаке интеграла показывает, что интегрирование производится по замкнутой траектории. Часто замкнутую траекторию L называют замкнутым контуром L (рис. 3). Обычно задаются направлением обхода контура L по ходу часовой стрелки. Направление элементарного вектора перемещения совпадает с направлением обхода контура L. В этом случае формула (5) утверждает: циркуляция вектора по замкнутому контуру L равна нулю.

Следует отметить, что силы тяготения и упругости являются консервативными, а силы трения неконсервативными. В самом деле, поскольку сила трения направлена в сторону, противоположную перемещению или скорости, то работа сил трения по замкнутому пути всегда отрицательна и, следовательно, не равна нулю.

Если на материальную точку действует консервативная сила, то можно ввести скалярную функцию координат точки , называемую потенциальной энергией.

Потенциальную энергию определим следующим образом

, (6)

где С - произвольная постоянная, а - работа консервативной силы при перемещении материальной точки из положения в фиксированное положение . Образуем разность значений потенциальной энергии для точек 1 и 2 (см. рис. 4) и воспользуемся тем, что

.

Правая часть, полученного соотношения, дает работу, совершаемую на пути из точки 1 в точку 2, проходящем через точку О; Вследствие независимости работы от формы пути такая же работа А совершается на любом другом пути, т.е.

. (7)

Следовательно, работа консервативных сил равна разности значений функции Wn в начальной и конечной точках пути, т.е. убыли потенциальной энергии.

Потенциальная энергия определяется с точностью до постоянной. Однако, это не имеет существенного значения, поскольку во все физические соотношения входит либо разность значений потенциальной энергии, либо ее производная по координатам.

Рассмотрим систему, состоящую из многих материальных точек. Если задано положение каждой материальной точки, то этим определено и положение всей системы или ее конфигурация. Если силы, действующие на материальные точки системы, зависят только от конфигурации системы (т.е. только от координат материальных точек) и сумма работ этих сил при перемещении системы из одного положения в другое не зависит от пути перехода, а определяется только начальной и конечной конфигурациями системы, то такие силы называются консервативными. В этом случае для системы материальных точек также можно ввести понятие потенциальной энергии системы, обладающей свойством (7):

, (8)

где - полная работа консервативных сил, действующих на материальные точки системы при переходе ее из конфигурации 1 в конфигурацию 2; и - значения потенциальной энергии системы в этих конфигурациях.

Связь между силой, действующей на тело в данной точке поля, и его потенциальной энергией определяется по следующим формулам:

(9)

или , (10)

где - называется градиентом скалярной функции ; - единичные векторы координатных осей;

. (11)

Часто формулу (9) записывают также в виде

,

где - оператор набла, определяемый по формуле (11).

Обозначим через х растяжение пружины, т.е. разность длин пружины в деформированном и недеформированном состояниях.

При возвращении пружины из деформированного состояния в недеформированное сила совершает работу.

. (12)

Таким образом, потенциальная энергия упруго деформированной пружины

. (13)

изображены две материальные точки массы m1 и m2. Положение их характеризуется радиусами-векторами и соответственно. Элементарная работа, совершаемая силами гравитационного притяжения этих точек

,

где - сила, действующая на первую материальную точку со стороны второй, а - сила, действующая на вторую материальную точку со стороны первой; согласно 3-му закону Ньютона

=-;

и - элементарные перемещения материальных точек. С учетом этого

, где .

Учитывая, что и противоположно направлены и что величина

, находим .

Полная работа

, (14)

где R1 и R2 - начальное и конечное расстояние между материальными точками.

Эта работа равна изменению потенциальной энергии

A=Wn1 -Wn2.

Учитывая (14), находим, что потенциальная энергия гравитационного притяжения двух материальных точек

или (15)

где R или r - расстояние между материальными точками.

Формула (15) справедлива также для однородных сферических тел; в этом случае r - расстояние между центрами масс таких тел. В частности, потенциальная энергия тела массы т, находящегося в поле гравитации Земли, масса которой М,

(16)

Изменение потенциальной энергии тела массы m, поднятого с поверхности Земли (r = R, где R - радиус Земли) на высоту

h (r = R + h),

огласно (16), равно:

(17)

Если h<<R, то в знаменателе формулы (17) можно пренебречь слагаемым h и она перейдет в известную формулу

или , (18)

если потенциальную энергию на поверхности Земли принять равной нулю,где

- ускорение силы тяжести на поверхности Земли. Таким образом, формула (18) была получена в предположении, что сила тяжести (и ускорение силы тяжести) не изменяются с высотой h, т.е. поле силы тяжести Земли однородно. Поэтому формула (18) является приближенной формулой, в отличие от строгой формулы (16).

Напишем уравнение движения материальной точки (частицы) массы m, движущейся под действием сил, результирующая которых равна :

.

Умножим скалярно правую и левую часть этого равенства на элементарное перемещение точки , тогда

. (1)

Так как , то легко показать, что

Используя последнее равенство и то обстоятельство, что масса материальной точки постоянная величина, преобразуем (1) к виду

.

Проинтегрировав части этого равенства вдоль траектории частицы от точки 1 до точки 2, имеем:

.

Согласно определению первообразной и формуле (4.3) для работы переменной силы, получим соотношение:

.

Величина

(2)

называется кинетической энергией материальной точки.

Таким образом мы приходим к формуле

, (3)

из которой следует, что работа результирующей всех сил, действующих на материальную точку, расходуется на приращение кинетической энергии этой частицы.

Полученный результат без труда обобщается на случай произвольной системы материальных точек.

Кинетической энергией системы называется сумма кинетических энергий материальных точек, из которых эта система состоит или на которые ее можно мысленно разделить:

.

Напишем соотношение (3) для каждой материальной точки системы, а затем все такие соотношения сложим. В результате снова получим формулу, аналогичную (3), но для системы материальных точек.

, (4)

где и - кинетические энергии системы, а под необходимо понимать сумму работ всех сил, действующих на материальные точки системы.

Таким образом мы доказали теорему (4): работа всех сил, действующих на систему материальных точек, равна приращению кинетической энергии этой системы.

Рассмотрим систему из n материальных точек, на которые действуют как консервативные так и неконсервативные силы. Найдем работу, которую совершают эти силы при перемещении системы из одной конфигурации в другую. Работа консервативных сил может быть представлена как убыль потенциальной энергии системы [(см. 4.8)]:

.

Работу неконсервативных сил обозначим посредством А*. Согласно (4) суммарная работа всех сил затрачивается на приращение кинетической энергии системы , следовательно,

или

.

Сумма кинетической и потенциальной энергии представляет собой полную механическую энергию Е системы:

. (5)

Таким образом

. (6)

Очевидно, что если неконсервативные силы в системе отсутствуют, т.е. , то ее полная механическая энергия остается постоянной (сохраняется) т.е. Е = const. Эту теорему называют законом сохранения механической энергии, он утверждает: полная механическая энергия системы материальных точек, находящихся под действием консервативных сил остается постоянной.

В такой системе могут происходить лишь превращения потенциальной энергии в кинетическую и обратно, но полный запас энергии системы измениться не может. При наличии неконсервативных сил (например, сил трения, сил сопротивления...) механическая энергия системы не сохраняется, она уменьшается, что приводит к ее нагреванию. Такой процесс называется диссипацией (рассеянием) энергии. Силы, приводящие к диссипации энергии, называются диссипативными.

При соударении тел они в большей либо меньшей мере деформируются. При этом кинетическая энергия тел частично или полностью переходит в потенциальную энергию упругой деформации и во внутреннюю энергию тел. Увеличение внутренней энергии приводит к нагреванию тел.

Ограничимся рассмотрением центрального удара двух шаров, при котором шары движутся вдоль прямой, проходящей через их центры. На рис. 1 изображены два возможных случая центрального удара.

Рассмотрим два предельных вида соударения - абсолютно неупругий и абсолютно упругий удары.

Интересным примером, где имеет место потеря механической энергии под действием диссипативных сил, является абсолютно неупругий удар, при котором потенциальная энергия упругой деформации не возникает; кинетическая энергия тел частично или полностью превращается во внутреннюю энергию. После такого удара тела движутся с одинаковыми скоростями (т.е. как одно тело) либо покоятся.

При абсолютно неупругом ударе выполняется только закон сохранения суммарного импульса тел:

, откуда,

. (7)

Кинетическая же энергия, которой обладала система до удара, после соударения уменьшается или стремится к нулю. Изменение кинетической энергии:

.(8)

Это такой удар, при котором полная механическая энергия тел сохраняется. Сначала кинетическая энергия частично или полностью переходит в потенциальную энергию упругой деформации. Затем тела возвращаются к первоначальной форме, отталкиваясь друг от друга. В итоге потенциальная энергия упругой деформации снова переходит в кинетическую и тела разлетаются со скоростями, которые определяются исходя их законов сохранения суммарного импульса и суммарной энергии тел.

Обозначим массы шаров m1 и m2, скорости шаров до удара и , скорости шаров после удара и и напишем уравнения сохранения импульса и энергии:

(9)

Решая совместно эти два уравнения, найдем скорости шаров после абсолютно упругого удара:

(10)

Чтобы осуществить расчеты, нужно спроектировать все векторы на ось х. Сделаем это, например, для случая а)

. (11)

Если ответ получается положительным, то это означает, что шар после соударения движется вправо, если - отрицательный, то шар движется влево.

Классическая механика учитывает только кинетическую энергию макроскопического движения тел и их макроскопических частей, а также их потенциальную энергию. Но она полностью отвлекается от внутреннего атомистического строения вещества. При ударе, трении и аналогичных процессах кинетическая энергия видимого движения тел не пропадает. Она только переходит в кинетическую энергию невидимого беспорядочного движения атомов и молекул вещества, а также в потенциальную энергию их взаимодействия. Эта часть энергии получила название внутренней энергии.

Беспорядочное движение атомов и молекул воспринимается нашими органами чувств в виде тепла.

Таково физическое объяснение кажущейся потери механической энергии при ударе, трении и пр.

В физике закон сохранения энергии распространяют не только на явления, рассматриваемые в механике, но на все без исключения процессы, происходящие в природе.

Полное количество энергии в изолированной системе тел и полей всегда остается постоянным; энергия лишь может переходить из одной формы в другую.

В основе закона сохранения энергии лежит такое свойство времени как однородность, т.е. равнозначность всех моментов времени, заключающаяся в том, что замена момента времени t1 моментом времени t2, без изменения значений координат и скоростей тел не изменяет механических свойств системы. Поведение системы, начиная с момента времени t2 будет таким же, каким оно было бы, начиная с момента t1.

Лекция 9. Твердое тело как система материальных точек. Абсолютно твердое тело. Поступательное и вращательное движение абсолютно твердого тела. Мгновенные оси вращения. Момент силы. Момент инерции. Уравнение динамики вращательного движения тела относительно неподвижной оси.

Абсолютно твеpдым телом называется тело, дефоpмациями котоpого по условиям задачи можно пpенебpечь. У абсолютно твеpдого тела pасстояние между любыми его точками с течением вpемени не меняется. В теpмодинамическом смысле такое тело не обязательно должно быть твеpдым. Напpимеp, легкий pезиновый шаpик, наполненный водоpодом, можно pассматpивать как абсолютно твеpдое тело, если нас интеpесует его движение в атмосфеpе. Положение абсолютно твеpдого тела в пpостpанстве хаpактеpизуется шестью кооpдинатами. Это видно из следующих сообpажений. Положение абсолютно твеpдого тела полностью фиксиpуется заданием тpех точек, жестко связанных с телом. Положение тpех точек задается девятью кооpдинатами, но поскольку pасстояния между точками неизменны, то эти девять кооpдинат будут связаны тpемя уpавнениями. Следовательно, независимых кооpдинат, опpеделяющих положение твеpдого тела в пpостpанстве, останется шесть. Числу независимых кооpдинат соответствует число независимых видов движения, на котоpые может быть pазложено пpоизвольное движение тела. У абсолютно твердого тела таких движений шесть. Говоpят, что абсолютно твеpдое тело обладает шестью степенями свободы. Независимые виды движения тела можно выбpать по-pазному. Напpимеp, поступим следующим обpазом. Свяжем с твеpдым телом "жестко" одну точку и будем следить за ее движением и за движением тела вокpуг этой точки. Движение одной точки описывается тpемя кооpдинатами, т.е включает в себя тpи степени свободы. Их называют поступательными степенями свободы. Тpи дpугие степени свободы пpиходятся на вpащательное движение тела вокpуг выбpанной точки. Соответствующие степени свободы называются вpащательными.

...

Подобные документы

  • Изучение единиц выражения скорости и приборов, которыми она измеряется. Определение зависимости скорости от времени для двух тел, скорости при равномерном движении. Исследование понятий механического движения, тела отсчета, траектории и пройденного пути.

    презентация [1,2 M], добавлен 12.12.2011

  • Произвольное плоское движение твердого тела. Три независимые координаты. Скорости точек тела при плоском движении. Угловая скорость вращения фигуры. Мгновенный центр скоростей и центроиды. Ускорения точек при плоском движении. Мгновенный центр ускорения.

    презентация [2,5 M], добавлен 24.10.2013

  • Алгоритм решения задач по разделу "Механика" курса физики общеобразовательной школы. Особенности определения характеристик электрона по законам релятивистской механики. Расчет напряженности электрических полей и величины заряда по законам электростатики.

    автореферат [145,0 K], добавлен 25.08.2015

  • Предмет и задачи механики – раздела физики, изучающего простейшую форму движения материи. Механическое движение - изменение с течением времени положения тела в пространстве относительно других тел. Основные законы классической механики, открытые Ньютоном.

    презентация [303,7 K], добавлен 08.04.2012

  • Определение механики, ее место среди других наук, подразделения механики. Развитие методов механики с XVIII в. до нашего времени. Механика в России и СССР. Современные проблемы теории колебаний, динамики твердого тела и теории устойчивости движения.

    реферат [47,3 K], добавлен 19.06.2019

  • Изучение механики материальной точки, твердого тела и сплошных сред. Характеристика плотности, давления, вязкости и скорости движения элементов жидкости. Закон Архимеда. Определение скорости истечения жидкости из отверстия. Деформация твердого тела.

    реферат [644,2 K], добавлен 21.03.2014

  • Построение графиков координат пути, скорости и ускорения движения материальной точки. Вычисление углового ускорения колеса и числа его оборотов. Определение момента инерции блока, который под действием силы тяжести грузов получил угловое ускорение.

    контрольная работа [125,0 K], добавлен 03.04.2013

  • Сущность физики как науки о формах движения материи и их взаимных превращениях. Теснейшая связь физики с другими отраслями естествознания, ее методы исследований. Основные величины, используемые в механике, молекулярной физике, термодинамике и оптике.

    лекция [339,3 K], добавлен 28.06.2013

  • Векторы угловой скорости и углового ускорения вращающегося тела. Производные от единичных векторов подвижных осей (формулы Пуассона). Теорема о сложении скоростей (правило параллелограмма скоростей). Теорема о сложении ускорений (теорема Кориолиса).

    курсовая работа [623,5 K], добавлен 27.10.2014

  • Материальная точка и система отсчета. Траектория, путь, перемещение. Векторные величины, прямолинейное равномерное движение и мгновенная скорость. Равноускоренное криволинейное движение. Скорость при неравномерном движении. Движение тела по окружности.

    реферат [917,6 K], добавлен 29.11.2015

  • Решение задачи на нахождение скорости тела в заданный момент времени, на заданном пройденном пути. Теорема об изменении кинетической энергии системы. Определение скорости и ускорения точки по уравнениям ее движения. Определение реакций опор твердого тела.

    контрольная работа [162,2 K], добавлен 23.11.2009

  • Закон изменения угловой скорости колеса. Исследование вращательного движения твердого тела вокруг неподвижной оси. Определение скорости точки зацепления. Скорости точек, лежащих на внешних и внутренних ободах колес. Определение углового ускорения.

    контрольная работа [91,3 K], добавлен 18.06.2011

  • Принципы неклассической физики. Современные представления о материи, пространстве и времени. Основные идеи и принципы квантовой физики. Современные представления об элементарных частицах. Структура микромира. Фундаментальные физические взаимодействия.

    реферат [52,2 K], добавлен 30.10.2007

  • Построение схемы механизма в масштабе. Методы построения плана скоростей и ускорений точек. Величина ускорения Кориолиса. Практическое использование теоремы о сложении ускорений при плоскопараллельном движении. Угловые скорости и ускорения звеньев.

    курсовая работа [333,7 K], добавлен 15.06.2015

  • Описание движения твёрдого тела. Направление векторов угловой скорости и углового ускорения. Движение под действием силы тяжести. Вычисление момента инерции тела. Сохранение момента импульса. Превращения одного вида механической энергии в другой.

    презентация [6,6 M], добавлен 16.11.2014

  • Механическое движение. Ускорение при движении по окружности. Основы динамики. Силы упругости. Закон Гука, трение. Гравитационное взаимодействие. Условие равновесия тел. Закон сохранения импульса, энергии в механике. Архимедова сила для жидкостей и газов.

    реферат [160,9 K], добавлен 15.02.2016

  • Понятие кинематики как раздела механики, в котором изучается движения точки или тела без учета причин, вызывающих или изменяющих его, т.е. без учета действующих на них сил. Способы задания движения и ускорения материальной точки, направления осей.

    презентация [1,5 M], добавлен 30.04.2014

  • Предпосылки возникновения квантовой теории. Квантовая механика (волновая механика, матричная механика) как раздел теоретической физики, описывающий квантовые законы движения. Современная интерпретация квантовой теории, взаимосвязь с классической физикой.

    реферат [44,0 K], добавлен 17.02.2010

  • Виды отображений в физике. Относительные скорости инерциальных систем. Эффекты, связанные с постоянством скорости света в инерциальных системах. Закон "преломления" луча. Эффекты при вращательном движении. Применение модифицированного преобразования.

    реферат [181,9 K], добавлен 15.12.2009

  • Основные положения и постулаты кинематики – раздела теоретической механики. Теоретические основы: определения, формулы, уравнения движения, скорости и ускорения точки, траектории; практические примеры в виде решения наиболее типичных задач кинематики.

    методичка [898,8 K], добавлен 26.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.