Дислокационные модели релаксации напряжений и разрушения в наноструктурных и пористых твердых телах
Расчет упругих полей круговой призматической дислокационной петли в цилиндре, а также винтовой дислокации внутри цилиндрической полости с поверхностными ступеньками в бесконечном и полубесконечном теле. Анализ разветвления микротрубок под малыми углами.
Рубрика | Физика и энергетика |
Вид | автореферат |
Язык | русский |
Дата добавления | 02.03.2018 |
Размер файла | 328,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
На рис. 16 образование макротрещины соответствует точке пересечения кривой 1, 2 или 3 с горизонтальной штриховой линией. Как следует из рис. 16, критическое значение параметра , при котором образуется катастрофическая раскалывающая макротрещина, близко к единице.
Рис. 16. Зависимости доли n границ зерен, содержащих нанотрещины, от безразмерного внешнего напряжения для различных значений среднеквадратичного отклонения s распределения границ зерен по размерам: s=0, 0.5 и 1 (кривые 1, 2 и 3 соответственно).
. Таким образом, можно сделать следующий вывод: критическое напряжение для образования катастрофической раскалывающей макротрещины близко к критическому напряжению для образования изолированной нанотрещины в границе зерна среднего размера, перпендикулярной оси растяжения.
Штриховая горизонтальная линия показывает критическое значение доли границ зерен с нанотрещинами, при котором нанотрещины сливаются в макротрещину.
В заключении приведен перечень основных результатов диссертации.
Основные результаты
В работе получены следующие основные результаты:
· Получены решения граничных и самосогласованных диффузионно-упругих задач для дислокаций в твердых телах. В частности, рассчитаны упругие поля круговой призматической дислокационной петли в цилиндре, дислокационной петли скольжения в полубесконечном теле, винтовой дислокации в теле с двумя цилиндрическими порами, винтовой дислокации внутри цилиндрической полости полубесконечного тела, а также винтовой дислокации внутри цилиндрической полости с поверхностными ступеньками в бесконечном и полубесконечном теле. Кроме того, рассчитано поле напряжений краевой дислокации в границе зерен бикристалла при наличии зернограничной диффузии.
· Рассчитаны критические условия формирования дефектов несоответствия в квантовых точках и нанопроволоках. Показано, что рост бездислокационных двухслойных нанопроволок возможен, если радиус их внутренних слоев (ядер) достаточно мал. Показано также, что дислокации в подложке могут приводить к переходу от послойного к островковому режиму роста пленки.
· Разработаны критерии расщепления дислокационных микротрубок. Проведен анализ взаимодействия микротрубок с включениями политипов в карбиде кремния. Показано, что притяжение микротрубок к границам этих включений и их последующее слияние на таких границах является причиной образования на границах включений макропор. Разработан простой компьютерный код для компьютерного моделирования случайного ансамбля микротрубок в процессе роста кристалла. С помощью компьютерного моделирования дано объяснение наличия как плоских, так и закрученных конфигураций микротрубок в карбиде кремния.
· Рассчитана равновесная форма пор, образующихся в деформируемых нанокристаллических материалах вокруг зернограничных дислокаций с большими векторами Бюргерса. Разработан критерий катастрофического слияния трещин в деформируемых нанокристаллических материалах. Определены критические условия диффузионного подавления зарождения трещин в процессе зернограничного проскальзывания. Показано, что диффузия может подавлять образование трещин в нанокристаллических материалах даже при температурах, близких к комнатным.
Изложенные выше основные результаты позволяют сделать заключение, что основная цель работы достигнута: построены дислокационные модели, достоверно описывающие релаксацию напряжений и процессы разрушения в наноструктурных и пористых твердых телах.
Основные положения диссертации опубликованы в следующих работах
И.А. Овидько, А.Г. Шейнерман. Наномеханика квантовых точек и проволок (СПб, Янус, 2004). 165 с.
Н.Ф. Морозов, И.А. Овидько, А.Г. Шейнерман. Влияние трещин на миграцию границ зерен в нанокристаллических керамиках и металлах // ДАН 419, 2, 184-8 (2008).
И.А. Овидько, А.Г. Шейнерман. Зарождение дисклинационных диполей и наноскопических трещин в нанокерамиках // ФТТ 50, 6, 1002-6 (2008).
M.Yu. Gutkin, A.G. Sheinerman, M.A. Smirnov, V.G. Kohn, T.S. Argunova, J.H. Je, J.W. Jung. Correlated reduction of micropipe cross sections due to exchange of full-core dislocations in growing bulk crystals of silicon carbide // Appl. Phys. Lett. 93, 15, 151905 (2008).
N.V. Skiba, I.A. Ovid'ko, A.G. Sheinerman. Stress relaxation through interfacial sliding in nanocrystalline films // J. Phys.: Condens. Matter 20, 45, 455212 (2008).
I.A. Ovid'ko, A.G. Sheinerman, E.C. Aifantis. Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals // Acta Mater. 56, 12, 2718-27 (2008).
I.A. Ovid'ko, A.G. Sheinerman. Special rotational deformation in nanocrystalline metals and ceramics // Scripta Mater. 59, 1, 119-22 (2008).
И.А. Овидько, Н.В. Скиба, А.Г. Шейнерман. Влияние зернограничного скольжения на трещиностойкость нанокристаллических керамик // ФТТ 50, 7, 1211-5 (2008).
I.A. Ovid'ko, A.G. Sheinerman. Nanocrack generation at dislocation-disclination configurations in nanocrystalline metals and ceramics // Phys. Rev. B 77, 5, 054109 (2008).
I.A. Ovid'ko, A.G. Sheinerman. Plastic deformation and fracture processes in metallic and ceramic nanomaterials with bimodal structures // Rev. Adv. Mater. Sci. 16, 1/2, 1-9 (2007).
I.A. Ovid'ko, A.G. Sheinerman, N.V. Skiba // Stress relaxation through local migration of interfaces in nanocrystalline coatings // Rev. Adv. Mater. Sci. 16, 1/2, 102-7 (2007).
I.A. Ovid'ko, A.G. Sheinerman. Generation of cracks at triple junctions of grain boundaries in mechanically loaded polysilicon // Phil. Mag. 87, 27, 4181-95 (2007).
M.Yu. Gutkin, A.G. Sheinerman, T.S. Argunova, J. M. Yi, J.H. Je, S.S. Nagalyuk, E.N. Mokhov, G. Margaritondo, Y. Hwu. Role of micropipes in formation of pores at foreign polytype boundaries in SiC crystals // Phys. Rev. B 76, 6, 064117 (2007).
C.В. Бобылев, Н.Ф. Морозов, И.А. Овидько, А.Г. Шейнерман. Зарождение нанотрещин на аморфных прослойках в поликристаллическом кремнии // ДАН 414, 6, 749-51 (2007).
М.Ю. Гуткин, А.Г. Шейнерман. Упругое поведение винтовой дислокации в стенке полой нанотрубки // ФТТ 49, 9, 1595-1602 (2007).
I.A. Ovid'ko, A.G. Sheinerman. Special strain hardening mechanism and nanocrack generation in nanocrystalline materials // Appl. Phys. Lett. 90, 17, 171927 (2007).
И.А. Овидько, А.Г. Шейнерман. Зарождение нанотрещин в поликристаллическом кремнии под действием зернограничного скольжения // ФТТ 49, 6, 1056-60 (2007).
I.A. Ovid'ko, A.G. Sheinerman. New relaxation mechanism in nanoscale films // J. Phys.: Condens. Matter 19, 5, 056008 (2007).
I.A. Ovid'ko, A.G. Sheinerman. Misfit dislocations in nanocomposites with quantum dots, nanowires and their ensembles // Adv. Phys. 55, 7-8, 627-89 (2006).
M.Yu. Gutkin, A.G. Sheinerman, T.S. Argunova, J. M. Yi, M.U. Kim, J.H. Je, S.S. Nagalyuk, E.N. Mokhov, G. Margaritondo, Y. Hwu. Interaction of micropipes with foreign polytype inclusions in SiC // J. Appl. Phys. 100, 9, 093518 (2006).
I.A. Ovid'ko, A.G. Sheinerman. Nanovoid generation due to intergrain sliding in nanocrystalline materials // Philos. Mag. 86, 23, 3487-502 (2006).
Н.Ф. Морозов, И.А. Овидько, Ю.В. Петров, А.Г. Шейнерман // Катастрофическое слияние нанотрещин в хрупких нанокристаллических материалах. ДАН 406, 4, 480-2 (2006).
I.A. Ovid'ko, A.G. Sheinerman. Nanoparticles as dislocation sources in nanocomposites // J. Phys.: Condens. Matter 18, L225-32 (2006).
I.A. Ovid'ko, A.G. Sheinerman. Elliptic nanopores in deformed nanocrystalline and nanocomposite materials // Philos. Mag. 86, 10, 1415-26 (2006).
I.A. Ovid'ko, A.G. Sheinerman. Dislocation emission from nanovoids in single-phase and composite nanocrystalline materials // Rev. Adv. Mater. Sci. 11, 1, 46-55 (2006).
Т.С. Аргунова, М.Ю. Гуткин, А.Г. Шейнерман, Е.Н. Мохов, J.H. Je, Y. Hwu. Исследование взаимодействия дислокационных микротрубок в монокристаллах SiC методом синхротронной фазовой радиографии // Поверхность, No. 8, 59-66 (2005).
I.A. Ovid'ko, A.G. Sheinerman. Elastic fields of inclusions in nanocomposite solids // Rev. Adv. Mater. Sci. 9, 1, 17-33 (2005).
I.A. Ovid'ko, A.G. Sheinerman. Suppression of nanocrack generation in nanocrystalline materials under superplastic deformation // Acta Mater. 53, 5, 1347-59 (2005).
I.A. Ovid'ko, A.G. Sheinerman. Misfit dislocation loops in cylindrical quantum dots // J. Phys.: Condens. Matter 16, 41, 7225-32 (2004).
T.S. Argunova, L.M. Sorokin, L.S. Kostina, J. H. Je, M.Yu. Gutkin, A.G. Sheinerman. The use of the diffraction and phase X-ray contrast in study of materials // Crystal. Rep. 49, Suppl. 1, S33-9 (2004).
I.A. Ovid'ko, A.G. Sheinerman. Triple junction nanocracks in fatigued nanocrystalline materials // Rev. Adv. Mater. Sci. 7, 1, 61-6 (2004).
I.A. Ovid'ko, A.G. Sheinerman. Misfit dislocation loops in composite nanowires // Phil. Mag. 84, 20, 2103-18 (2004).
M.Yu. Gutkin, A.G. Sheinerman, T.S. Argunova, E.N. Mokhov, J.H. Je, Y. Hwu, W.-L. Tsai, L.B. Sorokin. Structural transformation of dislocated micropipes in silicon carbide // Mater. Sci. Forum 457-460, 367-70 (2004).
M.Yu. Gutkin, A.G. Sheinerman. Split and sealing of dislocated pipes at the front of a growing crystal // Phys. Stat. Sol. (b) 241, 8, 1810-26 (2004).
I.A. Ovid'ko, A.G. Sheinerman. Enhanced formation of nanowires and quantum dots on dislocated substrates // J. Phys.: Condens. Matter 16, 12, 2161-70 (2004).
M.Yu. Gutkin, A.G. Sheinerman. Dislocated micro- and nanopipes with surface steps // Phys. Stat. Sol. (b) 241, 4, 797-817 (2004).
I.A. Ovid'ko, A.G. Sheinerman. Dislocation climb in nanocrystalline materials under high-strain-rate superplastic deformation // Rev. Adv. Mater. Sci. 6, 1, 21-7 (2004).
I.A. Ovid'ko, A.G. Sheinerman. Triple junction nanocracks in deformed nanocrystalline materials // Acta Mater. 52, 5, 1201-9 (2004).
И.А. Овидько, А.Г. Шейнерман. Делокализованные дислокации в квантовых точках // ЖЭТФ 125, 2, 377-81 (2004).
M.Yu. Gutkin, A.G. Sheinerman, T.S. Argunova, E.N. Mokhov, J.H. Je, Y. Hwu, W.-L. Tsai, G. Margaritondo. Mechanisms of reactions between micropipes in silicon carbide // J. Appl. Phys. 94, 11, 7076-82 (2003).
M.Yu. Gutkin, A.G. Sheinerman, T.S. Argunova, E.N. Mokhov, J.H. Je, Y. Hwu, W.-L. Tsai. Micropipe evolution in silicon carbide // Appl. Phys. Lett. 83, 11, 2157-9 (2003).
А.Г. Шейнерман, М.Ю. Гуткин. Упругие поля винтовой супердислокации с полым ядром (трубки), перпендикулярной свободной поверхности кристалла // ФТТ 45, 9, 1614-20 (2003).
I.A. Ovid'ko, A.G. Sheinerman. Grain boundary dislocation structures and enhanced diffusion in nanocrystalline bulk materials and films // Phil. Mag. A 83, 13, 1551-63 (2003).
M.Yu. Gutkin, I.A. Ovid'ko, A.G. Sheinerman. Misfit dislocations in composites with nanowires // J. Phys.: Cond. Matter 15, 21, 3539-54 (2003).
N.F. Morozov, I.A. Ovid'ko, Yu.V. Petrov, A.G. Sheinerman. Formation and convergence of nanocracks in mechanically loaded nanocrystalline solids // Rev. Adv. Mater. Sci. 4, 1, 326 (2003).
I.A. Ovid'ko, A.G. Sheinerman, N.V. Skiba. Competing relaxation mechanisms in strained semiconducting and superconducting films // J. Phys.: Condens. Matter 15, 8, 1173-81 (2003).
I.A. Ovid'ko, A.G. Sheinerman. Dislocation dipoles in nanoscale films with compositional inhomogeneities // Phil. Mag. A 82, 16, 3119-27 (2002).
I.A. Ovid'ko, A.G. Sheinerman. Perfect, partial and split dislocations in quantum dots // Phys. Rev. B 66, 24, 245309 (2002).
M.Yu. Gutkin, A.G. Sheinerman, T.S. Argunova, J.H. Je, H.S. Kang, Y. Hwu, W.-L. Tsai. Ramification of micropipes in SiC crystals // J. Appl. Phys. 92, 2, 889-94 (2002).
M.Yu. Gutkin, A.G. Sheinerman. Elastic interaction of micropipes in crystals // Phys. Stat. Sol. (b) 231, 2, 356-72 (2002).
И.А. Овидько, А.Г. Шейнерман. Влияние пластической деформации подложек на зарождение дислокаций несоответствия в тонкопленочных гетероструктурах // ФТТ 44, 7, 1243-8 (2002).
И.А. Овидько, А.Г. Шейнерман. Диполи дислокаций несоответствия в нанопленках с периодической модуляцией состава // Письма в ЖТФ 28, 5, 58-63 (2002).
I.A. Ovid'ko, A.G. Sheinerman. Nano-islands on composite substrates with misfit dislocations // Appl. Phys. A 74, 2, 273-7 (2002).
S.V. Bobylev, I.A. Ovid'ko, A.G. Sheinerman. Effects of misfit stresses on structure and transport properties of grain boundaries in high-TC superconducting films // Phys. Rev. B 64, 21, 224507 (2001).
I.A. Ovid'ko, A.G. Sheinerman. Nanowires associated with compositional inhomogeneities // J. Phys.: Cond. Matter 13, 42, 9645-53 (2001).
I.A. Ovid'ko, A.G. Sheinerman. Misfit dislocations in multilayered films on disclinated substrates // J. Phys.: Cond. Matter 13, 35, 7937-51 (2001).
I.A. Ovid'ko, A.G. Sheinerman. Dislocation dipoles in nanocrystalline films // J. Nanosci. Nanotechnol. 1, 2, 215-20 (2001).
A.G. Sheinerman, M.Yu. Gutkin. Misfit dislocations in a hollow cylindrical film grown on a hole surface // Scripta Mater. 45, 1, 81-7 (2001).
A.G. Sheinerman, M.Yu. Gutkin. Misfit disclinations and dislocation walls in a two-phase cylindrical composite // Phys. Stat. Sol. (a) 184, 2, 485-505 (2001).
M.Yu. Gutkin, I.A. Ovid'ko, A.G. Sheinerman. Misfit dislocations in wire composite solids // J. Phys.: Cond. Matter 12, 25, 5391-401 (2000).
Размещено на Allbest.ru
...Подобные документы
Определение: инвариантов напряженного состояния; главных напряжений; положения главных осей тензора напряжений. Проверка правильности вычисления. Вычисление максимальных касательных напряжений (полного, нормального и касательного) по заданной площадке.
курсовая работа [111,3 K], добавлен 28.11.2009Процесс тепломассопереноса во влажных капиллярно-пористых телах. Методика расчета капиллярных давлений и вызванных внутренних напряжений. Характеристики и параметры тепломассопереноса. Модели дисперсных сред. Влагосодержание и плотность твердого вещества.
контрольная работа [31,7 K], добавлен 16.05.2012Феноменологическая и микроскопическая теория диффузии. Диффузионная релаксация Сноека, Зинера, магнитнаяа также сущность эффекта Горского. Магнитострикция чистых металлов и бинарных сплавов. Рентгенографический метод измерения коэффициента диффузии.
курсовая работа [481,3 K], добавлен 17.05.2014Расчет структуры электромагнитных полей внутри и вне бесконечного проводящего цилиндра и в волноводе методом разделения переменных при интегрировании дифференциальных уравнений для получения аналитических выражений потенциалов и напряженностей полей.
курсовая работа [860,6 K], добавлен 14.12.2013Особенности протекания импульсного тока в газах, жидкостях, твердых телах, металлических расплавах. Выводы и постановка задач исследований, методика проведения испытаний. Измерение импульсных напряжений с помощью делителей и катодных осциллографов.
курсовая работа [94,1 K], добавлен 21.04.2012Корпускулярно-волновой дуализм и принцип Гейзенберга. Уравнение Шрёдингера, функции распределения, методы возмущений. Свободные электроны в телах, функция плотности состояний, теорема Блоха. Электроны в твердых телах и энергетических зонах, фононы.
контрольная работа [2,1 M], добавлен 24.08.2015Математическая модель и решение задачи очистки технических жидкостей от твердых частиц в роторной круговой центрифуге. Система дифференциальных уравнений, описывающих моделирование процесса движения твердой частицы. Физические характеристики жидкости.
презентация [139,6 K], добавлен 18.10.2015Расчет температурного поля предельного состояния при движении подвижного точечного источника тепла в полубесконечном теле. Сравнение температур в период теплонасыщения и предельного поля. Термический цикл точки, распределение максимальных температур.
курсовая работа [304,9 K], добавлен 18.01.2015Удар абсолютно упругих и неупругих тел. Закон сохранения импульса и сохранения момента импульса. Физический смысл соударения упругих и неупругих тел. Практическое применение физического явления соударения тел. Механический метод разрушения пород.
контрольная работа [240,4 K], добавлен 16.09.2013Поведение полей напряжений в окрестности концентраторов дефектов и неоднородностей среды, полостей и включений. Теоретическое решение задачи Кирша. Концентрации напряжений. Экспериментальный метод исследования напряжённо-деформированного состояния.
контрольная работа [1,4 M], добавлен 24.03.2011Постановка нестационарной краевой задачи теплопроводности в системе с прошивной оправкой. Алгоритм решения уравнений теплообмена. Методы оценки термонапряженного состояния. Расчет температурных полей и полей напряжений в оправке при циклическом режиме.
реферат [4,0 M], добавлен 27.05.2010Явление перемещения жидкости в пористых телах под действием электрического поля. Электрокинетические явления в дисперсных системах. Уравнение Гельмгольца–Смолуховского для электроосмоса. Движение частиц дисперсной фазы в постоянном электрическом поле.
реферат [206,2 K], добавлен 10.05.2009Свойства звука и его высота, громкость и скорость. Расчет скорости в жидкости, газе и в твердых телах. Акустический резонанс и его применение, свойства отражения и поглощения, воздействие шума на человека и значение достижений науки в борьбе за тишину.
реферат [35,3 K], добавлен 18.05.2012Характеристики магнитного поля и явлений, происходящих в нем. Взаимодействие токов, поле прямого тока и круговой ток. Суперпозиция магнитных полей. Циркуляция вектора напряжённости магнитного поля. Действие магнитных полей на движущиеся токи и заряды.
курсовая работа [840,5 K], добавлен 12.02.2014Особенности краевой, винтовой и смешанной дислокаций. Описание линейной системы дислокаций в кристалле, вектор Бюргерса. Поверхностные методы выявления дислокаций. Рентгеновская дифракционная топография, ионный проектор. Метод дифракционного контраста.
реферат [2,9 M], добавлен 18.11.2014Свойства звука и его характеристики. Шум. Музыка. Речь. Законы распространения звука. Инфразвук, ультразвук, гиперзвук. Звук - это распространяющиеся в упругих средах - газах, жидкостях и твёрдых телах - механические колебания, воспринимаемые органами слу
реферат [13,8 K], добавлен 29.05.2003Устройство паровой винтовой машины (ПВМ). Основные параметры работы энергоустановки ПВМ-2000АГ-1600. Удельный расход топлива на отпуск электроэнергии. Обращенный винтовой компрессор сухого сжатия. Крутящий момент, возникающий под действием пара.
презентация [2,2 M], добавлен 08.03.2015Изучение природы механической и электрической энергии: баланс зарядов и напряжений силовых полей электронов, соотношение скаляров масс в пространстве электрона, уравнение его волновых постоянных и параметры возмущения состояний его идеальной модели.
творческая работа [216,2 K], добавлен 31.12.2010Определение реакции креплений на сосуд. Расчет окружных и меридиональных напряжений на участках сосуда, построение их эпюр. Вычисление площади поперечного сечения подкрепляющего распорного кольца по месту стыка цилиндрической части сосуда с конической.
практическая работа [737,3 K], добавлен 21.02.2014- Вариант определения напряженно-деформированного состояния упругого тела конечных размеров с трещиной
Изучение процесса разрушения твердых тел при распространении трещины. Возникновение метода конечных элементов. Введение локальной и глобальной нумерации узлов. Рассмотрение модели трещины в виде физического разреза и материального слоя на его продолжении.
курсовая работа [2,7 M], добавлен 26.12.2014