Введение в электрофотонодинамику
Электрон и фотон как главные участники всех процессов и явлений, которые раньше объединяло понятие "Электродинамика". Обоснование необходимости уточнения названия этого раздела физики "Электрофотонодинамика", предмет его изучения и основные разделы.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 05.02.2019 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Введение в электрофотонодинамику
Электрофотонодинамика - раздел физики, в котором изучаются носители электричества - электроны, формируемые ими электрические и магнитные поля и взаимодействия между ними, а также носители видимой и невидимой фотонной информации - фотоны. Электрофотонодинамика родилась в России в начале XXI века на обломках электродинамики Фарадея и Максвелла.
Экспериментальной основой умершей электродинамики был закон электромагнитной индукции, открытый Майклом Фарадеем в 1831 году. Суть этого закона кратко можно выразить так: переменное электрическое поле создаёт магнитное поле, а переменное магнитное поле создаёт электрическое поле (рис. 1, а).
электрон фотон физика
Рис. 1. Схемы: а) электромагнитной и b) фотонной волн
На основании этого считается, что работа электромоторов, электрогенераторов, трансформаторов и других многочисленных электротехнических устройств - результат взаимодействия электрических и магнитных полей. Проверим связь с реальностью таких физических представлений.
Движение электронов вдоль проводов
Мы уже показали, что электрон представляет собой полый тор, который имеет два вращения: относительно оси симметрии и относительно кольцевой оси тора (рис. 2, а). Вращение относительно кольцевой оси тора формирует магнитное поле электрона, а направления магнитных силовых линий этого поля формируют два магнитных полюса: северный N и южный S (рис. 2, а).
Вращением электрона относительно центральной оси управляет закон сохранения кинетический момент , численная величина которого равна численной величине закона сохранения момента импульса , который управляет формированием и движением фотонов в пространстве (рис. 1, b и рис. 2, с).
Магнитный момент электрона - тоже величина векторная, совпадающая с направлением вектора кинетического момента . Оба эти вектора формируют северный магнитный полюс электрона (N), а на другом конце центральной оси его вращения формируется южный магнитный полюс (S). Формированием столь сложной структуры электрона (рис. 2, а) управляют 23 константы. Имея эту общую информацию о структуре электрона, приступим к анализу его поведения в проводах.
Рис. 2. а) схема теоретической модели электрона (показана лишь часть магнитных силовых линий); b) кластер электронов; c) схема процесса излучения фотона электроном
Свободные электроны не могут существовать в проводах совместно со свободными протонами, так как их соседство всегда заканчивается формированием атомов водорода, которые существуют только в плазменном состоянии в интервале температур 2700-10000 град. К. В результате возникает вопрос: каким образом в проводе с постоянным напряжением формируется на одном конце плюсовой потенциал, носителем которого являются протоны, а на другом - минусовый потенциал, носителем которого являются электроны?
Наличие модели электрона (рис. 2, а) позволяет нам приступить к поиску ответа на поставленный вопрос. Вполне естественно, что его надо базировать на экспериментальных данных. Начнём с самого простого школьного эксперимента - с изучения процесса отклонения стрелки самого древнего физического прибора - компаса, положенного на провод или под провод, по которому течёт ток.
На рис. 3 показана электрическая схема, направления проводов которой сориентированы плюсовыми концами на юг (S), а минусовыми - на север (N). При отсутствии напряжения в проводе направление стрелок компасов А, В, С и D совпадают с направлением правого и левого проводов на север N. При включении напряжения вокруг провода возникает магнитное поле, и стрелки компасов отклоняются (рис. 3).
Когда электроны движутся по левому проводу в направлении с юга (S) на север (N), то стрелка компаса A, расположенного над проводом, отклоняется вправо, а стрелка компаса B, расположенного под проводом, - влево (табл. 1).
Из этих результатов следует, что магнитное поле вокруг провода закручено против хода часовой стрелки и имеет магнитный момент. Наличие модели электрона (рис. 2, а) с известным направлением вектора его магнитного момента даёт нам основание полагать, что магнитное поле вокруг провода формируется совокупностью магнитных полей электронов, сориентированных вдоль провода таким образом, что направления векторов магнитного момента каждого электрона совпадают с направлением вектора магнитного момента поля, образующегося вокруг провода (рис. 3).
Те же электроны, которые движутся по правому проводу с севера (N) на юг (S), формируют вокруг него противоположно направленное магнитное поле и стрелки аналогичных компасов С и D отклоняются противоположно отклонению стрелок компасов А и В (рис. 3).
Рис. 3. Схема эксперимента по формированию магнитного поля электронами , движущимися по проводу
Таблица 1. Углы отклонения стрелок компасов A и B при различных токах (рис. 3)
Ток, I |
, град. |
, град |
|
1,0 А |
34,0 |
33,0 |
|
2,0 А |
48,0 |
50,0 |
|
3,0 А |
57,0 |
58,0 |
Из рис. 3 следуют схемы магнитных полей вокруг проводов. Вполне естественно, что эти поля формируют электроны, движущиеся по проводам (рис. 3). Из схемы магнитного поля вокруг провода (рис. 4, а) следует, что оно может быть сформировано лишь в том случае, если северные магнитные полюса электронов (рис. 2, а) направлены вверх (левый провод на рис. 3), в сторону минусового конца провода, а южные - вниз (рис. 4, b), в сторону плюсового конца провода.
Рис. 4. Схемы движения электронов в проводе от плюса (+) к минусу (-) и - формирования на его концах южного (S) и северного (N) магнитных полюсов и магнитного момента вокруг провода: а) электроны ориентированы вверх; b) электроны ориентированы вниз
На рис. 4, b электроны движутся вниз и формируют вокруг провода магнитное поле, направление которого противоположно направлению магнитного поля вокруг провода, когда электроны движутся вверх (рис. 4, а). Это означает, что плюсовой конец провода эквивалентен южному магнитному полюсу (S), а минусовой - северному (N) (рис. 4). Из этого эксперимента следует, что магнитное поле вокруг провода при такой его ориентации закручено против хода часовой стрелки и имеет магнитный момент .
Итак, результаты эксперимента, представленные на рис. 3 и в табл. 1, показывают, что направление магнитного поля, формирующегося вокруг провода, совпадает с направлением вращения свободных электронов в нём (рис. 3 и 4), поэтому направление тока совпадает с направлением векторов спинов и магнитных моментов электронов.
Таким образом, направления силовых линий магнитного поля, образующегося вокруг провода с током, соответствуют такой ориентации свободных электронов в нём, при которой они движутся от плюса к минусу, ориентируясь так, что южные полюса магнитных полей электронов оказываются направленными к плюсовому концу провода, а северные - к минусовому (рис. 3 и 4).
Из новых представлений о поведении электронов в проводе, следует необходимость заменить представления о плюсовом и минусовом концах проводов сети с постоянным напряжением на концы с северным и южным магнитными полюсами. Однако, процесс реализации этой необходимости будет длительный. Но он, как мы увидим дальше, неизбежен, так как углубление представлений о реальных электрофотонодинамических процессах невозможно без новых условностей в обозначении концов электрических проводов.
Таким образом, элементарная экспериментальная информация, которую мы привели, позволяет перевести сформировавшиеся предположения о структуре электрона и его движении по проводам в статусы научных постулатов. Для этого обратим внимание на то, что экспериментальный провод сориентирован с юга (S) на север (N) и южный конец этого провода подключён к плюсовой (+) клемме аккумулятора (рис. 3 и 4).
Итак, формулируем постулаты.
Первый - электрон имеет вращающуюся электромагнитную структуру.
Второй - электроны вращаются против часовой стрелки и имеют собственные магнитные моменты .
Третий - электроны, движутся по проводу с постоянным напряжением от плюса (+) к минусу (-).
Четвёртый - магнитные поля вращающихся электронов формируют суммарное магнитное поле, которое выходит за пределы провода. Направление вектора магнитного момента вокруг провода совпадает с направлениями векторов магнитных моментов электронов сориентированных вдоль провода (рис. 4).
Чистое постоянное напряжение U имеют батареи и аккумуляторы. Однако, этим понятием обозначают и выпрямленное переменное напряжение, поэтому при анализе поведения электронов в проводе с чистым постоянным напряжением и выпрямленным переменным напряжением надо учитывать этот факт.
Если к концам провода не приложено напряжение, то свободные электроны ориентированы в нём произвольно (рис. 5, а). Постоянное напряжение, приложенное к концам провода, сразу ориентирует свободные электроны так, что векторы их спинов и магнитных моментов оказываются направленными в сторону конца провода с отрицательным (-) потенциалом (рис. 5, b). Суммарное магнитное поле всех электронов, сориентированных вдоль провода, формирует вокруг него магнитное поле, направленное против хода часовой стрелки, если смотреть с конца вектора спина электрона (рис. 5, с).
Схема ориентации электронов при их движении вдоль провода с постоянным напряжением показана на рис. 5, b. Она следует из структуры электрона (рис. 2, а) и магнитного поля, формирующегося вокруг проводника с постоянным напряжением (рис. 4 и 5, с). Как видно (рис. 5, b и с), электроны выстраиваются так, что векторы их магнитных моментов оказываются направленными от плюса (+) к минусу (-). Таким образом, южные полюса S всех свободных электронов в проводе с постоянным напряжением оказываются сориентированными к плюсовому () концу провода. Северные полюса N всех свободных электронов оказываются сориентированными к концу провода с отрицательным потенциалом () (рис. 5, b и с).
Рис. 5: а) схема ориентации свободных электронов в проводе; b) cхема движения электронов в проводе с постоянным напряжением от южного полюса S (+) к северному полюсу N (-); с) схема формирования электронами магнитного поля вокруг провода
Чтобы понимать основания для введения представлений о том, что плюсовой конец провода соответствует южному магнитному полюсу, а минусовый - северному, надо иметь в виду, что в проводе нет свободных протонов, поэтому некому формировать в нём положительный знак заряда. Есть только свободные электроны (рис. 2, а), а они имеют один знак заряда, но два магнитных полюса: южный (S) и северный (N).
Дальше мы увидим, как из такой условности вытекают следствия, объясняющие такое обилие электрических эффектов, которые уверенно переводят данную гипотезу в статус научного постулата.
Анализируя описываемый процесс движения свободного электрона в проводе, надо иметь представления о разнице между размерами атомов и электронов, которые оказываются в промежутках между атомами. Примерная разница известна. Размеры электронов , а размеры атомов . Тысячекратная разница в размерах - достаточное условие для перемещения электронов в проводе.
Тем не менее, заряды и магнитные поля свободных электронов не безразличны для зарядов и магнитных полей электронов атомов, связанных с протонами ядер. Они оказываются достаточными, чтобы, воздействуя на валентные и другие связанные электроны, заставлять их излучать фотоны.
Таким образом, приложенное постоянное напряжение не только перемещает свободные электроны вдоль провода, но и генерирует фотоны, нагревающие провод. Чем больше приложенное напряжение, тем больше скорость движения электронов в проводе и интенсивнее их действие на связанные электроны, которые излучают фотоны с большей энергией.
Нетрудно видеть, что переменное напряжение заставит электроны вращаться так, что концы векторов магнитных моментов и спинов электронов будут описывать окружности. Изменение напряжения и напряжённости магнитного поля , возникающего при этом вокруг провода (рис. 4, а и b), принимает синусоидальный характер (рис. 6, а).
Последовательное изменение направления электронов в проводе с переменным напряжением на каждые в интервале одного периода колебаний, представлено на рис. 6, b, c, d, e и k. Как видно, меняющееся направление электронов в проводе формирует синусоидальный закон изменения напряжения в нём (рис. 6, а).
Рис. 6. Схемы изменения направления векторов магнитных моментов и спинов свободных электронов в проводе с переменным напряжением, которые формируют синусоидальное изменение напряжения
Вполне естественно предположить, что при максимальном положительном напряжении все свободные электроны в проводе ориентированы одинаково и векторы их магнитных моментов и спинов направлены в сторону движения электронов вдоль провода (рис. 6, b) от южного полюса S (плюса) к северному N (минусу). В этот момент напряжение и напряжённость магнитного поля вокруг провода максимальны и . Схема поворота векторов спинов и магнитных моментов электронов на и падение напряжения до нуля представлена на рис. 6, c. Вполне естественно, что в этом случае магнитное поле вокруг провода (рис. 4, а) отсутствует и напряжение равно нулю .
Когда векторы спинов и магнитных моментов электронов повернутся на от исходного положения (рис. 6, b), то полюса магнитной полярности на концах провода и направление магнитного поля вокруг провода (рис. 6, b и d) поменяются на противоположные, а амплитуда напряжения примет максимальное отрицательное значение (рис. 6, d).
Через следующие четверть периода направления векторов магнитных моментов и спинов электронов окажутся перпендикулярными оси провода (рис. 6, e). Магнитное поле вокруг провода (рис. 6, e) в этот момент исчезает, а величина напряжения будет равна нулю (рис. 6, e).
Векторы магнитных моментов и спинов свободных электронов займут исходную позицию (рис. 6, b) через следующие четверть периода (рис. 6, k). В этот момент направление магнитного поля вокруг провода окажется соответствующим исходному положению (рис. 6, b) и амплитуды напряжения и напряжённости магнитного поля вокруг провода будут максимальны (рис. 6, k). Так формируется процесс синусоидального изменения напряжения, тока и напряжённости магнитного поля в сети (рис. 6, a). Это даёт нам основание написать уравнения их изменения в таком виде:
(1)
(2)
. (3)
Вполне естественно, что описанным процессом изменения ориентации электронов в проводах управляют магнитные полюса магнитов первичных источников питания - генераторов электростанций, например.
Главная особенность описанного процесса - синхронность синусоидального изменения напряжения U, тока I и напряженности H магнитного поля вокруг провода. Описанный процесс показывает, что при переменном напряжении количество электронов в рассматриваемом сечении провода не изменяется, а изменяется лишь их ориентация, которая изменяет направление магнитного поля вокруг провода, характеризуемого вектором , (рис. 4, a и b).
Из описанного процесса поведения электронов в проводе с переменным напряжением обычной электрической сети следует, что свободные электроны меняют в ней своё направление с частотой сети, равной 50 Гц.
Если сравнивать поведение свободных электронов в проводе с постоянным напряжением (рис. 5), где электроны не меняют свою ориентацию, то потери энергии в проводе с постоянным напряжением меньше, чем с переменным. Это хорошо известный факт.
В проводе с переменным напряжением (рис. 6) расходуется дополнительная энергия на изменения направлений векторов спинов и магнитных моментов электронов, а также на периодичность формирования магнитного поля вокруг провода и на излучение импульсов фотонов электронами (рис. 1, b).
Резкое изменение направления векторов спинов и магнитных моментов свободных электронов изменяет скорость их вращения относительно своих осей, что и приводит к излучению фотонов (рис. 1, b) и рис. 2, с). При этом надо иметь в виду, что меняющаяся полярность напряжённости магнитного поля вокруг провода действует не только на свободные электроны, но и на валентные электроны атомов в молекулах и электроны атомов, не имеющие валентных связей. В результате в импульсе (рис. 1, b) оказываются фотоны разных размеров.
Наиболее простой пример явного проявления явления потерь энергии - спираль электрической лампочки накаливания. Переменные магнитные поля вокруг нитей спирали значительно больше шага спирали. В результате они перекрывают друг друга и таким образом увеличивают интенсивность действия на электроны атомов материала спирали и они, возбуждаясь, начинают излучать фотоны, накаливая спираль лампочки. При этом длина волны излучаемых фотонов (цвет спирали) зависит от приложенного напряжения и величины тока. Чем они больше, тем больше электронов проходит в единицу времени в каждом сечении провода спирали, которые увеличивают напряжённость магнитного поля , возникающего вокруг спирали, а это поле, в свою очередь, интенсивнее действует на электроны атомов в спирали, заставляя их излучать фотоны с большей массой, а значит с меньшими радиусами (рис. 1, b и рис. 2, с).
Из этого следует, что процессом изменения длины волны излучаемых фотонов можно управлять, изменяя интенсивность воздействия магнитных полей на электроны. Эта экспериментально разработанная процедура достигла, можно сказать, предельного совершенства в процессах передачи и приёма интернетовской информации, но физики - теоретики далеки от понимания тонкостей этого совершенства.
Дальше мы увидим, что при появлении в электрической цепи ёмкости и индуктивности синхронность изменения напряжения, тока и напряжённости магнитного поля нарушается.
Принципы работы электромоторов и электрогенераторов
Принципы работы электромотора и электрогенератора были открыты Майклом Фарадеем в начале 19-го века. До сих пор считается, что в его опытах наглядно проявилась связь между электрическими и магнитными явлениями. Однако, сейчас мы покажем, что эта наглядность оказалась ошибочной. Проводник с током перемещается в магнитном поле постоянного магнита не в результате взаимодействия электрического поля с магнитным, а в результате взаимодействия магнитного поля постоянного магнита и магнитного поля вокруг проводника, формируемого движущимися в нём электронами. Чтобы понять это, надо разобраться с процессом взаимодействия магнитных силовых линий, формируемых обычными стержневыми постоянными магнитами (рис. 7).
Как видно (рис. 7, а), у разноименных магнитных полюсов, сближающих друг друга, магнитные силовые линии в зоне контакта полюсов (рис. 7, а, точки а) направлены навстречу друг другу , а у одноименных магнитных полюсов, отталкивающих друг друга (рис. 7, b, точки b), направления магнитных силовых линий в зоне контакта полюсов совпадают .
Рис. 7. Схемы взаимодействия магнитных силовых линий стержневых магнитов
Из описанного процесса взаимодействия магнитных полюсов постоянных магнитов следует, что если у двух параллельных проводов ток будет течь в одном направлении (рис. 8, а), то силовые линии магнитных полей, формирующихся в плоскости, перпендикулярной проводам, в зоне их контакта будут направлены навстречу друг другу и провода будут сближаться, как разноименные полюса магнитов (рис. 7, а).
Рис. 8. Схема взаимодействия магнитных полей параллельных проводников
Если же направление тока у параллельных проводов будет противоположно (рис. 8, b), то направления магнитных силовых линий образующихся при этом магнитных полей будут совпадать по направлению в зоне их контакта, и такие провода будут удаляться друг от друга, как и одноименные полюса стержневых магнитов (рис. 8, b).
А теперь обратим внимание на взаимодействие силовых линий магнитного поля постоянного магнита с силовыми линиями магнитного поля, формируемого электронами, движущимися от плюса к минусу по проводнику (рис. 9, а).
В зоне D (рис. 9, а) силовые линии направлены навстречу друг другу, поэтому они сближаются, как и силовые линии магнитных полей двух проводников с равнонаправленным током (рис. 8, а). В результате возникает сила , смещающая проводник влево (рис. 9, а).
С другой стороны проводника, в зоне А, направления силовых линий постоянного магнита и магнитного поля, сформированного движущимися по проводнику электронами, совпадают по направлению. В этом случае, как следует на рис. 8, b, магнитные силовые линии отталкиваются и также формируют силу, направленную влево. Так формируется суммарная сила, перемещающая проводник с током в магнитном поле (рис. 9).
Рис. 9: а) схема движения проводника с током в магнитном поле; b) схема генерирования тока в проводнике, движущемся в магнитном поле электрогенератора
Если же в магнитном поле движется проводник без тока (рис. 9, b), то в нём генерируется напряжение. Внешнее магнитное поле ориентирует свободные электроны в проводнике так, чтобы магнитные силовые линии их суммарного магнитного поля вокруг проводника формировали сопротивление его перемещению (рис. 9, b).
Движение электронов вдоль проводника (рис. 9, b) от плюса к минусу возникает благодаря принудительному перемещению проводника со скоростью в магнитном поле постоянного магнита в левую сторону.
В зоне D (рис. 9, b) магнитные силовые линии постоянного магнита и магнитные силовые линии проводника с током направлены в одну сторону и будут отталкиваться друг от друга, препятствуя перемещению провода в левую сторону. В зоне А указанные силовые линии будут направлены навстречу друг другу и будут сближаться и также препятствовать перемещению провода в левую сторону (рис. 9, b). Из этого следует, что перемещение электронов вдоль провода от плюса к минусу возможно только при принудительном перемещении провода в левую сторону (рис. 9, b).
Таким образом, работа электромоторов и электрогенераторов базируется на взаимодействии только магнитных полей, но не магнитных и электрических, как считалось ранее.
Принцип работы диода
Ортодоксальная физика не имеет приемлемого варианта объяснения принципа работы диода. Он проясняется лишь при наличии модели электрона и знания законов его поведения в проводах с постоянным и переменным напряжением, которые мы уже описали.
Поскольку диод пропускает одни электроны и задерживает другие, то он делает это, учитывая два различных свойства электрона, а в заряде электрона заложено только одно свойство - отрицательный заряд. Поэтому надо включить в анализ поведения электрона в диоде и другие его характеристики. Так как электрон имеет отрицательный заряд и два магнитных полюса: северный и южный, то именно они и позволяют диоду выполнить функцию пропуска одних электронов и задержки других (рис. 10).
Рис. 10: а) схема пропуска диодом электронов, подошедших к его «дыркам» северными магнитными полюсами N; b) схема задержки электронов, повёрнутых к его «дыркам» южными магнитными полюсами S
1.В чём отличие ортодоксальной сущности работы диода от реальной сущности его работы (рис. 10)? Ортодоксы считают, что диод задерживает протоны и пропускает электроны. Однако новые знания о микромире отрицают возможность совместного существования свободных электронов и протонов в проводе, так как их соседство автоматически заканчивается формированием атомов водорода, которые существуют лишь в плазменном состоянии при минимальной температуре 2700К. Из этого следует, что в проводах нет свободных протонов.
Электрический потенциал на концах проводов формируют только электроны своими магнитными полюсами. Установлено, что южный магнитный полюс соответствует плюсу, а северный - минусу (рис. 4). Если в проводе переменное напряжение, то оно формируется электронами, меняющими ориентацию своих магнитных полюсов с частотой переменного напряжения, которое выпрямляется с помощью диода (рис. 10).
Диод (рис. 10, а) будет пропускать лишь те электроны, которые подходят к его «дыркам» северными магнитными полюсами N. Электроны с противоположной магнитной полярностью пройдут через «дырку» диода только тогда, когда повернутся на 180 градусов (рис. 10, b). Для этого им нужно время.
В результате после диода D формируется первый положительный импульс N с длительностью 0,01с (рис. 11) и наступает такой же временной интервал 0,01с отсутствия импульса (рис. 11). Этот интервал соответствует времени поворота электрона на 180 град (рис. 10, b).
Рис. 11. Схема формирования диодом выпрямленного напряжения
2. В чём сущность диодной «дырки», пропускающей электроны, подошедшие к ней северными магнитными полюсами, и задерживающей электроны, сориентированные южными магнитными полюсами в сторону движения? Теперь нам известно, что электроны не имеют орбитальных движений в атомах. Они связаны с протонами ядер линейно. Поскольку протон тоже имеет северный и южный магнитные полюса, то возможна такая совокупность компоновки магнитных полюсов нейтронов, протонов и электронов, при которой на поверхности атома окажутся электроны. На их внешних контурах будут, например, южные магнитные полюса (S). Далее, из этих атомов возможно формирование таких молекул, которые создавали бы дырку, периметр которой и формировал бы дискретные магнитные поля одной полярности, например, южной (рис. 10, a).
Таким образом, так называемые «дырки» в диоде формируют электроны, связанные с атомами, молекулами и кластерами химического вещества диода. Они могут формировать по контуру «дырки» c напряжённостью магнитного поля одной полярности, например, южной. Тогда такая дырка будет пропускать только те электроны, которые повёрнуты к ней северными магнитными полюсами, направленными в сторону их движения (рис. 10, а). «Дырка» диода пропустит электроны с такой ориентацией и задержит электроны с ориентацией южных магнитных полюсов в сторону движения (рис. 10, b).
3. Можно ли ещё раз описать детали работы диода? Мы уже показали, что положительное напряжение соответствует ориентации электронов в проводе, показанной на рис. 10, a (слева). В этом случае к дырке диода с магнитным барьером, сформированным южными магнитными полюсами S атомов материала диода, подходят электроны с северными магнитными полюсами N, совпадающими с направлением движения этих электронов. Вполне естественно, что дырка диода с южным магнитным барьером S пропустит электроны, повёрнутые к ней своими северными полюсами N. Так электроны, формирующие напряжение с положительной амплитудой, пройдут через диод (D) и сформируют положительный (N) импульс напряжения (рис. 11).
Во второй половине, периода изменения направления векторов магнитных моментов и спинов электронов у диодной дырки окажутся электроны с южными магнитными полюсами, направленными в сторону их движения (рис. 10, b). Вполне естественно, что диодный барьер, сформированный из южных магнитных полюсов электронов атомов материала диода, не пропустит такие электроны. Неудачливым электронам придётся ждать ещё полпериода, и они окажутся повернутыми к диодной дырке северными магнитными полюсами N и дырка пропустит их, как своих, а величина напряжения в момент, когда электроны в проводе были повернуты к диоду южными магнитными полюсами, будет равна нулю (рис. 10, b). Так формируются положительные части, напряжения и тока, которые меняются синусоидально (рис. 11). Описанная закономерность вращения электронов и - работы диода легко проверяется с помощью компаса и многократно уже описана нами.
Осциллограммы напряжения и тока, выпрямленные диодом (рис. 11), показаны на рис. 12. Как видно, диод пропускает положительные значения переменного напряжения, когда электроны, подошедшие к дырке, оказываются повернутыми к ней северными магнитными полюсами (рис. 10, а) и не пропускает отрицательные составляющие синусоид напряжения и тока, когда электроны оказываются повернутыми к дыркам южными магнитными полюсами (рис. 10, b). Так электроны, формирующие напряжение с положительной амплитудой, пройдут через диод на рис. 11.
Рис. 12: а) осциллограмма выпрямленного напряжения; b) осциллограмма выпрямленного тока
Теперь нам известно, что электроны не имеют орбитальных движений в атомах. Они связаны с протонами ядер линейно. Поскольку протон тоже имеет северный и южный магнитные полюса, то возможна такая совокупность компоновки магнитных полюсов нейтронов, протонов и электронов, при которой на поверхности атома окажутся электроны, на внешней поверхности которых будут, например, южные магнитные полюса. Далее, возможно формирование таких молекул из этих атомов, которые создавали бы дырку, периметр которой и формировал бы дискретные магнитные поля одной полярности, например, южной (рис. 10, a).
Мы уже показали, что положительное напряжение соответствует ориентации электронов в проводе, показанной на рис. 10, a (слева). В этом случае к дырке диода с магнитным барьером, сформированным южными магнитными полюсами S атомов материала диода, подходят электроны с северными магнитными полюсами N, совпадающими с направлением движения этих электронов. Вполне естественно, что дырка диода с южным магнитным барьером пропустит электроны, пришедшие к ней со своими северными полюсами. Так электроны, формирующие напряжение с положительной амплитудой, пройдут через диод и осциллограмма фиксирует это положительной амплитудой синусоиды (рис. 12, а) с длительностью .
Во второй половине периода изменения направления векторов магнитных моментов и спинов электронов у диодной дырки, окажутся электроны с южными магнитными полюсами, направленными в сторону их движения (рис. 10, b). Вполне естественно, что диодный барьер, сформированный из южных магнитных полюсов электронов атомов, не пропустит такие электроны. Неудачливым электронам придётся ждать ещё пол периода (), и они окажутся повернутыми к диодной дырке северными магнитными полюсами, и она пропустит их, как своих, а величина напряжения в момент, когда электроны в проводе были повернуты к диоду южными магнитными полюсами, будет равна нулю (рис. 11 и 12). Осциллограмма зафиксирует длительность импульса напряжения и длительность его отсутствия (рис. 12). Сумма этих длительностей равна периоду следования положительных амплитуд синусоиды ().
Описанная закономерность работы диода следует из эксперимента, схема которого представлена на рис. 11. Обратим внимание на простоту электрической схемы рассматриваемого эксперимента. В ней нет ни ёмкости, ни индуктивности, но есть диод D.
Как видно (рис. 11), диод D пропускает положительные значения амплитуд переменного напряжения (рис. 12, а) и переменного тока (рис. 12, b), когда электроны, подошедшие к дырке, оказываются повернутыми к ней северными магнитными полюсами (рис. 10, а) и не пропускает отрицательные составляющие напряжения и тока, когда электроны оказываются повернутыми к дыркам южными магнитными полюсами (рис. 10, b).
На рис. 12 показаны интервалы времени, соответствующие разной ориентации спинов электронов перед «дыркой» (рис. 10). Длительности интервалов времени наличия напряжения и его отсутствия равны. Спин электрона изменяет свою ориентацию на за один период, поэтому длительность периода следования импульсов напряжения и тока равна (рис. 11).
Зарядка и разрядка конденсаторов
Зарядка диэлектрического конденсатора
Ошибочность существующей интерпретации работы конденсатора особенно очевидна. Она базируется на присутствии в электрической цепи положительных и отрицательных зарядов. Носители этих зарядов известны: протон и электрон. Однако, также известно, что они чувствуют присутствие друг друга на расстоянии в тысячу раз большем размера электрона и в миллион раз большем размера протона. Даже такое их далёкое соседство заканчивается процессом формирования атомов водорода, которые существуют лишь в плазменном состоянии, при температуре до 10000 К. Это происходит, например, в процессах удаления электронов и протонов от Солнца и последующего объединения их в атомы водорода. Так что совместное присутствие протонов и электронов в свободном состоянии в проводниках полностью исключается, поэтому положительный и отрицательный потенциалы на пластинах диэлектрического конденсатора - ошибка физиков. Исправим её.
Сейчас мы увидим, что пластины диэлектрического конденсатора заряжаются не разноимённой электрической полярностью, а разноимённой магнитной полярностью. При этом функции плюса принадлежат южному магнитному полюсу электрона, а функции минуса - северному (рис. 2, а). Эти полюса и формируют полярность, но не электрическую, а магнитную. Известно, что между пластинами диэлектрического конденсатора находится диэлектрик D (рис. 13, а).
Схема эксперимента по зарядке диэлектрического конденсатора показана на рис. 13, а. Самое главное требование к схеме - ориентация её с юга (S) на север (N). Чтобы обеспечить полную изоляцию конденсатора от сети после его зарядки, желательно использовать электрическую вилку, включаемую в розетку сети с напряжением 220 V. Сразу после диода d показан компас 1 (К), положенный на провод, идущий к конденсатору С. Стрелка этого компаса, отклоняясь вправо в момент включения вилки, показывает направление движения электронов (рис. 13, а) от точки S к нижней пластине конденсатора. Тут уместно обратить внимание на общность информации о поведении электронов в проводах, представленной на рис. 3, 5, 6 и 13.
Рис. 13: а) схема нашего эксперимента зарядки конденсатора; b) схема движения электронов к пластинам диэлектрического конденсатора
Выше компаса 1 (рис. 13, а) показана схема направления магнитного поля вокруг провода, формируемого движущимися в нём электронами. Эта схема аналогична схемам, показанным на рис. 3.
Таким образом, электроны, прошедшие через диод, приходят к нижней пластине конденсатора, сориентированными векторами спинов и магнитных моментов к её внутренней поверхности (рис. 13, b). В результате на этой поверхности формируется северный магнитный потенциал (N).
Вполне естественно, что к внутренней поверхности верхней пластины конденсатора электроны придут из сети сориентированными южными магнитными полюсами (S). Доказательством этого служит экспериментальный факт отклонения стрелки верхнего компаса 2 (К) вправо (рис. 13, а). Это означает, что электроны, движущиеся из сети к верхней пластине конденсатора, ориентированы южными магнитными полюсами (S) в сторону движения (рис. 13, b).
Таким образом, ориентацию электронов на пластинах диэлектрического конденсатора обеспечивает проницаемость их магнитных полей через диэлектрик D (рис. 13, b). Потенциал на пластинах конденсатора один - отрицательный и две магнитных полярности: северного и южного магнитных полюсов.
Так электроны - единственные носители электричества в проводах формируют на пластинах конденсатора не разноимённую электрическую полярность, а разноимённую магнитную полярность. Нет на пластинах диэлектрического конденсатора протонов - носителей положительных зарядов.
Разрядка диэлектрического конденсатора
Процесс разрядки диэлектрического конденсатора на сопротивление - следующее экспериментальное доказательство соответствия реальности выявленной модели электрона (рис. 2, а) и ошибочности сложившихся представлений о том, что на пластинах диэлектрического конденсатора формируются разноимённые электрические заряды (рис. 14).
Схема отклонения стрелок компасов (К) 1, 2, 3 и 4 при разрядке конденсатора на сопротивление R в момент включения выключателя 5 показана на рис. 14, а.
Рис. 14: а) схема отклонения стрелок компасов (К) в момент разрядки конденсатора; b) cхема движения электронов от пластин конденсатора к сопротивлению R при разрядке диэлектрического конденсатора
Как видно (рис. 14), в момент включения процесса разрядки конденсатора, магнитная полярность на пластинах конденсатора изменяется на противоположную, и электроны, развернувшись, начинают двигаться к сопротивлению R (рис. 14, а и b).
Электроны, идущие от верхней пластины конденсатора ориентируются южными магнитными полюсами в сторону движения, а от нижней - северными (рис. 14, b). Компасы 3 и 4, установленные на совокупности проводов ВА, сориентированных с юга на север, чётко фиксируют этот факт, отклонением стрелок вправо, доказывая этим, что векторы спинов и магнитных моментов всех электронов в этих проводах направлены с юга на север (рис. 14, a и b).
Зарядка электролитического конденсатора
При анализе процесса зарядки электролитического конденсатора надо учитывать, что в электролитическом конденсаторе присутствуют ионы, имеющие положительный и отрицательный заряды, которые и управляют процессом формирования потенциалов на пластинах электролитического конденсатора. Сейчас мы увидим, что наличие электролита в конденсаторе не приводит к появлению в проводах положительных носителей заряда, то есть протонов.
Мы уже показали, что электрон представляет собой полый тор, который имеет два вращения: относительно оси симметрии и относительно кольцевой оси тора. Вращение относительно кольцевой оси тора формирует магнитное поле электрона, а направления магнитных силовых линий этого поля формируют два магнитных полюса: северный N и южный S (рис. 2, а).
Вращением электрона относительно центральной оси управляет кинетический момент - векторная величина. Магнитный момент электрона - тоже величина векторная, совпадающая с направлением вектора кинетического момента . Оба эти вектора формируют северный магнитный полюс электрона (N), а на другом конце центральной оси его вращения формируется южный магнитный полюс (S). Формированием столь сложной структуры электрона (рис. 2, а) управляют 23 константы.
На рис. 15, а в качестве примера показана ориентация иона в электрическом поле. Положительно заряженный протон своим северным магнитным полюсом N направлен к отрицательно (-) заряженной пластине.
Так как векторы магнитных моментов электрона и протона в атоме водорода (рис. 15, с) направлены противоположно, то осевые электроны 2 и 3 атома кислорода (рис. 15, а), соединяясь в цепочку (рис. 15, b) с протонами и нейтронами ядра атома кислорода, формируют на концах оси иона одинаковую магнитную полярность N (рис. 15, b). Эта закономерность магнитной полярности сохраняется и вдоль оси кластера, состоящего из этих ионов (рис. 15, b). Логичность всех процессов сохраняется лишь при условии, если действия зарядов и магнитных полей электрона и протона эквивалентны.
Рис. 15. а) схема иона ; b) схема кластера из двух ионов ; с) модель атома водорода
Обратим внимание на главную особенность структуры атома водорода (рис. 15, с) и на векторы магнитных моментов электрона и протона . Они направлены вдоль оси атома в противоположные стороны. Обусловлено это тем, что сближение протона и электрона ограничивают их одноименные магнитные полюса. Распределение магнитных полей в структуре иона показано на рис. 15, а. Как видно, на концах оси этого иона северные магнитные полюса электрона и протона. Аналогичную полярность имеют и кластеры ионов (рис. 15, b). Вполне естественно, что количество кластеров ионов , формирующих электрическую цепь в диэлектрическом конденсаторе, очень велико.
Если роль электродов, представленных на рис. 15, а, выполняют пластины конденсатора, то при его зарядке, электроны, пришедшие из внешней сети, сориентируются южными магнитными полюсами у левой пластины конденсатора и северными магнитными полюсами у правой пластины (рис. 15, b). Обусловлено это тем, что электроны сближают их разноимённые магнитные полюса, а сближение электрона с протоном ограничивают одноимённые магнитные полюса.
На рис. 16, а, в качестве примера, показана ориентация иона в заряженном конденсаторе. Положительно заряженный протон своим северным магнитным полюсом направлен к нижней отрицательно (-) заряженной пластине конденсатора. Так как векторы магнитных моментов электрона и протона в атоме водорода (рис. 15, с) направлены противоположно, то осевые электроны 2 и 3 атома кислорода, соединяясь в цепочку с протонами и нейтронами ядра атома кислорода, формируют на концах оси иона одинаковую магнитную полярность. Эта закономерность магнитной полярности сохраняется и вдоль оси кластера, состоящего из этих ионов (рис. 16, b). Логичность всех процессов сохраняется лишь при условии, если действия зарядов и магнитных полей электрона и протона эквивалентны.
Рис. 16. а) схема ориентации иона в электролитическом конденсаторе; b) схема зарядки конденсатора; с) схема движения электронов к пластинам конденсатора при его зарядке
Обратим особое внимание на то, что у верхней пластины конденсатора (рис. 16, а) с обеих сторон присутствуют электроны и поэтому кажется, что они отталкивают друг друга.
Однако, надо иметь ввиду, что при образовании кластеров электронов они соединяются друг с другом разноимёнными магнитными полюсами, а одинаковые электрические заряды ограничивают их сближение. Поэтому контакт иона с верхней пластиной конденсатора обеспечивают разноимённые магнитные полюса электронов (рис. 16, с). У нижней пластины конденсатора - разноимённые электрические заряды, которые сближают протон атома водорода и электрон пластины конденсатора. Но это сближение ограничивается их одноимёнными магнитными полюсами. Так объясняются эти кажущиеся противоречия.
Таким образом, пластины электролитического конденсатора заряжаются разноимённой электрической полярностью и разноимённой магнитной полярностью одновременно. При этом функции плюса принадлежат южному магнитному полюсу электрона, а функции минуса - северному (рис. 2, а). Эти полюса формируют и электрическую, и магнитную полярности на пластинах конденсатора.
Проследим процесс зарядки конденсатора, чтобы увидеть, как магнитные полюса электрона и протона формируют магнитную и электрическую полярности его пластин.
Схема эксперимента по зарядке конденсатора показана на рис. 16, b. Самое главное требование к схеме - ориентация её проводов с юга (S) на север (N). Сразу после диода показан компас 1 (К), положенный на провод, идущий к конденсатору С. Стрелка этого компаса, отклоняясь вправо в момент включения напряжения, показывает направление движения электронов (рис. 16, b) от точки S к нижней пластине конденсатора С. Выше компаса показана схема направления магнитного поля вокруг провода, формируемого движущимися в нём электронами.
Таким образом, электроны, прошедшие через диод, приходят к нижней пластине конденсатора сориентированными векторами спинов и магнитных моментов к её внутренней поверхности (рис. 16, b). В результате на этой поверхности формируется северный магнитный потенциал (N), эквивалентный отрицательному потенциалу (-).
Вполне естественно, что к верхней пластине конденсатора электроны придут из сети сориентированными южными магнитными полюсами (S). Доказательством этого служит экспериментальный факт отклонения стрелки верхнего компаса 2 (К) вправо (рис. 16, b). Это означает, что электроны, движущиеся по проводу к верхней пластине конденсатора, ориентированы южными магнитными полюсами (S) в сторону движения.
Обратим внимание на то, что направления ориентации электронов при их движении к пластинам электрического конденсатора (рис. 16, с) аналогичны ориентации электронов при их движении к пластинам диэлектролитического конденсатора (рис. 13, a).
Так электроны - единственные носители электричества в проводах, формируют на пластинах электролитического конденсатора и разноимённую электрическую полярность (+ и -) и разноимённую магнитную полярность (S и N) одновременно (рис. 16).
Физика колебательного контура конденсатор + индуктивность
Конденсатор и индуктивность - основные элементы колебательных систем. Схематически они показываются просто (рис. 17, a).
Считается, что одна пластина конденсатора С заряжена отрицательно, а другая положительно. Если конденсатор электролитический, то это соответствует реальности, так как указанные потенциалы формируют кластеры ионов, на одном конце которых отрицательно заряженный электрон, а на другом - положительно заряженный протон (рис. 15, 16, a). Другое дело - провод, по которому движутся электроны. В нём не могут присутствовать одновременно и электроны, и протоны, так как их соседство заканчивается образованием атомов водорода и плазмы с температурой до 10000 К.
Таким образом, процессы, протекающие в конденсаторах и индуктивностях, а также в проводах, которые соединяют их, остаются скрытыми для понимания.
Давно известно, что однократное включение питания схемы конденсатор - индуктивность (рис. 17, а) приводит к появлению затухающих синусоидальных колебаний напряжения (рис. 17, b). Чтобы понять, что происходит в этот момент в схеме конденсатор - индуктивность, представим конденсатор и катушку индуктивности в виде полутора витков и покажем направления движения электронов 1 и 2 в витках катушки при разрядке конденсатора (рис. 17, с). Одновременно попытаемся найти ответ на главный вопрос электрофотонодинамики: в чём сущность причины, формирующей колебательный процесс изменения напряжения в системе конденсатор - индуктивность (рис. 17, c)?
Рис. 17: а) схема конденсатор + индуктивность; b) график затухающей синусоиды; с) схема процессов движения электронов в цепи конденсатор - индуктивность при разрядке конденсатора; d), e) и k) закономерность изменения напряжения, тока и напряжённости магнитного поля при разрядке конденсатора на катушку индуктивности (рис. 17, c)
Чтобы найти ответ на поставленный вопрос, проследим за движением электронов к катушке индуктивности. Главное в этом процессе - направления движения электронов из конденсатора в катушку индуктивности. Мы уже показали, что эта задача решается вполне удовлетворительно с помощью древнейшего прибора - компаса. Установим эти компасы ( и ) на провода, подходящие от конденсатора к катушке индуктивности, предварительно сориентировав их в направлении с юга на север (рис. 17, c).
Итак, проследим за движением электронов от конденсатора к катушке индуктивности вблизи клемм этой катушки. Обратим внимание на отличия в ориентации электронов в проводах, соединяющих конденсатор и активное сопротивление (рис. 14, b) и в проводах, соединяющих конденсатор и катушку индуктивности (рис. 17, с), зафиксированные отклонением стрелок компасов ( и ).
Теперь видно (рис. 17, с), что электроны от верхней и нижней пластин конденсатора встречаются в середине катушки индуктивности (сечение К-К) одноимёнными зарядами и одноимёнными южными магнитными полюсами. Это автоматически формирует процесс их отталкивания друг от друга, и они устремляются вновь к пластинам конденсатора.
Когда конденсатор заряжен, то напряжение на его пластинах в момент включения выключателя 5 максимально и равно, например, 100 В (рис. 17, d).
Совокупность магнитных полей всех электронов во всех витках катушки формирует суммарное магнитное поле, направление силовых линий, которого легко определяется по направлению спинов электронов 1 и 2 (рис. 17, c). Эти электроны подходят к сечению К-К с противоположно направленными векторами спинов и магнитных моментов. Это значит, что сформированные ими магнитные поля вокруг витков катушки, в зоне встречи электронов (сечение К-К) направлены навстречу друг другу одноимёнными магнитными полюсами (рис. 17, с) и тоже отталкиваются. Когда электроны, идущие от верхней и нижней пластин конденсатора С, встретятся в сечении К-К катушки, то конденсатор C полностью разрядится.
Итак, к моменту начала разрядки конденсатора, напряжение V на его клеммах имеет максимальное значение (рис. 17, b, 17, d; +Umax), ток I и напряжённость H магнитного поля катушки, равны нулю (рис. 17, e и k; I=0, H=0). В момент прихода электронов к сечению К-К катушки и их остановки, напряжение на клеммах конденсатора оказывается равным нулю (рис. 17, d; U=0), а величины тока и напряженности магнитного поля катушки - максимуму (рис. 17, e и k; +Imax, +Hmax).
Далее, напряжённость магнитного поля катушки начинает уменьшаться (рис. 17, e) и автоматически изменяет направление векторов спинов и магнитных моментов электронов на противоположное, и они, двигаясь назад к конденсатору, формируют на его клеммах противоположную магнитную полярность. В момент прихода электронов к пластинам конденсатора, отрицательное напряжение на его клеммах достигает максимального отрицательного значения (рис. 17, d; - Umax), а величины обратно направленных тока и напряженности магнитного поля принимают нулевые значения (рис. 17, e и k; I=0, H=0).
После этого начинается второе движение электронов от пластин конденсатора к катушке. При этом электроны меняют направления векторов магнитных моментов и спинов на противоположные. В результате величина противоположного (отрицательного) потенциала на пластинах конденсатора начинает уменьшаться до нуля (рис. 17, d; U=0), а величина тока, обусловленная движением электронов с противоположно направленными векторами спинов, увеличиваясь, уходит в отрицательную зону (рис. 17, e; - Imax). Так же изменяется и напряженность противоположно направленного магнитного поля катушки (рис. 17, k; - Hmax). Так формируется синусоидальный процесс изменения напряжения, тока и напряжённости магнитного поля вокруг проводов катушки. Если после первого замыкания и размыкания электрической цепи в схеме: конденсатор - индуктивность (рис. 17, а) этот процесс не повторится, то амплитуда напряжения начнёт уменьшаться, а процесс его колебаний - затухать (рис. 17, b).
Обратим внимание на то, что перезарядку конденсатора осуществляет один носитель электрического заряда - свободный электрон, без участия положительно заряженного протона, который не существует в проводах в свободном состоянии. Поэтому у нас нет никакого права приписывать пластинам конденсатора разную электрическую полярность. Они получают разную магнитную полярность.
...Подобные документы
Корпускулярно-волновой дуализм и принцип Гейзенберга. Уравнение Шрёдингера, функции распределения, методы возмущений. Свободные электроны в телах, функция плотности состояний, теорема Блоха. Электроны в твердых телах и энергетических зонах, фононы.
контрольная работа [2,1 M], добавлен 24.08.2015Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния.
учебное пособие [686,6 K], добавлен 26.02.2008Классификация и типы эмиссии электронов из проводников: термоэлектронная, холодная и взрывная, фотоэлектронная. Контактные явления на границе раздела двух проводников, их характеристика и физическое обоснование, главные влияющие факторы и значение.
презентация [1,7 M], добавлен 13.02.2016Структура изучения квантовой оптики в школе. Особенности методики. Изучение вопроса о световых квантах. Внешний фотоэффект. Эффект Комптона. Фотоны. Двойственность свойств света. Применение фотоэффекта. Роль и значение раздела "Квантовая оптика".
курсовая работа [61,0 K], добавлен 05.06.2008История развития кинематики как науки. Основные понятия этого раздела физики. Сущность материальной точки, способы задания ее движения. Описание частных случаев движения в зависимости от ускорения. Формулы равномерного и равноускоренного движения.
презентация [1,4 M], добавлен 03.04.2014Предмет и структура физики. Роль тепловых машин в жизни человека. Основные этапы истории развития физики. Связь современной физики с техникой и другими естественными науками. Основные части теплового двигателя и расчет коэффициента его полезного действия.
реферат [751,3 K], добавлен 14.01.2010Построение графика скорости центра масс фотона. Методы получения волнового уравнения Луи Де Бройля: выведение процесса описания движения центра масс фотона за рамки аксиомы. Основные математические модели, которые описывают главные характеристики фотона.
контрольная работа [628,3 K], добавлен 13.10.2010Квантовый перенос в мезоскопических системах. Рассеяние на примесных атомах. Резонансное туннелирование электронов. Электрон-фононное рассеяние. Рассеяние на шероховатостях границы раздела. Межподзонное рассеяние. Эффект всплеска дрейфовой скорости.
контрольная работа [2,4 M], добавлен 26.08.2015Предмет и задачи механики – раздела физики, изучающего простейшую форму движения материи. Механическое движение - изменение с течением времени положения тела в пространстве относительно других тел. Основные законы классической механики, открытые Ньютоном.
презентация [303,7 K], добавлен 08.04.2012Сущность физики как науки о формах движения материи и их взаимных превращениях. Теснейшая связь физики с другими отраслями естествознания, ее методы исследований. Основные величины, используемые в механике, молекулярной физике, термодинамике и оптике.
лекция [339,3 K], добавлен 28.06.2013Анализ всеобщего свойства движения веществ и материи. Способы определения квазиклассического магнитного момента электрона. Сущность, особенности и доказательство теории WAZA, ее вклад в развитие физики и естествознания. Парадоксы в теории П. Дирака.
доклад [137,8 K], добавлен 02.03.2010Основные понятия и специальные разделы электродинамики. Условия существования электрического тока, расчет его работы и мощности. Закон Ома для постоянного и переменного тока. Вольт-амперная характеристика металлов, электролитов, газов и вакуумного диода.
презентация [8,4 M], добавлен 30.11.2013Полевая концепция природы электричества как фундамент классической электродинамики. Доказательство, что уравнения полевой теории стационарных явлений электромагнетизма можно получить гипотетически, ориентируясь на основных эмпирических законах.
реферат [75,9 K], добавлен 25.01.2008Рассмотрение противоречий между законами общей физики, законом притяжения Ньютона и законом Бернулли. Фундаментальный характер сил и явлений, возникающих в процессе реализации "Четвёртого способа". Понятие статического давления и создание подъёмной силы.
статья [1,0 M], добавлен 09.05.2014Требования к уровню подготовки учащихся. Методика изучения раздела "Механические колебания и волны". Особенности превращения энергии при гармонических колебаниях. Природа возникновения механических волн и звука, составление компьютерных моделей.
курсовая работа [3,9 M], добавлен 08.10.2013Значение деятельности Э. Ленца в развитии учения об электричестве. Дополнение Ленцем закона об электромагнитной индукции, лежащего в основе современной электротехники. Главнейшие результаты исследований Ленца, которые излагаются во всех учебниках физики.
презентация [461,8 K], добавлен 06.01.2012Особенности и направления негативного воздействия курения на человеческий организм, на его отдельные органы и системы. Физическое обоснование процессов, происходящих внутри и вокруг курильщика. Основные рекомендации курящим, снижающие риски для здоровья.
реферат [779,1 K], добавлен 22.12.2014Основные представители физики. Основные физические законы и концепции. Концепции классического естествознания. Атомистическая концепция строения материи. Формирование механической картины мира. Влияние физики на медицину.
реферат [18,6 K], добавлен 27.05.2003Фазовое пространство и фазовая плотность вероятности. Первое начало термодинамики с точки зрения статистической физики. Статистическое определение энтропии. Статистическое обоснование третьего начала термодинамики. Теорема о равнораспределении.
контрольная работа [228,5 K], добавлен 06.02.2016Проведение цикла лабораторных работ, входящих в программу традиционного курса физики: движение электрических зарядов в электрическом и магнитном полях; кинематика и динамика колебательного движения; термометрия и калориметрия.
методичка [32,9 K], добавлен 18.07.2007