Общая энергетика
Современные способы получения электрической энергии. Тепловые конденсационные электрические станции. Использование теплоэлектроцентралей, газотурбинных и парогазовых установок, гидравлических электрических станций, аккумулирующих электрических станций.
Рубрика | Физика и энергетика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 27.03.2019 |
Размер файла | 4,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Конденсатным насосом конденсат перекачивают через подогреватели низкого давления (ПНД) в деаэратор. При доведении конденсата до кипения происходит освобождение его от кислорода и углекислоты, вызывающих коррозию оборудования. Из деаэратора вода питательным насосом через подогреватели высокого давления (ПВД) подается в паровой котел Подогрев конденсата в ПНД и питательной воды в ПВД производится паром, отбираемым из турбины, -- регенеративный подогрев. Регенеративный подогрев воды также повышает к. п. д. паротурбинной установки, уменьшая потери теплоты в конденсаторе.
Таким образом, на КЭС (рис. 1.1,а) паровой котел питается конденсатом производимого им пара. Часть этого конденсата теряется в системе электростанции и составляет утечки. На ТЭЦ часть пара, кроме того, отводится на технологические нужды промышленных предприятий или используется для бытовых потребителей. На КЭС утечки составляют небольшую долю общего расхода пара -- около 0,5--1%, и для их восполнения требуется добавка воды, предварительно обрабатываемой в водоподготовительной установке. На ТЭЦ эта добавка может достигать 30--50% и более.
Добавочная вода и турбинный конденсат содержат некоторые примеси, главным образом растворенные в воде соли, окислы металлов и газы. Эти примеси вместе с питательной водой поступают в котел. В процессе парообразования в воде повышается концентрация примесей, и в определенных условиях возможно их выпадение на рабочих поверхностях котла в виде слоя отложений, ухудшающего передачу через них теплоты. В процессе парообразования, кроме того, примеси воды частично переходят в пар, однако чистота пара должна быть очень высокой во избежание отложения примесей в проточной части турбины. По обеим причинам нельзя допускать большого загрязнения питательной воды; допустимое загрязнение питательной воды и вырабатываемого пара регламентируется специальными нормами.
В число устройств и механизмов, обеспечивающих работу парового котла, входят: топливоприготовительные устройства; питательные насосы, подающие в котел питательную воду; дутьевые вентиляторы, подающие воздух для горения; дымососы, служащие для отвода продуктов сгорания через дымовую трубу в атмосферу, и другое вспомогательное оборудование Паровой котел и весь комплекс перечисленного оборудования составляют котельную установку. Современная мощная котельная установка представляет собой сложное техническое сооружение для производства пара, в котором все рабочие процессы полностью механизированы и автоматизированы; для повышения надежности работы ее оснащают автоматической защитой от аварий.
Тенденции развития паровых котлов: увеличение единичной мощности, повышение начального давления пара и его температуры, применение промежуточного перегрева пара, механизация и автоматизация управления, изготовление и поставка оборудования крупными блоками для облегчения и ускорения его монтажа.
Атомные электростанции. Устройство, в котором осуществляется регулируемая цепная реакция деления ядер тяжелых элементов, называется ядерным реактором. В качестве ядерчого топлива используют как природные изотопы 235U, так и искусственные изотопы 233U, 239Рu и др. Ядерная энергия, освободившаяся в результате цепной реакции деления, превращается в теплоту, которая теплоносителем отводится из реактора. В зависимости от схемы АЭС бывают: одноконтурные, двухконтурные и трехконтурные.
В одноконтурной АЭС (рис 1.2,а) пар образуется непосредственно в реакторе Следовательно, реактор одновременно является и парогенератором. Одноконтурные АЭС проще и дешевле, они содержат минимальное число элементов оборудования Вместе с тем под влиянием облучения в реакторе рабочее тело (вода и пар) становится радиоактивным, в связи с чем не только реактор, но л другое оборудование водопарового тракта электростанции должно иметь биологическую защиту Загрязнение пара приводит к образованию отложений в элементах оборудования Так как эти отложения радиоактивны, то ремонт оборудования затрудняется.
В двухконтурной АЭС (рис. 1 2,6) нагреваемый в реакторе поток жидкости, газа или расплава металла является теплоносителем, который передает теплоту рабочему телу в парогенераторе. Следовательно, в двухконтурной АЭС появляется дополнительное оборудование-- парогенератор, удорожающий электростанцию. Для передачи теплоты от теплоносителя рабочему телу в парогенераторе необходим перепад температуры. Поэтому при водном теплоносителе температура поступающего в турбину пара ниже, чем в одноконтурной АЭС. Наличие двух контуров приводит к необходимости поддерживать в реакторе более высокое давление, чем давление пара, направляемого в турбину. Вместе с тем двухконтурные АЭС имеют преимущества перед одноконтурными, так как радиоактивность распространяется только в пределах первого контура, и поэтому вскрытие турбины и другого оборудования в пределах второго контура для ремонта безопасно. Биологическая защита необходима только на первом контуре
В трехконтурной АЭС (рис 1 2,0) в качестве теплоносителя первого контура применяют жидкий натрий. Под влиянием облучения в реакторе натрий склонен к активации с образованием изотопа с высокой энергией г - излучения. Поэтому первый контур отделяют от рабочего контура промежуточным -- вторым контуром. Теплоносителем второго контура является также Na или сплав Na--К. Для защиты второго контура от попадания в него при нарушении плотности радиоактивного натрия первого контура давление во втором контуре поддерживается большим, чем в первом контуре. Рабочим телом третьего контура служит вода. В трехконтурных АЭС биологическая защита распространяется на первые два контура.
Комбинированные парогазовые установки и МГДУ. С применением пара сверхкритических параметров (р=25,5 МПа, tnn=545°C) и промежуточного перегрева пара (tвт=545°С), развитием регенерации теплоты, достижением высоких к. п. д. и мощности (1200 МВт и более) паротурбинных блоков тепловая экономичность ТЭС приблизилась к своему термодинамическому пределу (к. п. д. несколько более 40%). Дальнейшее повышение начальных параметров пара сильно увеличивает стоимость паротурбинных блоков из-за применения более высоколегированных и дорогостоящих сталей. Осложняется при этом и сохранение уже достигнутых показателей надежности.
Разработаны и проходят пробную эксплуатацию комбинированные системы, сочетающие паротурбинную установку (ПТУ) с высокотемпературной газотурбинной установкой (ГТУ). Из всех известных в настоящее время практический интерес представляют парогазовые установки (ПГУ), в высокотемпературной части которых работает ГТУ, а в низкотемпературной ПТУ. На рис. 1.3 показаны две основные схемы ПГУ. В обеих схемах газотурбинная часть работает на высокотемпературной теплоте. В установке, показанной на рис. 1.3,а, эта теплота выделяется в камере сгорания при подаче в нее топлива и сжатого в компрессоре атмосферного воздуха. Образующиеся в ней газы используются в газовой турбине. Выхлопные газы вместе с топливом поступают в топочную камеру парового котла. в котором вырабатывается пар. На этом паре работает паровая турбина. В продуктах сгорания, поступающих в топку котла, содержится около 16% кислорода, в связи с чем подача воздуха специально для сжигания основной массы топлива в котле не предусматривается, а потому воздухоподогреватель не нужен Удельный расход топлива у ПГУ ниже на 3--4%, чем у ПТУ с теми же начальными параметрами пара.
Другая схема ПГУ (рис. 1.3,6) предусматривает высоконапорный паровой котел (ВПК), в котором сжигание топлива и передача теплоты совершаются при высоком давлении (0,6--0,7 МПа). Это позволяет интенсифицировать эти процессы и проектировать котел с малым расходом металла и значительно меньших габаритов по сравнению с обычными. Как и в предыдущей схеме, газовая турбина работает на высокотемпературной теплоте продуктов сгорания -- топочных газов ВПК. Паровая турбина работает на паре, вырабатываемом ВПК. Покидающие газовую турбину продукты сгорания охлаждаются частью потока воды, идущей на выработку пара. При равенстве начальных параметров пара удельный расход топлива на 4--6% ниже, чем у ПТУ. Удельные капиталовложения также ниже на 8--12%.
Разработаны комбинированные парогазовые установки на ядерном топливе (рис. 1 4). Здесь камеру сгорания заменяют энергетический реактор с газовым теплоносителем В качестве теплоносителя используется инертный газ -- гелий, допускающий повышение температуры на выходе из реактора до 1500°С и выше. Высокотемпературные газоохлаждаемые реакторы могут эффективно применяться на АЭС с паровыми турбинами В парогазовых установках на ядерном горючем паровой котел является утилизатором тепла выхлопных газов газовых турбин
Еще одним типом комбинированных систем с участием парового цикла являются магнитогидродинамические установки (МГД - установки) Отличительная их особенность -- безмашинное преобразование части тепловой энергии в электрическую (рис 1 5) Сжатый в компрессоре и подогретый в котле до 1000-- 1200°С атмосферный воздух вместе с топливом поступает в камеру сгорания. Образовавшиеся здесь продукты сгорания при температуре 2500°С ионизируются. Интенсификация ионизации газа достигается присадками в камеру сгорания добавок в виде соединений калия, цезия и других щелочных металлов.
Горячие ионизированные газы (высокотемпературная плазма) со свойствами электрического проводника поступают в канал через сопло и движутся в нем со скоростью около 700 м/с Мощными постоянными магнитами в канале создается магнитное поле При движении плазмы в мощном магнитном поте ионизированные частицы индуктируют в цепи постоянный электрических ток, который затем преобразуется в переменный Газовый поток выходит из канала при температуре 1500 -- 2000°С Эта высокотемпературная теплота газов используется для подогрева воздуха, необходимого камере сгорания, и для генерации пара, используемого в паровой турбине Коэффициент полезного действия МГД установки может достигать 50--60% Около 70--80% всей электроэнергии вырабатывается в МГД-канале, остальные -- в паротурбинной установке.
Из рассмотрения принципиальных схем производства электрической энергии на электростанциях следует, что паровой котел на ТЭС и парогенератор на АЭС являются обязательными агрегатами, притом одними из главных практически любой мощности энергетической установки Паровой котел и парогенератор предназначены для производства пара в нужном количестве, обеспечивающем необходимую мощность турбины и за чанные параметры пара.
3.2 Классификация паровых котлов
В соответствии с законами фазового перехода получение перегретого пара характеризуется последовательным протеканием следующих процессов подогрева питательной воды до температуры насыщения, парообразования и, наконец, перегрева насыщенного пара до заданной температуры Эти процессы имеют четкие границы протекания и осуществляются в трех группах поверхностей нагрева. Подогрев воды до температуры насыщения происходит в экономайзере, образование пара-- в парообразующей (испарительной) поверхности нагрева, перегрев пара--в пароперегревателе.
В целях непрерывного отвода теплоты и обеспечения нормального температурного режима металла поверхностей нагрева рабочее тело в них -- вода в экономайзере, пароводяная смесь в парообразующих трубах и перегретый пар в пароперегревателе -- движется непрерывно. При этом вода в экономайзере и пар в пароперегревателе движутся однократно относительно поверхности нагрева (рис. 1 6). При движении воды в экономайзере возникают гидравлические сопротивления, преодолеваемые напором, создаваемым питательным насосом. Давление, развиваемое питательным насосом, должно превышать давление в начале зоны парообразования на гидравлическое сопротивление экономайзера. Аналогично движение пара в пароперегревателе обусловлено перепадом давления, возникающим между зоной парообразования и турбиной.
В парообразующих трубах совместное движение воды и пара и преодоление гидравлического сопротивления этих труб в котлах различных типов организовано по-разному. Различают паровые котлы с естественной циркуляцией, с принудительной циркуляцией и прямоточные.
Паровые котлы с естественной циркуляцией. Рассмотрим работу замкнутого контура (рис 1.6,а), состоящего из двух систем труб: обогреваемых 6 и необогреваемых 4, объединенных вверху барабаном 3, а внизу -- коллектором 5. Замкнутая гидравлическая система, состоящая из обогреваемых и необогреваемых труб, образует циркуляционный контур Объем барабана, заполненный водой, называют водяным объемом, а занятый паром-- паровым объемом. Поверхность, разделяющую паровой и водяной объем, называют зеркалом испарения. Водяной объем барабана и парообразующие трубы заполнены котловой водой.
В обогреваемых трубах 6 вода закипает, и поэтому они заполнены пароводяной смесью плотность рн. Необогреваемые трубы 4 заполнены водой, имеющей плотность р при давлении в барабане. Следовательно, нижняя точка контура -- коллектор, с одной стороны, подвержена давлению столба воды, заполняющей необогреваемые трубы, равному Hp'g, а с другой-- давлению столба паровотяной смеси, заполняющей обогреваемые трубы, равному Hpyg. Создающаяся в результате образования пара разность давлений Н(р'~pr,)g вызывает движение в контуре и называется движущим напором естественной циркуляции
Sдв=H(р'-pn)g, (1.1)
где SДВ -- движущий напор естественной циркуляции, Па; Н -- высота контура, м р' и рм-- соответственно плотность воды и пароводяной смеси, кг/м3; g -- ускорение свободного падения, м/с2.
По обогреваемым трубам вверх движется пароводяная смесь, в связи с чем они получили название подъемных труб, а по необогреваемым трубам движется вниз вода--это опускные трубы.
Агрегаты, в парообразующих трубах которых движение рабочего тела создается под воздействием напора циркуляции, естественно возникающего при обогреве этих труб, получили название паровых котлов с естественной циркуляцией.
В отличие от движения воды в экономайзере и пара в пароперегревателе, в которых рабочий процесс заканчивается при однократном прохождении рабочего тела через поверхность нагрева, движение рабочего тела в циркуляционном контуре многократное. Это значит, что в процессе одного цикла прохождения через парообразующие трубы вода испаряется не полностью, а лишь частично и поступает в барабан в виде пароводяной смеси. При естественной циркуляции массовое паросодержание на выходе из парообразующих труб составляет 3--25%. При паросодержании на выходе, равном, например, 20%, для полного испарения вола должна совершить движение через контур циркуляции пять раз.
Поскольку процесс образования пара происходит непрерывно и питательная вода в барабан также поступает непрерывно в соответствии с расходом пара, в контуре все время циркулирует вода и количество се не изменяется. Отношение массового расхода циркулирующей воды GB, кг/с, к количеству образовавшегося пара в единицу времени С„, кг/с, называется кратностью циркуляции
k=GB/Gu. (1 2)
В котлах с естественной циркуляцией кратность циркуляции находится в пределах 4--30 и более.
В парообразующих трубах можно организовать движение рабочего тела принудительно, например насосом, включенным в контур циркуляции. Такие агрегаты получили название котлов с многократной принудительной циркуляцией (рис. 1.6,6). Движущий напор циркуляции в этом случае в несколько раз превышает движущий напор при естественной циркуляции. Это позволяет расположить парообразующие трубы любым образом, исходя из условий конструирования котла, и организовать в нем циркуляцию не только с вертикальным подъемным движением, но также с горизонтальным и даже опускным движением пароводяной смеси. В паровых котлах этого типа кратность циркуляции составляет 3--10.
Отличительной особенностью паровых котлов с естественной и многократной принудительной циркуляцией является наличие барабана-- емкости, позволяющей организовать циркуляцию в замкнутой гидравлической системе и обеспечить отделение воды от пара. Барабан фиксирует все зоны котла: экономайзерную, парообразующую и пароперегревательную.
Барабанные котлы работают при докритическом давлении (ДКД), p<pкр. Прямоточные паровые котлы не имеют барабана, и через парообразующие трубы рабочее тело проходит однократно (рис. 1.6,0), так что кратность циркуляции k=l. Прямоточный котел представляет собой разомкнутую гидравлическую систему. Отличительной особенностью прямоточных котлов также является отсутствие четкой фиксации экономайзерной, парообразующей и пароперегревательной зон. В парообразующих поверхностях нагрева прямоточных котлов происходит безостановочное превращение воды в пар. Прямоточные котлы работают на ДКД и сверхкритическом давлении (СКД), р?ркр.
В паровых котлах с комбинированной циркуляцией (рис. 1.6,г) при пуске обратный клапан 10 открыт и агрегат работает по схеме (рис. 1.6,6). При достижении определенной нагрузки циркуляционный насос отключается, обратным клапан автоматически закрывается и паровой котел переключается на работу по прямоточной схеме (рис. 1 6,в).
3.3 Технологическая схема производства пара
Технологическая схема производства пара на паротурбинной электрической станции с прямоточными котлами и сжиганием твердого топлива в пылевидном состоянии показана на рис. 1.7. Твердое топливо в виде кусков поступает в приемно-разгрузочное помещение в железнодорожных вагонах. Вагоны заталкиваются в вагоноопрокидыватели и вместе с ними, поворачиваясь вокруг своей оси примерно на 180°, разгружаются в расположенные ниже бункера. С помощью автоматических питателей топливо поступает на ленточные конвейеры первого подъема, передающие его в дробилки. Отсюда поток измельченного топлива-- дробленки (размеры кусочков топлива не более 25 мм) конвейером второго подъема подается в бункера котельной. Далее дробленка поступает в углеразмольные мельницы, где окончательно измельчается и подсушивается. Образовавшаяся топливно-воздушная смесь поступает в топочную камеру.
В отечественной энергетике наиболее широкое распространение получили паровые котлы с П-образным профилем (подробно -- см. § 21.1)--это две вертикальные .призматические шахты, соединенные вверху горизонтальным газоходом. Первая шахта -- большая по размерам -- является топочной камерой (топкой). В зависимости от мощности агрегата и сжигаемого топлива ее объем колеблется в широких пределах-- от 1000 до 30000 м3 и более. В топочной камере по всему периметру и вдоль всей высоты стен обычно располагаются трубные плоские системы -- топочные экраны. Они получают теплоту прямым излучением от факела и являются радиационными поверхностями нагрева. В современных агрегатах топочные экраны часто выполняют из плавниковых труб, свариваемых между собой и образующих сплошную газоплотную (газонепроницаемую) оболочку. Газоплотная экранная система покрыта оболочкой из теплоизоляционного материала, которая уменьшает потери теплоты от наружного охлаждения стен агрегата, обеспечивает нормальные санитарно-гигиенические условия в помещении и исключает возможность ожогов персонала.
Вторая вертикальная шахта и соединяющий ее с топочной камерой горизонтальный газоход служат для размещения поверхностей нагрева, получающих теплоту конвекцией, и потому называются конвективными газоходами, а сама вертикальная шахта -- конвективной шахтой. Поверхности нагрева, размещаемые в конвективных газоходах, получили название конвективных.
После отдачи теплоты топочным экранам продукты сгорания покидают топку при температуре 900--1200°С (в зависимости от вида топлива) и поступают в горизонтальный газоход.
По мере движения в трубах топочных экранов вода превращается в пар. Поверхности нагрева, в которых образуется пар, являются испарительными, парообразующими. В прямоточном котле испарительная поверхность нагрева располагается в нижней части топки и потому называется нижней радиационной частью (НРЧ). При СКД в ней размещается радиационный экономайзер. Вода, поступающая в паровой котел, называется питательной водой.
Питательная вода содержит примеси. В процессе парообразования увеличивается содержание пара, вода при этом упаривается, а концентрация примесей возрастает. При достижении определенных концентраций в конце зоны парообразования на внутренней поверхности труб образуются отложения в виде накипи. Теплопроводность отложений в десятки раз меньше теплопроводности металла, из которого выполнены поверхности нагрева. Это ухудшает теплопередачу к рабочей среде и при интенсивном обогреве в топочной камере приводит к перегреву металла труб, снижению прочности и разрыву под действием внутреннего давления рабочей среды.
Поверхность нагрева, в которой завершается парообразование и осуществляется переход к перегреву пара, называют переходной зоной В этой зоне преимущественно и образуются отложения. Для облегчения работы металла в ранних конструкциях прямоточных котлов переходную зону выносили из топочной камеры в конвективный газоход, где интенсивность обогрева примерно на порядок меньше -- вынесенная переходная зона. В настоящее время прямоточные котлы питаются практически чистой водой и нормально накипь не образуется, поэтому в современных котлах вынесенной переходной зоны не делают и рабочая среда из НРЧ поступает непосредственно в вышерасположенные топочные экраны, в которых пар, уже перегревается -- радиационный пароперегреватель. Он может состоять либо из двух поверхностей нагрева: средней радиационной части (СРЧ) и верхней радиационной части (ВРЧ), включенных между собой по пару последовательно, либо только ВРЧ, включенной непосредственно за НРЧ. Из ВРЧ частично перегретый пар поступает в последнюю по ходу пара поверхность нагрева, расположенную в конвективном газоходе -- конвективный пароперегреватель, в котором он доводится до необходимой температуры. Из конвективного пароперегревателя перегретый пар заданных параметров (давления и температуры) направляется в турбину. Как и любая конвективная поверхность нагрева, конвективный пароперегреватель представляет собой систему большого числа параллельно включенных между собой трубчатых змеевиков из стальных труб, объединенных на входе и выходе коллекторами.
Температура продуктов сгорания за конвективным пароперегревателем достаточно высока (800--900°С). Частично отработавший в турбине пар снова направляют в паровой котел для вторичного (промежуточного) перегрева до температуры, обычно равной температуре пара, выдаваемого основным пароперегревателем. Этот пароперегреватель получил название промежуточного.
На выходе из промежуточного пароперегревателя продукты сгорания имеют еще высокую температуру (500--600°С) и поэтому содержащуюся в них теплоту утилизируют в конвективном экономайзере. В него поступает питательная вода, которая подогревается до температуры, меньшей температуры насыщения. При этой температуре вода поступает в НРЧ. За экономайзером температура продуктов сгорания составляет 300-- 450°С и более. Дальнейшая утилизация теплоты осуществляется в следующей конвективной поверхности нагрева для подогрева воздуха -- воздухоподогревателе. Воздухоподогреватель часто представляет собой систему вертикальных труб, через которые проходят продукты сгорания, а между трубами -- нагреваемый воздух. Температура воздуха на входе в воздухоподогреватель (холодный воздух) 30 -- 60°С, на выходе (горячий воздух) 250--420°С в зависимости от топлива и способа его сжигания.
При сжигании твердого топлива в пылевидном состоянии горячий воздух делят на два потока. Первичный воздух служит для подсушки топлива при размоле и транспорта готовой топливной пыли через горелки в топочную камеру. Температура топливно-поздушной смеси 70--130°С. Вторичный воздух, поступает через горелки в топку непосредственно (минуя мельничную систему) при температуре за воздухоподогревателем
После воздухоподогревателя продукты сгорания имеют уже достаточно низкую температуру (110--160°С). Дальнейшая утилизация теплоты этих продуктов сгорания экономически нецелесообразна, и их выбрасывают дымососом через дымовую трубу в атмосферу. Они получили название уходящих газов.
В результате сжигания топлива остается зола, которая в основной массе уносится продуктами сгорания. Ее улавливают в золоуловителе, размещаемом перед дымососом. Этим предотвращается абразивный износ дымососов и загрязнение атмосферы золой. Уловленная зола удаляется устройствами золоудаления, Часть золы выпадает в нижнюю часть топки и также непрерывно удаляется через систему золошлако удаления.
Технологическая схема производства пара с барабанными котлами отличается лишь конструкцией и работой самих паровых котлов (рис. 1.8). В этом случае образующаяся в топочных экранах пароводяная смесь поступает в барабан. Выделившийся в барабане практически сухой пар поступает в пароперегреватель, а затем в турбину.
Из рассмотрения технологической схемы производства пара (см. рис. 1.7) следует, что в состав котельной установки входят:
топливный тракт-- комплекс элементов, в котором осуществляется подача, дробление и размол твердого топлива, его транспортировка и подача в топочную камеру для сжигания. Топливный тракт включает дробильное оборудование, транспортеры, бункер дробленого топлива, углеразмольную мельницу и соединяющие ее с топочной камерой пылепроводы. До бункеров дробленки топливо перемещается конвейерами; сопротивление по топливному тракту, начиная с мельницы, преодолевается напором, создаваемым вентилятором;
водопаровой тракт, представляющий собой систему последовательно включенных элементов оборудования, в которых движется питательная вода, пароводяная смесь и перегретый пар. Водопаровой тракт включает следующие элементы оборудования: экономайзер, топочные экраны и пароперегреватели;
воздушный тракт, представляющий собой комплекс оборудования для приемки атмосферного (холодного) воздуха, его подогрева, транспортировки и подачи в топочную камеру. Воздушный тракт включает короб холодного воздуха, воздухоподогреватель (воздушная сторона), короб горячего воздуха и горелочные устройства;
газовый тракт -- комплекс элементов оборудования, по которому осуществляется движение продуктов сгорания до выхода в атмосферу; он начинается в топочной камере, проходит через пароперегреватели, экономайзер, воздухоподогреватель (газовая сторона), золоуловитель и заканчивается дымовой трубой.
Воздушный и газовый тракты соединяются между собой последовательно. Так образуется газовоздушный тракт. Переход от одного к другому осуществляется в объеме топочной камеры. Схема газовоздушного тракта показана на рис. 1.9,а. Здесь воздух транспортируют дутьевыми вентиляторами и соответствующий воздушный тракт на участке вентилятор-- топка находится под давлением выше атмосферного Продукты сгорания транспортируют дымососами, расположенными после котла, в связи с чем топка и все газоходы находятся под разрежением. Такую схему тяги и дутья называют уравновешенной, или сбалансированной.
Транспорт воздуха до топки и продуктов сгорания до выхода в атмосферу можно также обеспечить только дутьевыми вентиляторами-- без дымососов (рис. 1.9,б). Топка и газоходы в этом случае будут находиться под некоторым избыточным давлением-- наддувом. Для наглядности на рис. 1.10 показано сопоставление распределения давления и газовоздушном тракте котельной установки, работающей с уравновешенной тягой и наддувом.
3.4 Основные характеристики паровых котлов
Паропроизводительностью D, т/ч (или кг/с), называют количество пара, вырабатываемого паровым котлом в единицу времени. Расчет котла ведут на номинальную производительность Dном, под которой понимают ту наибольшую нагрузку, которую он должен на расчетном топливе устойчиво нести длительное время при номинальных значениях параметров пара и питательной воды. Промышленность выпускает стационарные энергетические паровые котлы широкого диапазона производительности (табл. 1.1).
В настоящее время энергетика СССР базируется главным образом на использовании агрегатов, вырабатывающих 1000, 1650 и 2650 т/ч пара на сверхкритические параметры (давление 25,5 МПа, перегрев пара 545°С, промежуточный перегрев пара 545°С) и к. п. д. 92--94%. Такие котлы обеспечивают паром турбины мощностью соответственно 300, 500 и 800 МВт. Паровой котел и турбина образуют энергетический блок. Введен в эксплуатацию энергетический блок 1200 МВт с котлом производительностью 3950 т/ч. В условиях ТЭЦ применяются котлы и на более низкие параметры и меньшей производительности.
Параметры перегретого пара характеризуются его давлением и температурой в выходном коллекторе пароперегревателя. Устанавливаемые на электростанциях котлы различают по давлению: высокого (10 и 14 МПа) и сверхкритического (25,5 МПа). Паровые котлы давлением 14 МПа и выше, как правило, выполняют с вторичным перегревом пара.
Классификация по давлению и тип котла |
Давление на выходе из котла МПа |
Давле- ние в бараба- не МПа |
Температура перегретого пара С |
Темпера- тура питатель- ной воды С |
Номинальная паропроизво- дительность Dном т/ч |
|||
Свежий пар |
Вторично перегретый пар |
|||||||
Среднее Высокое |
С естест- венной циркуля- цией |
4 10 14 14 |
4,4 11,5 15,5 15,5 |
440 540 570;560 570;545 |
- - - 570;545 |
145 215 230 230 |
25;35;50;75 120;160;230 320;420;500;820 640;670 |
|
Сверх- Крити- ческое |
Прямо- точные |
14 25,5 |
- - |
570;545;515 565;545 |
570;545;515 567;542 |
230 270 |
640;670;1800 950;1000;1600 1650;2500; 2650;3950 |
Классификация стационарных энергетических паровых котлов по параметрам перегретого пара приведена в той же табл. 1.1. Находится в эксплуатации котел производительностью 700 т/ч на давление 31,5 МПа с перегревом свежего пара до 655°С и вторичным перегревом до 570°С.
Типы и типоразмеры паровых котлов. В СССР действует ГОСТ 3619-76 на паровые котлы, в котором регламентированы давление и температура свежего и вторично-перегретого пара, паропронзводительность и температура питательной воды. В этом ГОСТ приняты обозначения типов паровых котлов: П -- котел прямоточный; Е -- то же с естественной циркуляцией; Пр -- то же с принудительной циркуляцией; Пп -- прямоточный котел с вторичным перегревом пара; Еп -- котел с естественной циркуляцией и вторичным перегревом пара и типоразмеров паровых котлов: первое число--паропроизводптельность, т/ч, второе число--давление пара, кгс/см2 (1 кгс/см2 ? О,1 МПа).
Обозначения типоразмеров относятся к котлам с топками для сжигания твердого топлива при удалении из них шлака в твердом состоянии. Например, типоразмер Пп-950-255 означает: прямоточный котел с промежуточным перегревом пара паропроизводительностью 950 т/ч, давлением перегретого пара 25,5 МПа (255 кгс/см2) дли твердого топлива и удалением из топки шлака в твердом состоянии. При сжигании других видов топлива вводятся дополнительные обозначения: Г -- газовое топливо; М -- мазут, ГМ -- газ и мазут; К -- комбинированное: твердое топливо, газ и мазут; Ж -- жидкое шлакоудаление. Например, типоразмер Е-420-140ГМ означает: паровой котел с естественной циркуляцией для сжигания газа и мазута на 420 т/ч пара при, давлении около 14 МПа (140 кгс/см2); Е-420-140Ж -- котел с естественной циркуляцией на те же параметры, но для сжигания твердого топлива и удаления шлака в жидком состоянии.
Действуют также заводские обозначения на котлы, в которых сначала записываются завод-изготовитель: Т -- Таганрогский котельный завод «Красный котельщик» (ТКЗ), П -- Подольский машиностроительный завод им. Орджоникидзе (ЗиО), БКЗ -- Барнаульский, котельный завод.
Коэффициент блочности. Повышения качества и ускорения сроков производства и монтажа достигают блочным изготовлением котлов на заводе, в связи с чем размеры блоков должны вписываться в железнодорожные габариты. На монтажной площадке из блоков собирают паровой котел. Коэффициент блочности, под которым понимают отношение массы блоков к полной массе агрегата, достигает 80--90%. Наибольшие трудности возникают при изготовлении блоков каркаса. Блочное производство оказывает влияние на конструкцию котла, так как условия транспорта и монтажа выдвигают ряд особых требований к конструкции блоков.
4. Котельные установки
4.1 Паровой котел и его основные элементы
Развитие конструкций котлов. Исторически развитие паровых котлов шло в направлении повышения паропроизводительности, параметров производимого пара (давления и температуры), надежности и безопасности в эксплуатации, увеличения экономичности (КПД) и снижения массы металлоконструкций, приходящейся на 1 т вырабатываемого пара.
Исходным типом современных котлов был простой цилиндрический котел (рис. 18.1, а), выполненный в виде горизонтального барабана с топкой под ним. Стенки барабана были одновременно и поверхностью нагрева. В дальнейшем увеличение поверхности нагрева шло по двум направлениям. В одном случае непосредственно в водяном пространстве барабана размещались большие и малые трубы; при этом большие одновременно являлись топкой (котлы с жаровыми трубами), а по малым пропускались продукты сгорания (котлы с дымогарными трубами). В другом случае к барабану присоединялись дополнительные наружные трубные поверхности нагрева -- кипятильные пучки, заполненные водой и обогреваемые топочными газами (водотрубные котлы).
Уменьшение диаметра труб этих поверхностей и увеличение их количества вели к росту удельной поверхности нагрева (м2/м3 объема газохода). В котлах этого типа движение среды через кипятильный пучок труб обеспечивалось за счет естественной циркуляции: пароводяная смесь в трубах кипятильного (испарительного) пучка, которая, естественно, легче воды, поднималась вверх, вытесняемая водой, поступающей из барабана по опускным трубам. Чтобы предотвратить образование пароводяной смеси в опускных трубах и уменьшить их сопротивление, увеличивали их диаметр по сравнению с подъемными -- кипятильными (рис. 18.1,6) и уменьшали обогрев, располагая их в зоне более низких температур продуктов сгорания (рис. 18.1, в). В дальнейшем опускные трубы вынесли за изоляционную стенку (обмуровку) котла (рис. 18.2). Использование вертикальных трубок в качестве кипятильного пучка (см. рис. 18.1, в) повысило надежность циркуляции пароводяной смеси в них. Котлы этого типа получили название вертикально-водотрубных. Впоследствии вертикальные (подъемные) трубы испарительной поверхности нагрева стали располагать и на стенах топки. Так появились экранные поверхности нагрева. (Название связано с тем, что они, выполняя свою основную функцию в качестве испарительной поверхности, еще и экранируют стены топки от излучения топочного объема, препятствуя налипанию на них размягченного шлака и золы.) Вместо нижних барабанов в качестве коллекторов (рис. 18.2, 18.1,6), объединяющих трубы поверхностей нагрева и являющихся переходными элементами между ними и опускными трубами, в котлах высокого давления используются цилиндрические камеры (трубы) относительно небольшого диаметра. Барабан постепенно перестал играть роль поверхности нагрева. Более того, стремление повысить надежность работы котла явилось причиной выноса барабана из зоны обогрева.
Целесообразность перегрева пара для энергетических установок (см. § 6.4) потребовала размещения специальных поверхностей нагрева -- пароперегревателей. Так, к середине XX века оформилась принципиальная схема конструкции барабанного вертикально-водотрубного котла с многократной естественной циркуляцией, имеющего экранированную топку (рис. 18.2).
Устройство современного парового котла. Одна из схем котла с естественной циркуляцией приведена на рис. 18.2. Барабанный паровой котел состоит из топочной камеры и газоходов, барабана, поверхностей нагрева, находящихся под давлением рабочей среды (воды, пароводяной смеси, пара), воздухоподогревателя, соединительных трубопроводов и воздуховодов.
Топливо подается к горелкам 7 (рис. 18.2). К горелкам подводится также воздух, предварительно нагретый уходящими из котла газами в воздухоподогревателе 5. Топливовоздушная смесь, подаваемая горелками в топочную камеру (топку) 8 парового котла, сгорает, образуя высокотемпературный (примерно 1500 °С) факел, излучающий теплоту на трубы 1, расположенные на внутренней поверхности стен топки. Это испарительные поверхности нагрева -- экраны. Отдав часть теплоты экранам, топочные газы с температурой около 1000 °С проходят через верхнюю часть заднего экрана, трубы которого здесь разведены в два-три ряда, и омывают пароперегреватель 3. Затем продукты сгорания движутся через водяной экономайзер, воздухоподогреватель и покидают котел с температурой около 110--150°С.
Вода, поступающая в паровой котел, называется питательной. Она подогревается в водяном экономайзере 4, забирая теплоту от продуктов сгорания (уходящих газов), экономя тем самым теплоту сожженого топлива. Испарение воды происходит в экранных трубах 1. Испарительные поверхности подключены к барабану 2 и вместе с опускными трубами 10, соединяющими барабан с нижними коллекторами экранов, образуют циркуляционный контур. В барабане происходит разделение пара и воды, кроме того, большой запас воды в нем повышает надежность работы котла. Сухой насыщенный пар из барабана поступает в пароперегреватель 3, перегретый пар направляется к потребителю.
Все поверхности нагрева котла, в том числе и воздухоподогреватель, как правило, трубчатые. Лишь некоторые мощные паровые котлы имеют воздухоподогреватели иной конструкции.
Нижнюю трапециевидную часть топки котельного агрегата называют холодной воронкой -- в ней охлаждается выпадающий из факела частично спекшийся зольный остаток, который в виде шлака проваливается в специальное приемное устройство. Газомазутные котлы не имеют холодной воронки.
Газоход, в котором расположены водяной экономайзер и воздухоподогреватель, называют конвективным (конвективная шахта), в нем теплота передается воде и воздуху в основном конвекцией. Поверхности нагрева, встроенные в этот газоход и называемые также хвостовыми, позволяют снизить температуру продуктов сгорания от 500--700 °С после пароперегревателя почти до 100 ° С, т. е. полнее использовать теплоту сжигаемого топлива.
Вся трубная система и барабан котла поддерживаются каркасом, состоящим из колонн и поперечных балок. Топка и газоходы защищены от наружных теплопотерь обмуровкой -- слоем огнеупорных и изоляционных материалов. С наружной стороны обмуровки стенки котла имеют газоплотную обшивку стальным листом с целью предотвращения присосов в топку избыточного воздуха и выбивания наружу запыленных горячих продуктов сгорания, содержащих токсичные компоненты. Для повышения надежности работы котла в ряде случаев движение воды и пароводяной смеси в циркуляционном контуре (барабан -- опускные трубы -- нижний коллектор -- подъемные трубы -- барабан) осуществляется принудительно (насосом). Это -- котлы с многократной принудительной циркуляцией.
Одними из последних являются конструкции прямоточных котлов с принудительным -- при помощи питательного насоса -- движением воды, пароводяной смеси и перегретого пара. Для этих агрегатов необходимость в барабане отпадает, и он не устанавливается. По прямоточной схеме работают также практически все водогрейные котлы, не имеющие ни испарительных, ни перегревающих поверхностей. Основные схемы движения потока вода -- пароводяная смесь -- пар в современных котельных агрегатах показаны на рис. 18.3.
В газоходах и топке котла за счет тяги специально устанавливаемого дымососа поддерживается разрежение. Оно не позволяет продуктам сгорания выбиваться в атмосферу котельного цеха через возможные неплотности обмуровки, через лючки и лазы.
Паровые котлы оснащаются системами дистанционного управления и автоматизации, обеспечивающими надежную, безопасную и экономичную их работу.
На предприятиях страны установлены изготовленные отечественными заводами паровые котлы различных конструкций. Размеры паровых котлов также различны. Некоторые в собранном виде можно перевозить автомобильным транспортом; в то же время крупнейшие котлы тепловых электрических станций имеют высоту до 100 м.
Наиболее крупными из выпускаемых в настоящее время котлов являются энергетические. Их паропроизводительность достигает 4000 т/ч, а мощность питающейся от них турбины может доходить до 1200 МВт, давление пара -- до 25 МПа, температура перегретого пара -- до 560 °С.
4.2 Поверхности нагрева парового котла
Испарительные поверхности. Парогенерирующие (испарительные) поверхности нагрева отличаются друг от друга в котлах различных систем, но, как правило, располагаются в основном в топочной камере и воспринимают теплоту излучения. Это -- экранные трубы, а также устанавливаемый на выходе из топки небольших котлов конвективный пучок труб (см. рис. 18.1).
Экраны котлов с естественной циркуляцией, работающих под разрежением в топке, выполняются из гладких труб с внутренним диаметром 40--80 мм. Экраны представляют собой ряд параллельно включенных вертикальных подъемных труб, соединенных между собой коллекторами. Зазор между трубами обычно составляет 4--6 мм. Размеры топки и величину поверхности экранов рассчитывают таким образом, чтобы на выходе из топки температура продуктов сгорания не превышала температуру размягчения золы, иначе зола будет прилипать к деталям котла, расположенным за топкой, и забьет («зашлакует») путь для прохода газа.
Пароперегреватели. Пароперегреватель предназначен для повышения температуры пара, поступающего из испарительной системы котла. Его трубы (диаметром 22--54 мм) могут располагаться на стенах или потолке топки и воспринимать теплоту излучением -- радиационный пароперегреватель либо в основном конвекцией -- конвективный пароперегреватель. В этом случае трубы пароперегревателя располагаются в горизонтальном газоходе или в начале конвективной шахты.
Температура перегретого пара должна поддерживаться постоянной всегда, независимо от режима работы и нагрузки котлоагрегата, поскольку при ее понижении повышается влажность пара в последних ступенях турбины, а при повышении температуры сверх расчетной появляется опасность чрезмерных термических деформаций и снижения прочности отдельных элементов турбины. Поддерживают температуру пара на постоянном уровне с помощью регулирующих устройств -- пароохладителей. Наиболее широко распространены пароохладители впрыскивающего типа, в которых регулирование производится путем впрыскивания обессоленной воды (конденсата) в поток пара. Вода при испарении отнимает часть теплоты у пара и снижает его температуру.
Низкотемпературные поверхности нагрева. Низкотемпературными считаются поверхности, расположенные в конвективном газоходе и работающие при относительно невысоких температурах продуктов сгорания. К ним относятся водяные экономайзеры и воздухоподогреватели. Основная цель их установки -- максимальное использование теплоты уходящих из котла газов.
Водяные экономайзеры, предназначенные для подогрева питательной воды, обычно выполняют из стальных труб диаметром 28--38 мм, согнутых в вертикальные змеевики и скомпонованных в пакеты. Трубы в пакетах располагаются в шахматном порядке довольно плотно: расстояние между осями соседних труб поперек потока дымовых газов составляют 2--2,5 диаметра трубы, а между рядами -- вдоль потока -- 1 -- 1,5. Крепление труб змеевиков и их дистанционирование осуществляются опорными стойками, закрепленными в большинстве случаев на полых (для воздушного охлаждения), изолированных со стороны горячих газов балках каркаса (рис. 18.4).
В экономайзере котлов высокого давления до 20 % воды может превращаться в пар.
Общее число параллельно работающих труб выбирается исходя из скорости воды не ниже 0,5--1 м/с. Эти скорости обусловлены необходимостью смывания со стенок труб пузырьков воздуха, способствующих коррозии, и предотвращения расслоения пароводяной смеси, которое может привести к перегреву слабо охлаждаемой паром верхней стенки трубы и ее разрыву. Движение воды в экономайзере обязательно восходящее; в этом случае имеющийся в трубах после монтажа (ремонта) воздух легко вытесняется водой.
Число труб в пакете в горизонтальной плоскости выбирается исходя из скорости продуктов сгорания 6--9 м/с. Скорость эта определяется стремлением, с одной стороны, получить высокие коэффициенты теплоотдачи, а с другой -- не допустить чрезмерного эолового износа. Коэффициенты теплопередачи при этих условиях составляют обычно несколько десятков Вт/(м2-К). Для удобства ремонта и очистки труб от наружных загрязнений экономайзер разделяют на пакеты высотой 1 -- 1,5м с зазорами между ними до 800 мм.
Наружные загрязнения с поверхности змеевиков удаляются, например, путем периодического включения в работу системы дробеочистки, в которой поток металлической дроби пропускается (падает) сверху вниз через конвективные поверхности нагрева, сбивая налипшие на трубы отложения. Налипание золы может быть следствием выпадения рось! из дымовых газов на относительно холодной поверхности труб, особенно при сжигании сернистых топлив (пары H2SOs конденсируются при более высокой температуре, чем HsO). В теплоэнергетических установках питательная вода перед поступлением в котел обязательно подвергается регенеративному подогреву (см. §6.4), поэтому ни налипания золы, ни наружной коррозии (ржавления) труб вследствие выпадения росы в экономайзерах таких котлов не бывает.
Верхние ряды труб экономайзера при работе котла на твердом топливе даже при относительно невысоких скоростях газов подвержены заметному износу золой. Для его предотвращения на эти трубы крепятся различного рода защитные накладки (обычно сверху вдоль трубы приваривают уголок).
Воздухоподогреватели. Поскольку питательная вода перед экономайзером энергетических котлов имеет высокую температуру tn „ после регенеративного нагрева (при р= 10 МПа, например, tn B = 230 °С), глубоко охладить уходящие из котла газы с ее помощью нельзя. Для дальнейшего охлаждения газов после экономайзера ставят воздухоподогреватель, в котором нагревают воздух, забираемый из атмосферы и идущий затем в топку на горение. При сжигании влажного угля нагретый воздух предварительно используется для его сушки в углеразмольном устройстве и транспортировки полученной пыли в горелку.
По принципу действия воздухоподогреватели разделяются на рекуперативные и регенеративные. Рекуперативные -- это, как правило, стальные трубчатые воздухоподогреватели (диаметр трубок 30--40мм). Схема такого подогревателя приведена на рис. 18.5. Трубки в нем расположены обычно вертикально, внутри них движутся продукты сгорания; воздух омывает их поперечным потоком в несколько ходов, организуемых за счет перепускных воздуховодов (коробов) и промежуточных перегородок.
Газ в трубках движется со скоростью 9--13м/с, воздух между трубками-- вдвое медленнее. Это позволяет иметь примерно равные коэффициенты теплоотдачи с обеих сторон стенки трубы.
Температуру стенок труб воздухоподогревателя во избежание конденсации на них водяных паров из уходящих газов желательно поддерживать выше точки росы. Этого можно достичь предварительным подогревом воздуха в паровом калорифере либо рециркуляцией части горячего воздуха.
Регенеративный воздухоподогреватель котла (рис. 18.6) представляет собой медленно вращающийся (3--5 об/мин) барабан (ротор) с набивкой (насадкой) из гофрированных тонких стальных листов, заключенный в неподвижный корпус. Секторными плитами корпус разделен на две части -- воздушную и газовую. При вращении ротора набивка попеременно пересекает то газовый, то воздушный поток. Несмотря на то что набивка работает в нестационарном режиме, подогрев идущего сплошным потоком воздуха осуществляется непрерывно без колебаний температуры. Движение газов и воздуха -- противоточное.
Регенеративный воздухоподогреватель отличается компактностью (до 250 м2 поверхности нагрева в 1 м3 набивки); он широко распространен на мощных энергетических котлоагрегатах. Недостатком его являются большие (до 10 %) перетоки воздуха в тракт газов, что ведет к перегрузкам дутьевых вентиляторов и дымососов и увеличению потерь теплоты с уходящими газами.
Все описанные тепловоспринимаю-щие элементы котла (поверхности нагрева) являются типичными теплообменниками, и расчет их ведется по формулам, приведенным в гл. 14. Поверхность нагрева рассчитывается по уравнению теплопередачи
(18.1)
где k -- коэффициент теплопередачи; Дtср -- среднелогарифмическая разность температур продуктов сгорания и рабочей среды; BPQ -- количество воспринятой теплоты.
Особенность расчета котлов состоит в том, что его принято осуществлять для 1 кг твердого и жидкого и 1 м3 газообразного топлива. В этом случае Q -- теплота, отданная продуктами сгорания 1 кг (м3) топлива и равна разности энтальпий продуктов сгорания до (Н') и после (Н") рассматриваемой конвективной поверхности, т. е.
Q = H'-H". (18.2)
Под Вр понимается расчетный расход топлива, т. е. его количество, действительно сгоревшее в топке. Это же количество теплоты передается в данной поверхности рабочему телу (воде, пару, воздуху):
BpQ=D(hвых-hвх) (18-3)
В этой формуле D -- расход рабочего тела; hвх и hвых -- энтальпии рабочего тела на входе в поверхность нагрева и выходе из нее, рассчитанные, как обычно, на 1 кг рабочего тела.
4.3 Конструкции отечественных паровых котлов
Барабанные котлы с естественной циркуляцией. На рис. 18.7 изображены газомазутный котел марки ТГМ-84Б производительностью 420 т/ч при давлении вырабатываемого пара 13,7 МПа (140 кгс/см2) и температуре 560 °С. Этот котел имеет сравнительно небольшие размеры (высота до оси барабана всего 28,7м). Топка котла разделена на две симметричные камеры (полутопки) вертикальным, воспринимающим излучение с двух сторон (двусветным) экраном. Первая ступень пароперегревателя этого котла выполнена из трубных панелей, расположенных по всей высоте фронтовой стены обеих полутопок, и является фронтовым экраном Потолок также закрыт сплошным рядом труб, образующих потолочный экран. Это -- вторая часть пароперегревателя (радиационный потолочный пароперегреватель). Третьей ступенью пароперегревателя являются разреженные пакеты вертикальных змеевиков, так называемые ширмы, расположенные отчасти в топке и воспринимающие излучением от горячих топочных газов значительную часть теплоты. Последняя ступень -- горизонтальные пакеты труб в конвективном газоходе (конвективный пароперегреватель). В результате радиацией передается до 60 % всей теплоты, воспринимаемой пароперегревателем.
Боковые экраны в нижней части имеют слабо наклоненные скаты к середине топки, образующие под. Во избежание перегрева обращенной к топке поверхности почти горизонтальных подовых труб при возможном расслоении в них пароводяной смеси эти трубы имеют защитную обмуровку со стороны топки. В настоящее время этот котел снабжается либо четырьмя, либо шестью горелками большой производительности. Малое число горелок упрощает обслуживание и ремонт котла.
Интересно крепление змеевиков конвективного пароперегревателя. Пакеты змеевиков опираются на стальные камеры (трубы), служащие опорными балками. Сами камеры охлаждаются прокачиваемой через них питательной водой.
...Подобные документы
Описание процессов получения электроэнергии на тепловых конденсационных электрических станциях, газотурбинных установках и теплоэлектроцентралях. Изучение устройства гидравлических и аккумулирующих электростанций. Геотермальная и ветровая энергетика.
реферат [3,5 M], добавлен 25.10.2013Силовое, измерительное и коммутационное оборудования электрических станций и подстанций. Механизм выработки энергии на тепловых электрических станциях. Особенности построения государственных районных электрических станций. Структурные схемы подстанций.
презентация [7,8 M], добавлен 10.03.2019Производство электрической и тепловой энергии. Гидравлические электрические станции. Использование альтернативных источников энергии. Распределение электрических нагрузок между электростанциями. Передача и потребление электрической и тепловой энергии.
учебное пособие [2,2 M], добавлен 19.04.2012Общая характеристика, работа и основные узлы теплоэлектростанции. Виды тепловых паротурбинных электростанций. Схема конденсационной электрической станции. Топливно-экономические показатели работы станций. Расчет себестоимости вырабатываемой энергии.
реферат [165,2 K], добавлен 01.02.2012Электрическая станция. Тепловые установки. Тепловые конденсационные электростанции. Теплоэлектроцентраль и ее особенности. Преимущества тепловых станций по сравнению с другими типами станций. Особенности принципов работы, преимущества и недостатки.
реферат [250,8 K], добавлен 23.12.2008Принцип действия тепловых конденсационных электрических станций. Описание назначения и технических характеристик тепловых турбин. Выбор типа и мощности турбогенераторов, структурной и электрической схем электростанции. Проектирование релейной защиты.
дипломная работа [432,8 K], добавлен 11.07.2015Задачи и критерии оптимизации режимов энергосистем. Математическое моделирование. Оптимизации режимов электрической сети. Контроль напряжений узлов и перетоков мощности в линиях электропередачи. Планирование режимов работы электрических станций.
реферат [198,5 K], добавлен 08.01.2017Характеристика электрических станций различного типа. Устройство конденсационных тепловых, теплофикационных, атомных, дизельных электростанций, гидро-, ветроэлектростанций, газотурбинных установок. Регулирование напряжения и возмещение резерва мощности.
курсовая работа [240,4 K], добавлен 10.10.2013Знакомство с суточными графиками нагрузки. Анализ способов определения располагаемой мощности станций энергосистемы. Рассмотрение особенностей оценки максимальных рабочих мощностей станций и резервов в электропитающих системах и электрических сетях.
презентация [101,3 K], добавлен 30.10.2013Электрическая энергия как основной вид энергии при разработке угольных сланцевых россыпных, рудных и нерудных месторождений. Характеристика внешнего и внутреннего электроснабжения. Классификация электрических станций, подстанций и электрических сетей.
реферат [22,2 K], добавлен 03.07.2009Выбор главной схемы электрических соединений. Проектирование структурной схемы станции. Выбор трансформаторов и источников питания. Способы ограничения токов короткого замыкания. Выбор электрических аппаратов и токоведущих частей электрической станции.
дипломная работа [1,1 M], добавлен 17.12.2015Освещение теоретического материала по проектированию электрических станций, сетей и систем местного значения и построения их векторных диаграмм. Выбор трансформаторов на станциях и подстанциях при определении приведенных нагрузок. Потери напряжения.
методичка [881,1 K], добавлен 06.01.2011Электростанции, вырабатывающие электроэнергию посредством преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора. Общие сведения о работе тепловых паротурбинных станций. Основные способы увеличения КПД.
реферат [1,4 M], добавлен 23.03.2014Проектирование цикла тепловых электрических станций: паросиловой цикл Ренкина, анализ процесса трансформации. Регенеративный цикл паротурбинной установки, техническая термодинамика и теплопередача, установки со вторичным перегреванием пара, цикл Карно.
курсовая работа [360,0 K], добавлен 12.06.2011Использование солнечной энергии в Республике Беларусь, тепловые гелиоустановки. Биомасса как аккумулятор солнечной энергии, получение энергии из когенерационных установок. Описание работы гидроэлектростанций. Принцип действия ветроэлектрических установок.
курсовая работа [2,2 M], добавлен 11.03.2010Основные сведения об электрической энергии. Типы и характеристики электрических станций. Организация электроснабжения, сведения об установках, передающих, распределяющих и потребляющих электроэнергию. Классификация помещений по условиям окружающей среды.
реферат [910,5 K], добавлен 17.05.2011Факторы распространенности электроэнергии на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива. Виды тепловых электрических станций. Графики электрической и тепловой нагрузки, способы покрытия их пиков.
контрольная работа [62,5 K], добавлен 19.01.2011Понятие о многоступенчатой передаче электроэнергии. Характеристики основных промышленных потребителей. Графики электрических нагрузок. Определение приведенного числа приемников, средних нагрузок, расхода электроэнергии, расчетных электрических нагрузок.
контрольная работа [465,0 K], добавлен 13.07.2013Промышленная и альтернативная энергетика. Преимущества и недостатки гидроэлектростанций, тепловых и атомных электростанций. Получение энергии без использования традиционного ископаемого топлива. Эффективное использование энергии, энергосбережение.
презентация [1,2 M], добавлен 15.05.2016Основные элементы трехфазных электрических цепей. Трехфазный источник электрической энергии. Анализ электрических цепей при соединении трехфазного источника и приемника по схемам "звезда" с нулевым проводом и "треугольник". Расчет и измерение мощности.
презентация [742,4 K], добавлен 25.07.2013