Подход к решению задачи гидродинамической турбулентности вязкой жидкости методами динамики эволюции
Проблема турбулентности как одна из самых сложных проблем сегодняшней макрофизики. Процесс возникновения гидродинамического потока и процесс перехода от ламинарного движения к турбулентному. Природа и механизм возникновения вихрей турбулентности.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 22.11.2018 |
Размер файла | 840,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Для данного и стационарного состояния:
- Уравнение баланса энергии потока для каждого слоя запишется в виде двух уравнений:
а) - общая энергия потока, суммируется по всем слоям. При этом рассчитывается по законам упругости и соответствует Рис.3 для конкретной жидкости.
б) - баланс между производимой энергией за счёт перепада давлений и её диссипацией в межслоях. При этом необходимо учитывать две возможности или их сочетание. Если , вся диссипированная энергия отводится и температура потока не меняется. Если , то диссипированная энергия переходит во внутреннюю энергию, что приводит к разогреву потока.
- Уравнение Навье-Стокса в нашей принятой задаче проще записать в форме основного закона динамики (так как слой движется как единое целое), с учётом действия сил по схеме 7а или 7б для каждого слоя.
- Уравнение непрерывности (сохранения массы) так же запишется послойно, с учётом постоянства скорости в слое и изменения скорости от слоя к слою.
- Описывая переходные процессы при формировании новых совокупностей межслоёв, в расчётах необходимо учитывать введённые выше соотношения неустойчивого состояния, устойчивого и неустойчивого равновесия (8),(9),(7).
Телескопическая структура ламинарного потока позволяет построить динамическую модель возникновения вихрей турбулентности.
Как следует из динамики эволюции для очередной бифуркации и возникновения новой диссипативной структуры необходимо преодоление потенциального барьера на пути кооперативного движения. Таким потенциальным барьером на пути увеличения скорости ламинарного потока, как уже отмечалось, встают силы сцепления между частицами жидкости, заставляющие более быстрые центральные слои жидкости тянуть за собой более медленные периферийные слои и затрачивать часть кооперативной энергии на совершение работы по разрыву сил сцепления. По мере увеличения перепада давления и скорости ламинарного потока (увеличения ) с некоторого момента динамическое равновесие в межслое не успевает восстанавливаться, и связи между слоями начинают разрушаться полностью. Так как процессы очень динамичны, то полный разрыв связей в межслое происходит не по всей площади межслоя, а в локальных зонах, ослабленных по каким-либо причинам (флуктуации, вибрации, изменение геометрии потока и т.д.). “Мы уже сказали, что течение по трубе становится турбулентным при достаточно больших значениях числа Рейнольдса. Опыт показывает, что для этогодолжно быть не меньше 1700. При меньших значенияхламинарное течение вполне устойчиво. … Принимая особые меры предосторожности для уменьшения неизбежно возникающих возмущений, можно, однако, отодвинуть переход к турбулентному режиму до ещё больших значений ; удавалось наблюдать ламинарное течение по трубе даже при = 50000”. [6]. Таким образом, соблюдая меры предосторожности, можно добиться огромного количества слоёв ламинарного потока, что будет способствовать накоплению потенциальной энергии растяжения среды потока. При этом как видно из Рис.3 будет снижаться потенциальный барьер сил связи. Будет достаточно малейших усилий для преодоления состояния неустойчивого равновесия и сброса огромной потенциальной энергии. В этот момент проявляется так называемый “эффект бабочки”. Напротив, в начальный период возникновения турбулентного движения (при?1700) вихри возникают и исчезают. Так называемая перемежаемость. В английской литературе явление называется пафф-структуры. Это случайная перемежаемость, зависящая от случайных величин (воздействий). Но т.к. при этих условиях потенциальный барьер сил связи достаточно высок, то для полного разрыва локальной области межслоя нужны относительно мощные воздействия, которые встречаются реже. Сформировавшийся при таком воздействии вихрь успевает диссипировать до следующего такого воздействия. Так и возникает перемежаемость. И только после определенной величины числа Рейнольдса турбулентность становится стабильной, т.к. мощность кооперативной энергии достаточна, чтобы постоянно полностью преодолевать силы сцепления в локальных зонах межслоя. Из-за значительного растяжения потенциальный барьер сил сцепления понижается и достаточно меньших по силе возмущений для нарушения неустойчивого равновесия. Числитель в числе Рейнольдса соответствует величине кооперативной энергии потока, а знаменатель соответствует силам связи в жидкости (потенциальному барьеру). В силу усреднённого параболического закона скорости, указывающего на то, что относительная скорость в межслое расположенном со стороны стенки больше чем в межслое расположенном со стороны центра, быстрее преодолевается потенциальный барьер с внешней стороны слоя, т.е. ближе к стенке. Чем больше относительная скорость слоёв, тем больше кооперативной энергии для преодоления сил сцепления. Так как с внутренней стороны слоя потенциальный барьер не преодолен и остается напряженное связанное состояние, то возникают силы перпендикулярные скорости движения потока и направленные во внутрь потока. Это приводит к возникновению вихрей, закручивающихся во внутрь потока, как показано на Рис.2 в виде кривых стрелок. Возможна, но со значительно меньшей вероятностью и обратная закрутка, во внешнюю от центра потока сторону.
Возникшие вихри в свою очередь подчиняются закону сохранения момента импульса. Возникает, в результате бифуркации, турбулентное движение, новый вид диссипативной структуры. Таким образом, слоистая структура ламинарного потока позволяет объяснить механизм образования вихрей турбулентного движения при , то есть при таких числах Рейнольдса при которых кооперативная энергия потока достаточно велика, чтобы в локальных зонах межслоя полностью разрывать силы сцепления.
При дальнейшем увеличении неравновесности и числа Рейнольдса возникшие вихри начинают распадаться на более мелкие вихри, подчиняясь закону сохранения момента импульса, с учётом диссипации. Расслоение вихря вызывается тем, что внешняя сторона вихря тормозится силами вязкого трения от соприкосновения с окружающей вихрь средой, что вызывает растяжение среды внутри вихря.
Рис.8
Это, под воздействием энергии вращения вихря, приводит к формированию межслоёв и разрыву сил сцепления уже внутри вихрей. Картина распада вихря на два изображена на Рис.8. Когда внутри первичного вихря образовался межслой (на Рис.8а он обозначен мелким пунктиром внутри вихря), то в первый момент вихрь ещё вращается как единое целое, но сила связи между центральной частью вихря и внешней оболочечной частью резко снижается. Так как движение стохастическое, вихрь испытывает сильные случайные воздействия со стороны окружающей его среды. Это приводит к вытеснению центральной части вихря из его внешней оболочки, и он начинает самостоятельное развитие. (Рис.8в). Внешняя вращающаяся оболочка первоначального вихря сдавливается внешним давлением в освободившуюся центральную область и формируется второй вихрь. Этот момент показан на Рис.8б. Энергия первоначального вихря разделилась на энергии двух вихрей, частично диссипируя.
Рис.8, изображающий физическую картину и механизм каскада вихрей турбулентности, проливает свет на теорию Файгенбаума о многократном повторении бифуркаций удвоения периода и на “гипотетическую картину усложнения течения, …, при дальнейшем увеличении числа Рейнольдса, ” [7] Ландау-Хопфа. Рис.8 отражает также фрактальный характер каскада турбулентных вихрей.
По мере увеличения неравновесности и числа Рейнольдса этот процесс дробления вихрей продолжается. Физика дробления вихрей (появление всё новых бифуркаций с ростом перепада давления и числа Рейнольдса) та же, что и при формировании всё новых межслоёв при ламинарном движении. Механизм формирования межслоя в вихре принципиально тот же, что и в ламинарном потоке. Только нужно учитывать некоторые особенности. При составлении баланса энергии по (20), необходимо учитывать, что линейная скорость в вихревом слое изменяется линейно в зависимости от радиуса, а не постоянна как в ламинарном слое. Величина первоначального вихря зависит от числа Рейнольдса и вероятностных причин, влияющих на величину площади разрыва в ламинарном межслое.
При турбулентном движении нарушается линейность перемещения слоёв. Траектории движения, из-за возникающих вихрей и случайного характера их возникновения, путаются. Это приводит к формированию странного аттрактора в фазовом пространстве. Причём если для ламинарного потока в данном стационарном состоянии для каждого слоя имеется свой аттрактор, то для турбулентного (стохастического) потока странный аттрактор общий для всего потока при данном стационарном состоянии.
Тем не менее, даже при интенсивной турбулентности сохраняется пристеночный слой и примыкающая к нему узкая зона ламинарности.
Причем процесс турбулизации носит двоякий характер: с одной стороны увеличивается свобода перемещения слоев, с другой увеличивается диссипация и мощность процесса релаксации. Это связано с тем, что отношение площади поверхности вихря к его объёму растёт с уменьшением размера вихря. Наибольшая диссипация происходит в малых вихрях. А это приводит к росту вязкого трения. Направление закрутки малых вихрей соответствует закрутке породивших их больших вихрей. Процесс турбулизации с увеличением неравновесности заканчивается тогда, когда эти две противоположные тенденции полностью разрушат потенциальный барьер сил сцепления в жидкости и она будет вести себя подобно газу. И с этого момента эпюра скоростей в сечении потока будет изменяться по параболическому закону (как в газе или паре). Собственно в таком состоянии жидкость и будет как бы соответствовать пару. Это вырожденное состояние странного аттрактора.
Критическое число Рейнольдса при котором начинается турбулизация потока, изменяется в широком диапазоне в зависимости от влияния не только скорости потока, диаметра и вязкости, но и дополнительных условий, способствующих преодолению потенциального барьера сил сцепления (температура, влияющая на вязкость и флуктуации, вибрация, встряхивание, расширение потока, дополнительные препятствия и т.п. снижают критическое число Рейнольдса). К числу случайных воздействий относятся и процессы образования и расслоения турбулентных вихрей, сопровождающиеся ударными волнами. Для количественного описания турбулентности на совокупность уравнений описывающих ламинарное движение необходимо наложить случайные воздействия, о которых сказано выше.
При турбулентном движении мощность процесса релаксации возрастает, но, тем не менее, турбулентное движение, являясь более сложным, менее хаотично чем ламинарное. [3]. При турбулентном движении результирующий импульс на единицу массы больше чем при ламинарном, а это значит что доля подсистемы порядка выше по отношению к доле подсистемы хаоса. Поэтому турбулентное движение является более упорядоченным с энергетической точки зрения, обладает большим потенциалом для совершения работы.
В экспериментах не замечено резких изменений расхода жидкости через трубу при переходе от ламинарного течения к турбулентному. Это говорит о том, что энергия для турбулизации черпается из потенциальной энергии растяжения в слоях и межслоях.
В турбулентном потоке из-за локальных зон полного разрыва в межслое, передача энергии от быстрых центральных слоёв к периферийным снижается, снижается растяжение среды потока (жидкости). С учётом завихренности и хаотизации это и сглаживает эпюру скоростей центральных зон турбулентного потока в сравнении с ламинарным потоком. Количественно это отображается законом изменения скорости турбулентного движения Колмогорова-Обухова на малых расстояниях.
Если исходить из телескопической структуры ламинарного потока, то физические принципы и механизмы возникновения гидродинамической турбулентности просты и наглядны. Сложности возникают в связи с наложением на эту простоту множества факторов, таких как вероятностный характер влияния флуктуаций и других случайных воздействий на состояния потока близкие к неустойчивым, многообразие граничных условий, в том числе их переменный характер во времени и пространстве. В совокупности это приводит к трудоёмким построениям при количественном описании гидродинамических процессов, как в стационарном состоянии, так и особенно при их эволюционном развитии.
ЛИТЕРАТУРА
1. Власов В.В. Основы векторной энергетики. М.: “Буркин”. 1999г., 124с.
2. Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. - М.: “Мир”, 1973г., 280с.
3. Климонтович Ю.Л. Критерии относительной степени упорядоченности открытых систем. // УФН, ноябрь 1996г.
4. Косарев А.В. Эффект вырождения результирующего импульса в многочастичной (диссипативной) среде как носителя кооперативной кинетической энергии. //Доклады 4-й Российской научной конференции “Векторная энергетика в технических, биологических и социальных системах”, том 1, Москва, Из-во “Буркин”, 2001г., с. 98-113.
5. Косарев А.В. Динамика эволюции неравновесных диссипативных сред. Издание второе, переработанное и дополненное. - Из-во: LAMBERT Academic Publishing, г. Саарбрюккен, Германия, 2013г., 354с.
6. Ландау Л.Д., Ахиезер А.И, Лифшиц Е.М. Курс общей физики. Механика и молекулярная физика. - М.: “Наука”, 1969г., 400с.
7. Ландау Л.Д., Лифшиц Е.М. ТФ. Том 4. Гидродинамика. - М.: “Наука”, 1986г., 736с.
8. Лойцянский Л.Г. Механика жидкости и газа. - М.: “Наука”, 1970г., 904с.
9. Осипов А.И. Самоорганизация и хаос. - М.: “Знание”, 1986г.,64с.
10. Сивухин Д.В. Общий курс физики. Т.1. Механика. - М.: “Наука”, 1979г., 520с.
11. Трубецков Д.И. Турбулентность и детерминированный хаос. Соросовский образовательный журнал N1(26) за 1998 г., с. 77-83.
12. Фейнман Р. и др. Фейнмановские лекции по физике. Т.7. Физика сплошных сред. - М.: “Мир”, 1977г., 288с.
Размещено на Allbest.ru
...Подобные документы
Причины возникновения подъемной силы летательного аппарата. Заслуги Жуковского в развитии аэродинамики. Понятие турбулентности и процесс возникновения зоны повышенной плотности на передней части снаряда. Принципы всасывания потока воздуха в двигатель.
реферат [2,2 M], добавлен 01.06.2013Теория неустойчивых колебаний и методы борьбы с ними. Процесс возникновения турбулентности. Равновесный и неравновесный порядок. Конвективные ячейки Бенара. Переходы от порядка к хаосу на примере явления Бенара. Лазер как пример перехода "хаос – порядок".
контрольная работа [149,0 K], добавлен 09.11.2010Выведение уравнения движения вязкой несжимаемой жидкости - уравнения Стокса. Рассмотрение основных режимов движения жидкости в горизонтальных трубах постоянного поперечного сечения - ламинарного и турбулентного. Определение понятия профиля скорости.
презентация [1,4 M], добавлен 14.10.2013Понятие диссипативных динамических систем. Хаотическая динамика, геометрическая структура странных аттракторов. Автомодельное свойство фракталов. Модели турбулентности, природа хаотической динамики гамильтоновых систем. Финитное движение в пространстве.
презентация [107,6 K], добавлен 22.10.2013Постоянство потока массы, вязкость жидкости и закон трения. Изменение давления жидкости в зависимости от скорости. Сопротивление, испытываемое телом при движении в жидкой среде. Падение давления в вязкой жидкости. Эффект Магнуса: вращение тела.
реферат [37,9 K], добавлен 03.05.2011Понятия и устройства измерения абсолютного и избыточного давления, вакуума. Определение силы и центра давления жидкости на цилиндрические поверхности. Границы ламинарного, переходного и турбулентного режимов движения. Уравнение неразрывности для потока.
контрольная работа [472,2 K], добавлен 08.07.2011Теория движения жидкости. Закон сохранения вещества и постоянства. Уравнение Бернулли для потока идеальной и реальной жидкости. Применение уравнения Д. Бернулли для решения практических задач гидравлики. Измерение скорости потока и расхода жидкости.
контрольная работа [169,0 K], добавлен 01.06.2015Силы и коэффициент внутреннего трения жидкости, использование формулы Ньютона. Описание динамики с помощью формулы Пуазейля. Уравнение Эйлера - одно из основных уравнений гидродинамики идеальной жидкости. Течение вязкой жидкости. Уравнение Навье-Стокса.
курсовая работа [531,8 K], добавлен 24.12.2013Рассмотрение и нахождение основных характеристик плоского стационарного ламинарного течения вязкой несжимаемой жидкости при параболическом распределении скоростей (течение Пуазейля и течение Куэтта). Общий случай течения между параллельными стенками.
курсовая работа [1,5 M], добавлен 28.12.2010Определение вязкости биологических жидкостей. Метод Стокса (метод падающего шарика). Капиллярные методы, основанные на применении формулы Пуазейля. Основные достоинства ротационных методов. Условия перехода ламинарного течения жидкости в турбулентное.
презентация [571,8 K], добавлен 06.04.2015Причина возникновения сил вязкого трения в жидкостях. Движение твердого тела в жидкости. Определение вязкости жидкости по методу Стокса. Экспериментальная установка. Вязкость газов. Механизм возникновения внутреннего трения в газах.
лабораторная работа [61,1 K], добавлен 19.07.2007Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.
презентация [220,4 K], добавлен 28.09.2013Законы и аксиомы динамики материальной точки, уравнения движения. Условие возникновения свободных и затухающих колебаний, их классификация. Динамика механической системы. Теорема об изменении количества движения. Элементы теории моментов инерции.
презентация [1,9 M], добавлен 28.09.2013Процесс превращения пара в жидкость. Расчет количества теплоты, необходимого для превращения жидкости в пар. Температура конденсации паров вещества. Конденсация насыщенных паров. Определение теплоты фазового перехода при квазистатическом процессе.
презентация [784,4 K], добавлен 25.02.2015Построение гидродинамической сетки обтекания кругового цилиндра. Эпюры скоростей и давлений для одного сечения потока. Диаграмма распределения давления вдоль продольной оси канала. Расчет диаграммы скоростей и давлений по контуру кругового цилиндра.
курсовая работа [252,4 K], добавлен 27.03.2015Анализ и особенности распределения поверхностных сил по поверхности жидкости. Общая характеристика уравнения Бернулли, его графическое изображение для потока реальной жидкости. Относительные уравнение гидростатики как частный случай уравнения Бернулли.
реферат [310,4 K], добавлен 18.05.2010Безотрывное обтекание трубы. Теплоотдача при поперечном обтекании трубы. Отрыв турбулентного и ламинарного пограничных слоев от цилиндра. Анализ изменения коэффициента теплоотдачи по рядам трубных пучков. Режимы движения жидкости в трубном пучке.
презентация [182,0 K], добавлен 18.10.2013Основные характеристики и механизм возникновения магнитного центра Земли. Понятие энергии геодинамо. Рассмотрение природы вращения Земли. Интегральный электромагнитогидродинамический и термический эффект. Причины возникновения циклонов, тайфунов, торнадо.
дипломная работа [2,3 M], добавлен 19.03.2012Первая теорема Гельмгольца. Уравнение баланса внутренней энергии и мощность ее диссипации. Обобщенное уравнение Гельмгольца для дисперсии завихренности в вязкой несжимаемой среде. Квазитвердое движение внутри вихря Ренкина и вызванное поле вне вихря.
лекция [334,3 K], добавлен 26.02.2011Постановка второй основной задачи динамики системы. Законы движения системы, реакций внутренних и внешних связей. Вычисление констант и значений функций. Составление дифференциального уравнения движения механизма с помощью принципа Даламбера-Лагранжа.
курсовая работа [287,3 K], добавлен 05.11.2011