Общая энергетика

Современные способы получения электрической энергии. Тепловые конденсационные электрические станции. Использование теплоэлектроцентралей, газотурбинных и парогазовых установок, гидравлических электрических станций, аккумулирующих электрических станций.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 27.03.2019
Размер файла 4,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Главные циркуляционные насосы первого контура являются центробежными погружного типа с двухпоточным всасыванием, второго-- с односторонним. Привод ГЦН осуществляется асинхронными двигателями (для первого контура привод вынесен за пределы реактора). Для плавного регулирования мощности реактора и поддержания неизменного подогрева теплоносителя асинхронные двигатели ГЦН работают по схеме асинхронно-вентильного каскада. Для повышения устойчивой работы ГЦН первого и второго контуров при снижении напряжения они снабжены маховиками.

Активная зона реактора по торцам и периметру окружена экранами -- зоной воспроизводства, состоящей из сборок, заполненных диоксидом обедненного урана. Биологическая защита включает стальные экраны с графитовым наполнителем.

Паронегераторы, в которых образуется перегретый пар (третий контур), выполнены прямоточными и имеют малый запас воды. Поэтому при потере питания в системе СН станции для обеспечения режима расхолаживания к надежности электроснабжения аварийных ПЭН (АПЭН) и времени их пуска предъявляют повышенные требования, а АПЭН питают от специальных для каждого насоса дизель-генераторов с малым временем пуска. Следующие этапы технологического процесса производства электроэнергии не отличаются от обычных технологических процессов на КЭС.

Использование натрия в первом и втором контурах приводит к созданию соответствующих вспомогательных систем. При пуске АЭС из холодного состояния требуется предварительный электроразогрев «всего оборудования и трубопроводов. Электронагреватели суммарной мощностью 25 МВт устанавливают в местах, где возможен переход металла в твердую фазу при охлаждении. Исходя из повышенных требований к надежности электроснабжения нагреватели ^мощностью 3 МВт подключают к схеме надежного питания.

Для увеличения коррозионной стойкости конструкционных материалов натриевых контуров используют фильтр-ловушки, работа которых основана на охлаждении жидкометаллического теплоносителя, до температуры, меньшей температуры насыщения оксидов, растворенных в натрии. Натрий в ловушке охлаждается воздухом или, азотом, прокачиваемым по замкнутому контуру вентилятором. При отключенных ГЦН циркуляция натрия через фильтры осуществляется электромагнитными насосами. Перед заполнением первого и второго контуров натрием для исключения взаимодействия его с кислородом воздуха реактор заполняют газом (аргоном) и разогревают сжатием аргона в нагнетателях и прокачкой его по замкнутым контурам. Эту же систему используют в качестве резервной при расхолаживании реактора, поэтому нагнетатели имеют привод от автономного источника, а теплообменники -- надежное снабжение технической водой.

7. Повышение эффективности использования топливно-энергетических ресурсов

7.1 Основные способы организации энергосберегающих технологий

Конкретный способ улучшения энергетических и эксергетических показателей для разных производств и процессов различны, но есть и общие приемы снижения энергозатрат.

Наиболее распространенным и эффективным способом является регенерация энергии. Сущность регенерации заключается в передаче энергии от выходящих из агрегата потоков к входящим. Например, многие крупные нагревательные и плавильные печи оборудованы теплообменниками, в которых воздушное дутье (а иногда и газообразное топливо) подогревается уходящими газами (рис. 24.2).

Очень важно, что регенерация позволяет не просто утилизировать теплоту отходящих газов, но снижает расход топлива и, кроме того, улучшает работу самой печи, поскольку температура горения при использовании подогретого воздуха возрастает. Улучшаются условия, а соответственно и полнота горения топлива, резко усиливается теплообмен излучением между потоком газа и нагреваемыми изделиями.

В ряде случаев регенерацию теплоты целесообразно использовать и на низкотемпературных потоках. Например, теплотой вентиляционных выбросов можно подогреть поток воздуха, подаваемого в помещение, уменьшив, таким образом, расход энергии на отопление.

Весьма эффективно регенерировать и холод. Например, для пневмотранспорта цемента и в ряде других случаев требуется сухой воздух (без водяных паров). Осушку воздуха можно осуществить за счет его охлаждения (рис. 24.3), при этом влага сконденсируется или вымерзнет, если в выморажива-теле t<0°С. Использование при этом теплообменника 1 резко сокращает мощность холодильной машины 3 и расход энергии на ее привод.

Регенерировать можно не только тепловую энергию, но и энергию избыточного давления. Например, если в реакционной камере 1 (рис. 24.4) по условиям технологии необходимо избыточное давление, то исходные продукты 2 приходится сжимать компрессором 3, затрачивая на это электроэнергию. Однако часть этой энергии, а иногда даже больше энергии, чем затрачено (если, например, в реакторе / увеличивается объем газов), можно вернуть (регенерировать) за счет расширения получающихся продуктов 4 в турбине 5. Электромашина 6 при этом играет роль пускового двигателя, а также источника недостающей или потребителя избыточной мощности (в последнем случае электромашина работает в режиме генератора). Хорошим примером использования энергии давления является турбина-расширитель, устанавливаемая за доменной печью для срабатывания избыточного давления доменного газа. Причем в этом случае удобнее всю вырабатываемую турбиной энергию превращать в электроэнергию с помощью генератора, а компрессоры, нагнетающие воздух в печь, приводить в движение от электродвигателей, т. е. осуществлять энергетическую связь через электрическую сеть.

Регенерация теплоты наиболее эффективно работает совместно с принципом противотока, в соответствии с которым нагреваемые продукты или детали должны двигаться навстречу охлаждаемым, от которых они получают энергию. На рис. 24.2 специально допущена неточность и принцип противотока использован только в самой печи (горячие газы и детали), а воздухоподогреватель взят с перекрестным движением сред. Про-тивоточный теплообменник, как, например, изображенный на рис. 24.3, позволил бы сильнее снизить температуру отходящих из печи газов, а следовательно, и в большей степени уменьшить потерю теплоты вместе с ними.

В целом нужно стремиться, используя принципы регенерации и противотока, приблизить параметры всех выходящих потоков к параметрам входящих, уменьшая, таким образом, внешний подвод энергии. Как уже было показано, это не противоречит требованиям технологического процесса нагревать, охлаждать или сжимать среды или материалы на промежуточных стадиях. Создавая энергосберегающие технологии (или энерготехнологии), как, впрочем, и любое безотходное производство, целесообразно подходить к нему комплексно, объединяя промежуточные этапы.

Не надо забывать, что принятые оценки эффективности использования энергии в значительной мере отражают технический уровень сегодняшнего (а иногда и вчерашнего) дня. Например, КПД печи для нагрева металла оценивается как отношение количества теплоты, воспринятой металлом, к теплоте сожженного топлива. Но в народном хозяйстве нагретый металл не нужен. И если, охладив его, использовать эту теплоту (такие установки имеются), то КПД печи по современным представлениям может оказаться выше 100 %.

В ряде случаев вообще удается при лучшей организации производства исключить некоторые технологические процессы, в том числе и процессы нагрева. Например, начинает практиковаться термообработка непосредственно с прокатного нагрева вместо традиционного двойного нагрева перед прокаткой и перед термообработкой, осуществляемой обычно в другом цехе. Естественно, что во время транспортировки из цеха в цех прокат остывает и его вновь приходится нагревать.

7.2 Утилизация вторичных (побочных) энергоресурсов (ВЭР)

Если в данном производстве за счет регенерации не удается полностью использовать всю энергию, нужно попытаться не сбрасывать ее в окружающую среду, а продать эти ненужные вторичные (побочные) для данного производства энергоресурсы другим потребителям либо организовать у себя специальное производство, потребляющее эту энергию. Такой подход не дает экономии топлива в самом технологическом процессе, но может существенно улучшать экономические показатели производства за счет средств, полученных от реализации ВЭР.

Главная трудность при решении проблемы утилизации ВЭР обычно состоит в поиске потребителя. Приходится анализировать уже не только свое производство, но и в первую очередь сопутствующие, а иногда и совершенно не связанные. Нередко для утилизации ВЭР создают тепличные хозяйства, рыбоводные пруды и т. д. Способ утилизации ВЭР выбирают в зависимости от требований потребителя и вида вторичной энергии.

Если на производстве имеются горючие отходы -- топливные ВЭР, то использование их обычно не представляет труда. Так, доменный и коксовый газы металлургического комбината сжигаются в топках паровых котлов вместе с другими видами топлива. В крайнем случае, если не удается сжечь топливные ВЭР в обычных топках, создают специальные, например топки с кипящим слоем (см. гл. 17) для сжигания высокозольных твердых остатков углеобогатительных фабрик.

За счет ВЭР избыточного давления в расширительных турбинах обычно получают электроэнергию (как на рис. 24.4). Наибольшую долю составляют тепловые ВЭР. Часто, говоря о ВЭР, только их и имеют в виду. В 1985 г. в СССР было утилизировано около 0,7-1018 Дж таких ВЭР -- примерно половина того количества, которое считается экономически целесообразно использовать в настоящее время. В целом же тепловых ВЭР много больше.

Тепловые ВЭР газовых потоков с высокой температурой (>400°С) передней (100--400 °С) обычно используются для производства пара или подогрева воды с помощью паровых или водогрейных котлов-утилизаторов (см §19.5). Водогрейные котлы-утилизаторы предназначены для подогрева воды, идущей на теплофикацию жилых и промышленных зданий. Конструктивно они представляют собой систему труб, через которые прокачивается сетевая вода, поэтому нередко водогрейные котлы-утилизаторы называют утилизационными экономайзерами.

Широкое распространение в настоящее время получили системы испарительного охлаждения элементов высокотемпературных печей. В печах многие элементы приходится делать из металла -- прежде всего это несущие и поддерживающие балки, на них ложится большая нагрузка, которую не выдержат огнеупорные материалы. Практически невозможно делать из огнеупоров и подвижные элементы, особенно те, которые должны герметично закрываться, например завалочные окна, шиберы, перекрывающие проходное сечение газоходов, и т. д. Но металлы могут работать только при умеренных температурах до 400-- 600 °С, а температура в печи много выше. Поэтому металлические элементы печей делают полыми и внутри них циркулирует охлаждающая вода. Для исключения образования накипи и загрязнений внутри охлаждаемых элементов вода должна быть специально подготовленной.

Кроме того, эту воду нужно охлаждать или сбрасывать. И в том и в другом случае происходит загрязнение окружающей среды.

Все эти недостатки исключаются, если в охлаждаемые элементы печи подают воду из контура циркуляции парового котла-утилизатора (рис. 24.5). Охлаждаемые элементы печи здесь выполняют роль испарительной поверхности, в которой теплота уже не сбрасывается в окружающую среду, а идет на выработку пара. Питание котлов осуществляется химически очищенной водой, поэтому накипи и загрязнений внутри охлаждаемых элементов не образуется и срок их службы в 1,5--3 раза больше, чем при охлаждении необработанной проточной водой.

Система испарительного охлаждения может работать и как самостоятельный паровой котел, но мощность его будет слишком малой. При комплексном подходе к утилизации теплоты от газов и охлаждаемых элементов конструкции печи значительно сокращаются затраты на вспомогательное оборудование, коммуникации, обслуживание и т. д.

В ряде случаев удается использовать теплоту раскаленных твердых продуктов. На многих металлургических комбинатах сейчас работают установки охлаждения (технологи говорят «сухого тушения») кокса (УСТК), в которых охлаждается кокс с температурой свыше 1000 °С, выгружаемый из коксовых батарей. Особая сложность этой установки состоит в том, что кокс -- горючий материал. Поэтому для его охлаждения используют инертный азот, а всю установку герметизируют, no-возможности предотвращая утечки азота.

Раскаленный кокс в специальных вагонах быстро (поскольку на воздухе он горит) транспортируется от коксовой батареи и загружается в герметичную фор-камеру / (рис. 24.6), затем поступает в камеру тушения 2, в которой он снизу вверх продувается инертным газом. За счет постепенной выгрузки снизу кокс плотным слоем движется сверху вниз противотоком к охлаждающему газу. В результате кокс охлаждается от 1000--1050 °С до 200--250 °С, а газ нагревается от 180--200 °С до 750--800 °С. Через специальные отверстия 3 и пылео-садительную камеру 4 газы попадают в котел-утилизатор 5. В нем за счет охлаждения 1 т кокса получают примерно 0,5 т пара достаточно высоких параметров р = (3,9-т-4,0)МПа и f = (440-b 450) °С. После котла-утилизатора охлажденный газ еще раз очищают от пыли в циклоне 6 и вентилятором 7 вновь направляют в камеру тушения под специальный рассекатель для равномерного распределения по сечению камеры.

Сухой способ охлаждения по сравнению с традиционным, когда раскаленный горящий кокс действительно «тушат», поливая водой, позволяет не только получить дополнительную энергию (утилизировать ВЭР), но и повышает качество кокса, уменьшает его потери за счет выгорания в процессе тушения, исключает расход воды, а главное -- позволяет избежать загрязнения атмосферы паром и коксовой пылью.

Аналогичные схемы утилизации теплоты других твердых веществ можно использовать только при достаточно большой производительности, иначе это будет экономически невыгодно по причинам, указанным выше. Производительность УСТК по коксу составляет 50-- 56 т/ч.

Наиболее сложно найти применение низкопотенциальным тепловым ВЭР (<<100°С). В последнее время их все шире используют для отопления и кондиционирования промышленных и жилых зданий, применяют тепловые насосы для повышения температурного потенциала или для получения холода. Непосредственно используют такие ВЭР только на отопление близко расположенных теплиц или рыбоводных хозяйств.

Очень остроумное решение для использования низкопотенциальной теплоты отходящих газов даже в бытовых условиях было найдено Ф. Нансеном для кухонного аппарата, который он в 1895г. применял во время своего похода к Северному полюсу. После обогрева сосуда для варки пищи (рис. 24.7) дымовые газы направлялись в дополнительные газоходы, где отдавали свою теплоту таящему снегу. КПД этого аппарата превышал 90 %, в то время как у обычных газовых плит он менее 50 %.

В промышленных условиях охлаждение дымовых газов до температур ниже 100 °С весьма затруднительно прежде всего из-за конденсации водяных паров. Холодные стенки труб, по которым циркулирует нагреваемая среда, запотевают и подвергаются интенсивной коррозии. Конденсация водяных паров имела место и в агрегате, изображенном на рис. 24.7, но ввиду уникальности назначения его можно было изготовить из дорогостоящих материалов, не боящихся коррозии, кроме того, действовал он периодически и не долго. Промышленные подогреватели воздуха для исключения коррозии также иногда изготавливают из некорродирующихся стеклянных труб. Если нет вибрации, такие трубы работают достаточно долго.

Для подогрева воды низкотемпературными газами (/<ЮО°С) начинают использовать контактные экономайзеры, представляющие собой обычные смесительные теплообменники типа градирни (см. рис. 13.2). В них происходит нагрев воды за счет теплоты контактирующих с ней газов. Поверхность контакта капель воды с газом большая, и теплообменник получается компактный и дешевый по сравнению с рекуперативным (трубчатым), но вода насыщается вредными веществами, содержащимися в дымовых газах. В ряде случаев это допустимо, например, для воды, идущей в систему химводоподготовки в котельных или на ТЭС. Если загрязнение воды недопустимо, то ставят еще один теплообменник, в котором «грязная» вода отдает теплоту «чистой» и возвращается в контактный экономайзер. Змеевики, по которым циркулирует «чистая» вода, можно установить и внутри контактного экономайзера вместо насадки.

8. Типы гидроэнергетических установок и схемы использования водной энергии

8.1 Типы гидроэнергетических установок

Гидроэнергетическая установка (ГЭУ) является предприятием, на котором происходит преобразование механической 1 энергии водного потока в электрическую или, наоборот, электрическая энергия превращается в механическую энергию воды.

ГЭУ представляет собой совокупность гидротехнических сооружений, энергетического и механического оборудования.

На ГЭУ различают верхний и нижний бьефы. Водное пространство перед подпорными сооружениями, например перед плотиной, имеет более высокую отметку уровня и называется верхним бьефом (ВБ). Водное пространство за плотиной, за зданием станции и т. д. имеет низкие отметки уровней и называется нижним бьефом (НБ).

Отметка уровня воды обозначается V или V с соответствующим числом, которое показывает высоту над уровнем моря (абсолютная отметка) или над какой-либо другой плоскостью сравнения (условная отметка).

На ПЭС бьефы имеют попеременное значение. Во время прилива море является верхним бьефом, опорожненный бассейн -- нижним бьефом. В период отлива отметки уровня в бассейне более высокие (ВБ), а в море более низкие (НБ).

Гидроэлектрические станции.

На ГЭС гидравлическая энергия преобразуется в электрическую энергию. Для ГЭС необходимы расход Q, м3/с и сосредоточенный перепад уровней Н0 (рис. 2-1), т. е. напор, м.

Основные сооружения ГЭС, расположенной на равнинной реке-плоти на, перегораживающая реку и создающая подъем уровня воды, т. е. сосредоточенный перепад уровней, п здание станции, в котором размещаются гидравлические турбины, генераторы электрического тока и другое механическое и электрическое оборудование. При необходимости строятся судоходные шлюзы, водозаборные сооружения для орошения, водоснабжения, рыбопропускные сооружения и др. На ГЭС вода под действием силы тяжести движется из верхнего бьефа в нижний и вращает рабочее колесо турбины, на одном валу с которым находится ротор генератора электрического тока. Иногда при сравнительно небольшой мощности генератора применяютпромежуточнуюпередачу (редуктор или мультипликатор)-для увеличения частоты вращения и уменьшения массы генератора. Турбина и генератор вместе образуют гидроагрегат. В турбине гидравлическая энергия воды превращается в механическую энергию вращения рабочего колеса турбины вместе с ротором генератора, где происходит преобразование механической энергии в электрическую. Среди крупных ГЭУ всех видов наиболее распространенными и наиболее мощными являются ГЭС. В 1978 г. крупнейшей гидроэлектростанцией мира была Красноярская ГЭС (на р. Енисей), мощностью 6 млн. кВт. Вводимая в эксплуатацию с 1978 г. Саяно-Шу-шенская ГЭС (на р. Енисей) при полном развитии будет иметь мощность более 7 млн. кВт.

Б. НАСОСНЫЕ СТАНЦИИ

Гидроэнергетическая установка, предназначенная для перекачки воды с низких отметок на высокие и для перемещения воды в удаленные пункты, называется насосной станцией (НС). На НС устанавливаются насосные агрегаты, у которых на одном валу находится насос и электрический двигатель. НС является потребителем электрической энергии.

НС имеют большое распространение. Они применяются для коммунально-бытового и промышленного водоснабжения, для водоснабжения ТЭС, в ирригационных системах для подачи воды на поля, расположенные на высоких отметках или в удаленных районах, на судоходных каналах, пересекающих высокие водоразделы, и т. д.

Крупнейшая насосная станция -- Каховская с суммарной подачей воды 530 м3/с, расчетным напором 25 м и суммарной мощностью электродвигателей 168 МВт.

Насосные станции канала Иртыш -- Караганда рассчитаны на подъем воды на 418 м и суммарную подачу 76 м3/с на расстояние 458 км. Их суммарная мощность 350 МВт.

В. ГИДРОАККУМУЛИРУЮЩИЕ ЭЛЕКТРОСТАНЦИИ

ГАЭС выполняет функции НС и ГЭС. В часы пониженных нагрузок энергосистемы, например ночью, ГАЭС работает как НС, потребляет электрическую энергию и перекачивает воду из нижнего бассейна в верхний, расположенный на какой-либо возвышенности. Днем и, особенно, вечером, когда электропотребление в системе увеличивается, вода из верхнего бассейна пропускается через турбины в нижний бассейн; в это время ГАЭС работает как ГЭС -- вырабатывает и отдает электрическую энергию в систему. Имеются ГАЭС не только с суточным, но и с недельным и даже с .сезонным аккумулированием энергии.

Вследствие потерь ГАЭС отдает в систему около 70--75 % электрической энергии, получаемой ею из системы. Тем не менее эти станции выгодны, так как они потребляют более дешевую, а иногда и «бросовую» электроэнергию в ночные часы, в период малой нагрузки системы, а отдают более дорогую энергию в часы -пик нагрузки. Заполняя ночные провалы и снимая утренние и вечерние пики электрической нагрузки системы, ГАЭС существенно улучшают технические условия работы ТЭС, позволяют уменьшить их удельный расход топлива на 1 кВт-ч выработки электрической энергии и в конечном итоге дают экономию топлива в системе.

В СССР построена Киевская ГАЭС мощностью 225 МВт и строится Загорская ГАЭС мощностью 1200 МВт. Составлен проект крупнейшей гидроаккумулирующей электростанции Холейпи (США) мощностью 2500 МВт.

Г. ПРИЛИВНЫЕ ЭЛЕКТРОСТАНЦИИ

Морские приливные электростанции (ПЭС) используют приливные колебания уровня моря, которые обычно происходят два раза в сутки. В некоторых пунктах обжитых морских побережий приливные колебания достигают 8--10 м. Наибольшая величина прилива 19,6 м наблюдается в заливе Фаиди (Канада).

Во Франции: построена ПЭС Раис мощностью 240 МВт. В СССР около Мурманска построена оригинальная опытная Кислогубская ПЭС небольшой мощности.

8.2 Напор, расход и мощность гидроэнергетических установок

А. НАПОР

Геометрический или статический напор равен разности отметок уровнем верхнего Ў ВБ и нижнего Ў НБ бьефов. Применительно к данным рис. 2-1 статический напор

Но=ЎВБ-ЎНБ=121,38-102,03=19,35м (2-1)

В водноэнергстических расчетах напор ГЭС считается равным

Н?Но-hВ-С=ЎВБ-ЎНБ-hВ-С (2-2)

где hВ-С-- потери напора при движении води от водозабора (сечение В-В) до турбинной камеры (сечение С--С), которые состоят из потери) напора на вход в турбинный водовод, па преодоление сопротивления сороудерживающих решеток, на трение воды о стенки водовода и т. п. (рис. 2-2). Все эти потери составляют 2-5 % от напора Но.

В расчетах, требующих высокой точности, например, при определении коэффициента полезного действия (КПД) турбины, учитывается также кинетическая энергия потока. На рис. 2-2 показано определение напоров для ГЭС.

Полным напор определяется по разности удельных энергии потока воды во входном сечении В--В и в конечном сечении К--К.

Удельную энергию и джоулях на один килограмм массы жидкости обозначим через Э, а на один ньютон веса -- через Е--Эg. Численное значение Е выражается в Дж/Н и измеряется в метрах. Полный напор называется напором брутто HG или, точнее, напором гидротурбинного блока. Напор HG в метрах численно равен разности отнесенных к единице веса удельных энергий потока в рассматриваемых сечениях.

Удельная энергия потока воды Е, Дж/Н, в каждом сечении

где Z-- высота расположения центра тяжести данного живого сечения потока над плоскостью сравнении, О -- О, м; р-- избыточное давление, Па; г -- вес единицы объема воды, Н/м2; с/г--пьезометрическая высота равная глубине погружений центра тяжести данного живого сечении под уровень воды м; v -- средняя скорость течения воды в данном живом сечении м/с; б - коэффициент, равный отношению кинетической энергии потока при действительном распределении скорости по сечению к кинетической энергии потока, подсчитанной по средней скорости v.

При отнесении удельной энергии к единице веса воды: Z - удельная потенциальная энергия положения; с/г - удельная потенциальная энергия давления и бн2/2g - удельная кинетическая энергия.

Рабочим напором турбины (точнее турбинной установки, включающей турбинную камеру, рабочее колесо турбины и отсасывающую трубу) принято считать разность удельных энергий потоки во входном сечении С -- С в турбинную камеру и в конечном сечении К -- К с наивысшей отметкой нижнего бьефа Н =» ЕС -- Ек.

Сумма 7+ с/г дает отметку уровня воды. Скорость воды перед водоприемником обычно невелика. Если пренебречь ею, то, относя энергию (2-3) к соответствующему сечению, можно написать

ЎB-ЎK-hB-C-бKн2K/(2g) (2.4)

Для насоса, пренебрегая разностью кинетической энергии в сечениях К-К и В-В получим

Hn=EB-EK+hC-B?Ho+hC-B=ЎB-ЎK+hC-B (2-5)

Более подробно см. гл 9.

Для обратимои гидравлической машины (насосо-турбины) напор насоса будет больше напора турбины на hC-B + hB-C где hC-B -- потери в водоводе от сечения В -- В до сечения С-- С в насосном режиме, a hB-C -- в турбинном режиме.

На построенных гидроэнергетических установках напор составляет от 2 до 1767 м. Наибольший напор турбин 1767 м и нacocoв I070 м имеет ГЭУ Рейссек (Австрия).

Б. РАСХОД ВОДЫ.

Расход поды Q n м3/c, используемый ГЭС для выработки электрическом энергии, зависит от притока воды к водохранилищу или верхнему бьефу ГЭС. от наличия запасов воды в водохранилище и от потребности энергетической системы в данный момент в электрической энергии. При комплексном использовании водных ресурсов расход ГЭС зависит также от объема воды из верхнего бьефа на орошение, водоснабжение, шлюзование судов и от режима водопотребления из нижнего бьефа ГЭС. Максимальным расход, используемый ГЭС, равен пропускной способности всех ее турбин при расчетном напоре. Наибольшую пропускную способность имеют турбины Волжской ГЭС имени XXII съезда КПСС Каждая турбина этой ГЭС при расчетном напоре 19 м протекает по 675 м3/с. Все 22 турбины этой ГЭС потребляют около 15 тыс. м3/с. Максимальный расход воды, перекачиваемой НС пли ГАЭС, равен подаче всех се насосов при минимальном напоре и работе электрических двигателей с полной мощностью. Pacход воды НС и ГАЭС в данный момент времени определяется потребностью в воде и условиями электроснабжения.

В МОЩНОСТЬ,ЭНЕРГИЯ.

Мощностью N называется работа, производимая в единицу времени. Если напор составляет Н, м, расход воды равен Q, м3/с, то работа, которую может совершить вода в 1 секунду, т. е. потенциальная мощность водотока в ваттах, равна

No = pgQH = гQH = 9810 QH.

где р -- плотность воды, кг/м3; g -- ускорение свободного падения тела, м/с2.

В гидроэнергетике принято измерять мощность в киловаттах. При этом No = 9,81 QH.

Мощность на валу турбины равна

NT=NoзT или NT=9,81 HзT (2-6)

где зT -- КПД турбины.

Значение КПД турбины зависит от ее конструкции, размеров и изменяется при изменении нагрузки. Для малых турбин, при диаметре рабочего колеса около 1 м, наибольший КПД составляет около 0,91; для крупных турбин диаметром 9--10 м КПД достигает 0,95--0,96. Электрическая мощность агрегата Na на выводах генератора меньше мощности турбины на величину потерь в генераторе

Na=NTзген=9,81 QHзa (2-7)

где зген -- КПД генератора; за = зТзген --КПД агрегата.

Для генераторов мощностью 5 МВт КПД равен 0,95--0,96. Для уникальных генераторов мощностью 500 МВт и более КПД превосходит 0,98. Обозначая а = 9,81т]а, получим формулу для приближенных расчетов

Na=aQH (2-8)

Учитывая снижение КПД турбины и генератора при отклонении нагрузки от оптимальной, принимают а для сверхмощных агрегатов в пределах 8,8--9,1, для крупных агрегатов -- 8,4--8,7 и для небольших агрегатов 8,0--8,2. Для насосных агрегатов и при работе обратимой гидромашины (насосо-турбины) в насосном режиме мощность, потребляемая электродвигателем, равна

где HH-- напор насоса; зИ -- КПД насоса; зД -- КПД двигателя. Наибольшее значение КПД насосо-турбин при работе в насосном режиме составляет 0,925--0,93, а КПД сверхмощных электродвигателей превосходит 0,98. Для насосных агрегатов средней мощности т1„ = 0,89--0,90, т]л = 0,95--0,97, что дает приближенно NH=H,3 QH, кВт. При отклонении от оптимальной нагрузки КПД насосов резко снижается.

Энергия Э выражается произведением: Э = Nt, где N -- мощность, Вт, t -- время в секундах или часах. В системе СИ электрическая энергия измеряется в джоулях и их производных, причем 1 Дж=1 Н-м = = 1 Вт-с.

В энергетике наибольшее распространение получило измерение энергии в киловатт-часах (кВт-ч). Из определений, явствует, что 1 кВт-4 = 3600 кДж.

Объем воды V, м3 при напоре Н, м дает количество энергии в килоджоулях Э = 9,81 VHзa или в киловатт-часах

(2-10)

Если V -- объем годового стока реки, используемого ГЭС, а H -- ее средний напор, то Э дает годовую выработку энергии ГЭС. Если V -- объем воды, запасенной в водохранилище, который может быть использован при напоре Н, то Э выражает запас энергии воды водохранилища или энергетический эквивалент этого объема. Если V--годовой объем водоподачи НС, то

(2-11)

определяет годовое потребление НС в кВт-ч, без учета расхода энергии на собственные нужды.

Гидростанция при напоре Н и КПД за расходует на 1 кВт-ч выработанной энергии объем воды q в м3, т. е.

(2 - 12)

Насосная станция на 1 м3 воды расходует энергию в кВт- ч

(2-13)

8.3 Основные схемы использования водной энергии

Имеются три основные схемы создания сосредоточенного напора ГЭС: 1) плотинная схема, когда напор создается плотиной; 2) деривационная схема, когда напор создается преимущественно посредством деривации, осуществляемой в виде канала, туннеля или трубопровода; 3) плотинно-деривационная схема, когда напор создается и плотиной, и деривацией. Плотины имеются во всех трех схемах.

А. ПЛОТИННАЯ СХЕМА

Плотинная схема (рис. 2-3) осуществляется преимущественно при больших расходах воды в реке и малых уклонах ее свободной поверхности. Посредством плотины, построенной в пункте В, создается подпор воды, который распространяется вверх по реке до пункта А. Разность уровней воды в пунктах А и В равна Ho + Дh. Часть общего падения Дh будет потеряна при движении воды в верхнем бьефе. Сосредоточенный перепад уровней, т. е. напор будет равен Н0. В плотинной схеме в зависимости от напора ГЭС может быть русловой или приплотинной.

Русловой называется такая ГЭС, у которой здание ГЭС наряду с плотиной входит в состав сооружений, создающий напор (рис 2-4).

Здание русловой ГЭС воспринимает полное давление воды со стороны ВБ и должно удовлетворять условию устойчивости, как и плотина. Русловая ГЭС может быть построена при сравнительно небольшом напоре.

При средних и больших напорах, превышающий диаметр трубы более чем в 4-5 раз, здание ГЭС не может входить в состав напорного фронта. В таких случаях строят приплотинную ГЭС, здание которой располагается за плотиной и не воспринимает плотного давления воды (рис 2-5). Подвод воды к турбинам такой ГЭС осуществляется трубопроводами, размещенными в теле или поверх бетонной плотины, под земляной плотиной или туннелями, прокладываемыми в обход плотины.

Б. ДЕРИВАЦИОННАЯ СХЕМА

При деривационной схеме высота плотины может быть небольшой, обеспечивающей лишь отвод воды из реки в деривацию, а сосредоточенный напор получается за счет разности уклонов воды в реке и в деривации. На рис 2-6 приведена схема ГЭС с деревацией в виде открытого канала. Плотина создает небольшой подпор. Из подпертого бьефа вода по деревационному каналу поступает в напорный бассейн, откуда она подается по трубопроводам к турбинам ГЭС. От турбин вода по отводящему каналу направляется в реку или деревацию следующей ГЭС или же в ирригационный оросительный канал.

При пересеченном или горном рельефе местности, деревацию можно выполнить в виде туннеля, прорезывающий горный массив (рис 2-7), или в виде трубопровода, уложенного по поверхности земли. Деревация может состоять частично из канала и туннеля, из трубопровода и туннеля и т. п.

Существуют два типа гидротехнических туннелей: безнапорные, заполненные водой не полностью, с атмосферным давлением над свободной поверхностью воды, и напорные, в которых вода заполняет все сечение туннеля. В напорном туннеле гидродинамическое давление даже в самой верхней точке сечения выше атмосферного. В конце длинного подводящего напорного туннеля устраивается уравнительный резервуар для уменьшения гидравлического удара при резких изменениях расхода воды, потребляемой ГЭС (рис 2-7). В конце подводящего безнапорного туннеля как и в конце деривационного канала сооружается напорный бассейн (рис 2-6).

При длинной безнапорной подводящей деривации (канал, безнапорный туннель) в конце ее иногда устанавливается бассейн суточного регулирования расхода и мощности ГЭС (рис 2-6).

Если река несет большое количество крупных наносов (песок), попадание которых в деривацию может вызвать нежелательные последствия, то в начале подходящей деривации сооружается отстойник. Наносы, выпавшие в отстойнике, смываются в реку через промывной канал.

Если возможно переохлаждение воды и образование внутриводного льда - шуги, то в случае надобности на головном узле, на деривационном канале или на напорном бассейне сооружают шугосбросы. Деривация может быть отводящей. При большой длине отводящая деривация часто выполняется в виде туннеля, когда ГЭС является подземной.

Деривационные схемы установок выгодны в горных условиях, при больных уклонах свободной поверхности возы в реке и сравнительно малых используемых расходах, когда при относительно небольшой длине и малых поперечных размерах деривации можно получить большой напор и большую мощность ГЭС. При благоприятных геологических и топографических условиях на горной реке может быть применена и плотинная схема. Посредством плотины можно создать водохранилище для регулирования стока реки.

В ПЛОТИННО-ДЕРИВАЦИОННАЯ СХЕМА

В плотинно - деривационной схеме используются выгодные свойства обеих предыдущих схем, т. е. может быть создано водохранилище и использовано падение реки ниже плотины (рис. 2-8) На используемом участке реки А--В при неизменной отметке верхнего бьефа Ў ВБ местоположение плотины может быть различным. Чем выше по течению расположена плотина, тем меньше ее высота. При этом уменьшается размер водохранилища, т. е. уменьшается затапливаемая территория, но увеличивается длина деривации и увеличиваются потери напора hA-B. Тщательное технико-экономическое сравнение вариантов позволяет выбрать наилучший.

Г. КАСКАДЫ ГИДРОЭЛЕКТРОСТАНЦИЙ И ВОДОХРАНИЛИЩ

Несколько ГЭС, последовательно расположенных на одном водотоке, образуют каскад. Проектирование и осуществление каскадов ГЭС имеет целью возможно более полное использование падения реки и ее стока в интересах всего народного хозяйства. При этом стремятся за счет создания водохранилищ наилучшим образом зарегулировать сток рек.

Местоположение каждого гидроузла, его напор, объем образуемого им водохранилища и т. п. выбираются на основе тщательного изучения природных условий и всестороннего технико-экономического анализа. Для того чтобы использовать возможно больший сток на данной установке, створ плотины стремятся расположить ниже крупного притока, а для уменьшения ущерба от затопления створ плотины выбирают выше крупных городов. При выборе створа плотины часто решающее значение имеют топографические и геологические условия

При сооружении каскада ГЭС обычно оказывается целесообразным некоторый подпор вышерасположенной ступени, благодаря чему падение реки используется более полно и может производиться глубокое суточное регулирование мощности ГЭС без существенных колебаний уровня НБ.

На рис. 2-9 приведена схема Волжско-Камского каскада ГЭС и водохранилищ. Река Волга имеет длину 3690 км и общее падение 250 м. Ступенчатой линией показаны проектные уровни воды после осуществления всей схемы реконструкции Волги.

Каскады ГЭС построены и строятся в СССР на многих реках -- Енисее, Ангаре, Иртыше, Каме, Свири, Вуоксе, Днепре, Сырдарье, Нарыне, Чирчике, Куре, Риони, Ингури, Сулаке и др.

8.4 Особые схемы использования водных ресурсов

А. ПЕРЕБРОСКА СТОКА РЕК В ДРУГИЕ БАССЕЙНЫ

При значительной разнице в уровнях воды двух соседних рек и благоприятных топографических и других условиях может оказаться целесообразным переброска стока одной реки в другую, с энергетическим использованием разности уровней воды обеих рек. На реке с более высоким уровнем воды может быть построена плотина, и вода этой реки по каналу, трубопроводу или по туннелю, проложенному через водораздел, может быть направлена на ГЭС, расположенную на берегу другой реки. По такой схеме построено много гидростанций, в том числе в СССР -- Сухумская, Ладжанурская, Ингурская ГЭС в Закавказье, Белореченская, Сенгилевская и Свпстухпнская на Северном Кавказе (Кубань-Егорлыкский канал), Тереблярикская в Закарпатье и др. При переброске стока рек в другие бассейны должны учитываться потребности в воде района, расположенного ниже по реке, сток которой перебрасывается в другую реку.

Исключительно большой народнохозяйственный интерес представляет проектируемая переброска стока многоводных сибирских рек в Среднюю Азию и Казахстан и северных рек Европейской части СССР в сторону засушливого юга.

Б. ЭНЕРГЕТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ПЕРЕПАДОВ НА ИРРИГАЦИОННЫХ КАНАЛАХ

При трассировке ирригационных каналов иногда, по условиям рельефа местности, приходится делать искусственные перепады уровней воды в виде ступеней или в виде быстротоков В обоих случаях энергию потока приходится гасить при помощи специальных сооружений-- гасителей (колодцы, пороги, тумбы, зубья и т. д.) При таких перепадах может оказаться экономически выгодным устройство ГЭС, так как затраты на постройку плотины и на компенсацию ущерба от затопления будут производиться независимо от сооружения ГЭС В зависимости от наличия расхода воды в канале такая ГЭС может работать или круглогодично или только в поливной период.

В Советском Союзе на перепадах крупных ирригационных каналов (Бозсунскии, Вахшский, Кубань-Егорлыкский и др.) построены и работают многие десятки ГЭС. При проектировании новых ирригационных систем необходимо учитывать энергетическую роль перепадов поды на каналах, рационально используя энергию этих перепадов

На НС ирригационных систем бывает целесообразна установка обратимых гидроарегатов и приспособление ВБ и НБ для использования в качестве резервуаров. В результате НС превращается в комбинированную установку НС--ГАЭС, которая в определенные периоды года, например зимой, может работать как ГАЭС.

В. ИСПОЛЬЗОВАНИЕ СТОКА ВЫСОКОГОРНЫХ РАЙОНОВ

Перехватываемые системой каналов, труб и туннелей небольшие ручьи и еще неоформленный в ручьи склоновый сток ледников и вечных снегов могут быть использованы на весьма больших напорах, что пет достаточно большую мощность. Рельеф высокогорных районов может позволить соорудить здесь водохранилища для регулирования стока. Такого рода гидростанции построены в Болгарии, Австрии, Швейцарии и других странах. Однако трудности строительства и транспорта в горах ограничивают энергетическое использование высокогорного склонового стока.

Г. ИСПОЛЬЗОВАНИЕ СТОКА ПОГРАНИЧНЫХ РЕК

Энергетическое использование стока пограничных рек обычно производится па паритетных началах. Электрическая энергия ГЭС, к,ik правило, делится поровну между пограничными государствами.

При гидроузле могут быть построены две ГЭС на разных берегах, для одного и для другого государства. Иногда реку делят на энергетические и эквивалентные участки. На одном участке строится гидроузел с ГЭС для одной страны, и на другом участке -- для другой страны.

При комплексном использовании водных ресурсов пограничной реки потребности в воде для орошения и водоснабжения могут оказаться существенно различными, тогда необходима особая договоренность между государствами о распределении воды между ними.

8.5 Схемы насосного аккумулирования энергии

Для насосного аккумулирования энергии необходимы верхний и нижний бассейны, водопроводящие сооружения и оборудование для перекачки воды из нижнего в верхний бассейн и последующего использования этой воды для выработки электрической энергии.

При отсутствии приточности к верхнему бассейну схема ГАЭС является простейшей (рис. 2-10). В обороте находится практически один и тот же объем воды; потери испарения и фильтрации должны возмещаться из какого-либо источника.

Верхний бассейн устраивается путем частичной срезки и обвалования возвышенности или путем сооружения плотины в ущелье. При наличии высокогорного озера оно может быть использовано в качестве верхнего бассейна. Для нижнего бассейна могут быть использованы водохранилище, озеро или река. Иногда для нижнего бассейна могут быть использованы заброшенные шахты, например угольные, или создан специальный подземный резервуар.

При больших напорах ГАЭС применяются компоновки с насосо-турбинными водоводами трубопроводами или штольнями. При благоприятных природных условиях непосредственно у верхнего бассейна устраивается водоприемник, который используется для подачи воды в водовод и далее к турбинам и приема воды в верхний бассейн при работе насосов. Если водоприемник удален от верхнего бассейна то приходится сооружать между ними канал или туннель.

На ГАЭС устанавливаются или насосы и турбины, или обратимые гидравлические машины (насосо-турбины), которые могут работать попеременно как насос и как турбина. Электрическая машина тоже может быть изготовленa как обратимая и работать попеременно двигателем и генератором. Механически сочлененные обратимые гидравлическая и этектрическая машины составляют обратимый гидроагрегат. Такие агрегаты устанавливаются при напорах до 650 м. Широко распространены трехмашинные агрегаты, когда на одном валу размещается обратимая электрическая машина, турбина и насос. Между турбиной и насосом ставят муфту, которая позволяет отключать насос при paботе турбины. На рис 2 - 11 представлен энергобаланс трехмашинного агрегата мощностью 100 МВт ГАЭС Вианден-1.

При соответствующем обосновании устанавливаются paздельные агрегаты: насосный (электрический двигатель и насос) и турбинный (гидротурбина и гидрогенератор). Такую схему иногда называют четырехмашинной (более подробно см гл 8 и 26)

Здание ГАЭС сооружается на поверхности земли или под землей Специфическую компоновку будут иметь ГАЭС с подземными нижними резервуарами, которые, как показывают предварительные расчеты, могут оказаться экономичными при напорах 800--1200 м и более.

Если имеется значительный приток воды к верхнему бассейну, то электростанция становится ГЭС --ГАЭС. При напорах до 35--45 м такие электростанции будут руслового типа, при Н более 45 м -- приплотинного или деривационного типа. Компоновка сооружений ГЭС -- ГАЭС аналогична ГЭС, а необходимость иметь верхний и нижний бассейны и возможность перекачки воды из нижнего бассейна в верхний присущи ГАЭС.

Насосное аккумулирование энергии особенно выгоню, когда напор насосов оказывается намного меньше напора турбин, как показано на рис 2-12. При благоприятных топографических и энергетических условиях может оказаться целесообразным использование НС в качестве ГАЭС. Для этого необходимо иметь верхний и нижний бассейны и оборудовать станцию обратимыми агрегатами. Такие гидроэнергетические установки будем называть НС-ГАЭС.

8.6 Схемы использования энергии приливов

Периодические повышения и понижения уровня моря при приливах и отливах определяются силами притяжения Земля -- Луна -- Солнце и центробежными силами. Приливы обычно происходят два раза в сутки, чередование максимума и минимума приливов происходит через 6 часов 12 минут. Время прилива каждые сутки смещается на 50 минут. Продолжительность полного цикла составляет 29,53 суток. Наибольшая величина прилива т. е. разность максимального уровня при приливе и минимального уровня при отливе в открытом океане составляет 2 м и значительно увеличивается у побережья, в проливах и узких заливах. Наибольшая в мире величина прилива (19,0 м) наблюдается в заливе Фанди на Канадском побережье Атлантического океана. В СССР на побережье Охотского моря величина прилива в различных пунктах побережья составляет от 2 до 14,0 м, на побережье Кольского полуострова от 4 до 10 м.

Простейшей является однобассейная схема использования энергии приливов (рис 2-13). При наличии удобного естественного залива или фиорда который может быть отделен от моря плотиной и зданием ПЭС, он используется в качестве бассейна, наполняемого в часы прилива и oпорожняемого в часы отлива. На ПЭС предусматривают холостой водосброс. Например часть плотины делается водосливной или для холостого сброса воды используется здание ПЭС. Тогда здание выполняется или водосливного типа с переливом воды через крышу здания или совмещенного типа с водосбросными отверстиями внутри здания.

В часы прилива уровень воды в море выше, чем в бассейне и при достаточном напоре ПЭС может вырабатывать электрическую энергию, пропуская через турбины воду из моря в бассейн. В часы отлива создается перепад уровней между бассейном и морем. При достаточных напорах ПЭС вырабатывает электрическую энергию, пропуская через турбину воду из бассейна в море. При малых напорах ПЭС простаивает, обычно четыре раза в сутки. Часы работы ПЭС определяются временем наступления приливов и отливов и каждый день соответственно смещаются на 50 минут.

На ПЭС устанавливаются обратимые агрегаты двустороннего действия, которые могут работать в турбинном и насосном режимах при движении воды из моря в бассейн и из бассейна на море. На ПЭС устанавливаются агрегаты капсульного типа (см гл 8) с горизонтальном валом.| На другом его конце располагается обратимая гидравлическая машина, которая может работать попеременно как турбина и как насос. На другом конце вала в металлической капсуле, обмываемой водой, размещается обратимая электрическая машина, которая может быть использована попеременно как генератор и как двигатель.

За время одного цикла отлива - прилива, т. е. в течение примерно половины суток можно выделить шесть периодов четыре рабочих и два простоя.

Агрегаты ПЭС включаются в работу в турбинном режиме при достаточно высоком экономически обоснованном напоре Вода проходит через турбины из бассейна в море и ПЭС вырабатывает электрическую энергию и отдает ее в сеть. ПЭС работает до тех пор, пока напор не понизится до напора Н холостого хода.

Для быстрейшего опорожнения бассейна производится холостой сброс воды через водосливную плотину или через водосбросные отверстия здания ПЭС. Посредством перекачки воды насосами уровень воды в бассейне понижают ниже уровня воды в море. При работе насосов ПЭС потребляет электрическую энергию.

3 Период ожидания, в течение которого происходит процесс повышения уровня воды в море Агрегаты ПЭС простаивают до тех пор, пока не будет достигнут экономически обоснованный напор, при котором выгодно включать турбины

Четвертый, пятый и шестой периоды отличаются от предыдущих тем, что вода будет проходить через турбины, затем через водослив и перекачивается насосами из моря в бассейны. Перекачка воды насосами происходит при низких напорах, а используется она при более высоких напорах. Такое насосное аккумулирование энергии оказывается весьма выгодным. Выработка электроэнергии на перекачиваемой воде превышает потребление энергии из сети для работы насосов. В результате за счет насосного аккумулирования отдача энергии ПЭС увеличивается на 5--8 %

Потребление электроэнергии в электрических системах обычно характеризуется наличием двух регулярных пиков нагрузки -- утреннего и вечернего, и двух снижений - ночью и в часы дневного обеденного периода.

Для приспособления отдачи энергии к режиму электропотребления наряду с сооружением ПЭС надо построить ГАЭС или ГЭС с водохранилищем.

Возможны и другие схемы использования энергии приливов. Если, например, использовать два соседних фиорда или разделить залив плотиной на два бассейна, то получим двухбассейную схему. Здание ПЭС с оборудованием размещается между бассейнами. Один бассейн можно соединить с морем при приливе, а второй при отливе. При этом между бассейнами будет разность уровней и ПЭС большую часть суток сможет иметь напор, достаточный для работы турбин. Такая схема менее экономична, чем однобассейновая.

ПЭС Ранс и Кислогубская ПЭС построены по однобассепповой схеме. План ПЭС Ранс показан на рис 2-14. На ПЭС установлено 24 капсульных агрегата. ПЭС работает при амплитудах прилива 3,3-- 13,5 м, при среднем значении 8,4 м. В составе сооружений ПЭС Ране имеется судоходный шлюз.

На рис. 2-15 представлен поперечный разрез здания Кислогубской ПЭС. При строительстве ПЭС был применен прогрессивный наплавной метод. В 100 км от Кислой Губы был изготовлен наплавной док -- блок для размещения в нем агрегата. Блок был доставлен на понтонах в Кислую Губу и установлен на подготовленное основание без устройства перемычек

В СССР проведена предварительная проектная работа по Лумбовской ПЭС на Кольском полуострове мощностью 320 МВт и годовой выработкой электроэнергии около 800 млн. кВт-ч. Изучаются возможности строительства на побережье Белого моря Мезенской ПЭС мощностью 6 млн. кВт, и на побережье Охотского моря Тугурской ПЭС -- 9 млн. кВт и Пенжинской ПЭС -- 35 млн. кВт.

9. Гидравлические турбины

9.1 Классификация гидротурбин

Гидравлической турбиной называется двигатель, преобразующий энергию движущейся воды в механическую энергию вращения его рабочего колеса. Из основного закона механики жидкости -- закона Бернулли следует, что удельная энергия, т. е. энергия единицы массы, Я на входе в рабочее колесо составляет

(9.1)

на выходе из рабочего колеса

(9.2)

Обозначения всех входящих в формулы (91) и (9.2) величин приведены в § 3 2.

В зависимости от того, какие из трех членов уравнения Бернулли главным образом использованы в конструкции машины, различаются типы турбин.

Отданная водой рабочему колесу энергия равна разности энергий в потоке до и после рабочего колеса

(9.3)

Таким образом, вся энергия потока состоит из энергии положения Z1-Z2 энергии давления (образующих вместе потенциальную энергию), а также кинетической энергии

Турбины, хотя бы частично использующие потенциальную энергию, называются реактивными. В таких турбинах

(9.4)

и, следовательно, процесс преобразования энергии на рабочем колесе происходит с избытком давления. Кроме того, в рабочем колесе частично используется и кинетическая энергия потока.

Если в гидротурбинах используется только кинетическая энергия потока, то они называются активными.

В таких турбинах Z1=Z2, p1=p2 т. е. вода поступает на рабочее колесо без избыточного давления. Для достижения высокого КПД в них почти весь напор преобразуется в скорость.

Мощность турбины согласно уравнению (3.54) может быть выражена

(9.5)

В практике принято гидротурбины подразделять на классы, системы, типы и серии. Существует два класса гидротурбин: активные и реактивные

...

Подобные документы

  • Описание процессов получения электроэнергии на тепловых конденсационных электрических станциях, газотурбинных установках и теплоэлектроцентралях. Изучение устройства гидравлических и аккумулирующих электростанций. Геотермальная и ветровая энергетика.

    реферат [3,5 M], добавлен 25.10.2013

  • Силовое, измерительное и коммутационное оборудования электрических станций и подстанций. Механизм выработки энергии на тепловых электрических станциях. Особенности построения государственных районных электрических станций. Структурные схемы подстанций.

    презентация [7,8 M], добавлен 10.03.2019

  • Производство электрической и тепловой энергии. Гидравлические электрические станции. Использование альтернативных источников энергии. Распределение электрических нагрузок между электростанциями. Передача и потребление электрической и тепловой энергии.

    учебное пособие [2,2 M], добавлен 19.04.2012

  • Общая характеристика, работа и основные узлы теплоэлектростанции. Виды тепловых паротурбинных электростанций. Схема конденсационной электрической станции. Топливно-экономические показатели работы станций. Расчет себестоимости вырабатываемой энергии.

    реферат [165,2 K], добавлен 01.02.2012

  • Электрическая станция. Тепловые установки. Тепловые конденсационные электростанции. Теплоэлектроцентраль и ее особенности. Преимущества тепловых станций по сравнению с другими типами станций. Особенности принципов работы, преимущества и недостатки.

    реферат [250,8 K], добавлен 23.12.2008

  • Принцип действия тепловых конденсационных электрических станций. Описание назначения и технических характеристик тепловых турбин. Выбор типа и мощности турбогенераторов, структурной и электрической схем электростанции. Проектирование релейной защиты.

    дипломная работа [432,8 K], добавлен 11.07.2015

  • Задачи и критерии оптимизации режимов энергосистем. Математическое моделирование. Оптимизации режимов электрической сети. Контроль напряжений узлов и перетоков мощности в линиях электропередачи. Планирование режимов работы электрических станций.

    реферат [198,5 K], добавлен 08.01.2017

  • Характеристика электрических станций различного типа. Устройство конденсационных тепловых, теплофикационных, атомных, дизельных электростанций, гидро-, ветроэлектростанций, газотурбинных установок. Регулирование напряжения и возмещение резерва мощности.

    курсовая работа [240,4 K], добавлен 10.10.2013

  • Знакомство с суточными графиками нагрузки. Анализ способов определения располагаемой мощности станций энергосистемы. Рассмотрение особенностей оценки максимальных рабочих мощностей станций и резервов в электропитающих системах и электрических сетях.

    презентация [101,3 K], добавлен 30.10.2013

  • Электрическая энергия как основной вид энергии при разработке угольных сланцевых россыпных, рудных и нерудных месторождений. Характеристика внешнего и внутреннего электроснабжения. Классификация электрических станций, подстанций и электрических сетей.

    реферат [22,2 K], добавлен 03.07.2009

  • Выбор главной схемы электрических соединений. Проектирование структурной схемы станции. Выбор трансформаторов и источников питания. Способы ограничения токов короткого замыкания. Выбор электрических аппаратов и токоведущих частей электрической станции.

    дипломная работа [1,1 M], добавлен 17.12.2015

  • Освещение теоретического материала по проектированию электрических станций, сетей и систем местного значения и построения их векторных диаграмм. Выбор трансформаторов на станциях и подстанциях при определении приведенных нагрузок. Потери напряжения.

    методичка [881,1 K], добавлен 06.01.2011

  • Электростанции, вырабатывающие электроэнергию посредством преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора. Общие сведения о работе тепловых паротурбинных станций. Основные способы увеличения КПД.

    реферат [1,4 M], добавлен 23.03.2014

  • Проектирование цикла тепловых электрических станций: паросиловой цикл Ренкина, анализ процесса трансформации. Регенеративный цикл паротурбинной установки, техническая термодинамика и теплопередача, установки со вторичным перегреванием пара, цикл Карно.

    курсовая работа [360,0 K], добавлен 12.06.2011

  • Использование солнечной энергии в Республике Беларусь, тепловые гелиоустановки. Биомасса как аккумулятор солнечной энергии, получение энергии из когенерационных установок. Описание работы гидроэлектростанций. Принцип действия ветроэлектрических установок.

    курсовая работа [2,2 M], добавлен 11.03.2010

  • Основные сведения об электрической энергии. Типы и характеристики электрических станций. Организация электроснабжения, сведения об установках, передающих, распределяющих и потребляющих электроэнергию. Классификация помещений по условиям окружающей среды.

    реферат [910,5 K], добавлен 17.05.2011

  • Факторы распространенности электроэнергии на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива. Виды тепловых электрических станций. Графики электрической и тепловой нагрузки, способы покрытия их пиков.

    контрольная работа [62,5 K], добавлен 19.01.2011

  • Понятие о многоступенчатой передаче электроэнергии. Характеристики основных промышленных потребителей. Графики электрических нагрузок. Определение приведенного числа приемников, средних нагрузок, расхода электроэнергии, расчетных электрических нагрузок.

    контрольная работа [465,0 K], добавлен 13.07.2013

  • Промышленная и альтернативная энергетика. Преимущества и недостатки гидроэлектростанций, тепловых и атомных электростанций. Получение энергии без использования традиционного ископаемого топлива. Эффективное использование энергии, энергосбережение.

    презентация [1,2 M], добавлен 15.05.2016

  • Основные элементы трехфазных электрических цепей. Трехфазный источник электрической энергии. Анализ электрических цепей при соединении трехфазного источника и приемника по схемам "звезда" с нулевым проводом и "треугольник". Расчет и измерение мощности.

    презентация [742,4 K], добавлен 25.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.