Методы защиты электронной информации

Защита информации: моно- и многоалфавитные перестановки и подстановки номеров букв открытого текста, гаммирование и генерация псевдослучайных чисел. Промышленные стандарты на симметричные криптосистемы. Электронная подпись, типы правонарушений в сети.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 18.12.2013
Размер файла 129,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3) Средства аутентификации пользователей. Об этом будет рассказано в главе «Электронная подпись».

Ниже рассматриваются наиболее распространенные системы с открытым ключом.

6.2. Метод RSA

Несмотря на довольно большое число различных СОК, наиболее популярна - криптосистема RSA, разработанная в 1977 году и получившая название в честь ее создателей: Рона Ривеста, Ади Шамира и Леонарда Эйдельмана.

Они воспользовались тем фактом, что нахождение больших простых чисел в вычислительном отношении осуществляется легко, но разложение на множители произведения двух таких чисел практически невыполнимо. Доказано (теорема Рабина), что раскрытие шифра RSA эквивалентно такому разложению. Поэтому для любой длины ключа можно дать нижнюю оценку числа операций для раскрытия шифра, а с учетом производительности современных компьютеров оценить и необходимое на это время.

Возможность гарантированно оценить защищенность алгоритма RSA стала одной из причин популярности этой СОК на фоне десятков других схем. Поэтому алгоритм RSA используется в банковских компьютерных сетях, особенно для работы с удаленными клиентами (обслуживание кредитных карточек).

В настоящее время алгоритм RSA используется во многих стандартах, среди которых SSL, S-HHTP, S-MIME, S/WAN, STT и PCT.

Рассмотрим математические результаты, положенные в основу этого алгоритма.

Теорема 1. (Малая теорема Ферма.)

Если р - простое число, то

xp-1 = 1 (mod p) (1)

для любого х, простого относительно р, и

xp = х (mod p) (2)

для любого х.

Доказательство. Достаточно доказать справедливость уравнений (1) и (2) для хZp. Проведем доказательство методом индукции.

Очевидно, что уравнение (8.2.2) выполняется при х=0 и 1.

Далее

xp=(x-1+1)p= C(p,j)(x-1)j=(x-1)p+1 (mod p),

0jp

так как C(p,j)=0(mod p) при 0<j<p. С учетом этого неравенства и предложений метода доказательства по индукции теорема доказана.

Определение. Функцией Эйлера (n) называется число положительных целых, меньших n и простых относительно n.

n

2

3

4

5

6

7

8

9

10

11

12

(n)

1

2

2

3

2

6

4

6

4

10

4

Теорема 2. Если n=pq, (p и q - отличные друг от друга простые числа), то

(n)=(p-1)(q-1)

Теорема 3. Если n=pq, (p и q - отличные друг от друга простые числа) и х - простое относительно р и q, то

x(n) = 1 (mod n)

Следствие. Если n=pq, (p и q - отличные друг от друга простые числа) и е простое относительно (n), то отображение

Еe,n: xxe (mod n)

Очевиден и тот факт, что если е - простое относительно (n), то существует целое d, такое, что

ed = 1 (mod (n)) (3)

На этих математических фактах и основан популярный алгоритм RSA.

Пусть n=pq, где p и q - различные простые числа. Если e и d удовлетворяют уравнению (8.2.3), то отображения Еe,n и Еd,n являются инверсиями на Zn. Как Еe,n, так и Еd,n легко рассчитываются, когда известны e, d, p, q. Если известны e и n, но p и q неизвестны, то Еe,n представляет собой одностороннюю функцию; нахождение Еd,n по заданному n равносильно разложению n. Если p и q - достаточно большие простые, то разложение n практически не осуществимо. Это и заложено в основу системы шифрования RSA.

Пользователь i выбирает пару различных простых pi и qi и рассчитывает пару целых (ei, di), которые являются простыми относительно (ni), где ni=pi qi . Справочная таблица содержит публичные ключи {(ei ,ni)}.

Предположим, что исходный текст

x =(x0, x1, ..., xn-1), xZn , 0 i < n,

сначала представлен по основанию ni :

N = c0+ci ni+....

Пользователь i зашифровывает текст при передаче его пользователю j, применяя к n отображение Edi,ni :

N Edi,ni n = n'.

Пользователь j производит дешифрование n', применяя Eei,ni :

N' Eei,ni n'= Eei,ni Edi,ni n = n .

Очевидно, для того чтобы найти инверсию Edi,ni по отношению к Eei,ni, требуется знание множителей n=pi qi. Время выполнения наилучших из известных алгоритмов разложения при n=10100 на сегодняшний день выходит за пределы современных технологических возможностей.

Рассмотрим небольшой пример, иллюстрирующий применение алгоритма RSA.

Пример. Зашифруем сообщение “САВ”. Для простоты будем использовать маленькие числа (на практике применяются гораздо большие).

1) Выберем p=3 и q=11.

2) Определим n=3*11=33.

3) Найдем (p-1)(q-1)=20. Следовательно, в качестве d, взаимно простое с 20, например, d=3.

4) Выберем число е. В качестве такого числа может быть взято любое число, для которого удовлетворяется соотношение (е*3) (mod 20) = 1, например 7.

5) Представим шифруемое сообщение как последовательность целых чисел с помощью отображения: А1, В2, С3. Тогда сообщение принимает вид (3,1,2). Зашифруем сообщение с помощью ключа {7,33}.

ШТ1 = (37) (mod 33) = 2187 (mod 33) = 9,

ШТ2 = (17) (mod 33) = 1 (mod 33) = 1,

ШТ3 = (27) (mod 33) = 128 (mod 33) = 29.

6) Расшифруем полученное зашифрованное сообщение (9,1,29) на основе закрытого ключа {3,33}:

ИТ1 = (93) (mod 33) = 729 (mod 33) = 3,

ИТ2= (13) (mod 33) = 1 (mod 33) = 1,

ИТ3 = (293) (mod 33) = 24389 (mod 33) = 2.

Итак, в реальных системах алгоритм RSA реализуется следующим образом: каждый пользователь выбирает два больших простых числа, и в соответствии с описанным выше алгоритмом выбирает два простых числа e и d. Как результат умножения первых двух чисел (p и q) устанавливается n.

{e,n} образует открытый ключ, а {d,n} - закрытый (хотя можно взять и наоборот).

Открытый ключ публикуется и доступен каждому, кто желает послать владельцу ключа сообщение, которое зашифровывается указанным алгоритмом. После шифрования, сообщение невозможно раскрыть с помощью открытого ключа. Владелец же закрытого ключа без труда может расшифровать принятое сообщение.

6.3 Практическая реализация RSA

В настоящее время алгоритм RSA активно реализуется как в виде самостоятельных криптографических продуктов, так и в качестве встроенных средств в популярных приложениях.

Важная проблема практической реализации - генерация больших простых чисел. Решение задачи «в лоб» - генерация случайного большого числа n (нечетного) и проверка его делимости на множители от 3 вплоть до n0.5. В случае неуспеха следует взять n+2 и так далее.

В принципе в качестве p и q можно использовать «почти» простые числа, то есть числа, для которых вероятность того, что они простые, стремится к 1. Но в случае, если использовано составное число, а не простое, криптостойкость RSA падает. Имеются неплохие алгоритмы, которые позволяют генерировать «почти» простые числа с уровнем доверия 2-100.

Другая проблема - ключи, какой длины следует использовать?

Для практической реализации алгоритмов RSA полезно знать оценки трудоемкости разложения простых чисел различной длины, сделанные Шроппелем.

log10 n

Число операций

Примечания

50

1.4*1010

Раскрываем на суперкомпьютерах

100

2.3*1015

На пределе современных технологий

200

1.2*1023

За пределами современных технологий

400

2.7*1034

Требует существенных изменений в технологии

800

1.3*1051

Не раскрываем

В конце 1995 года удалось практически реализовать раскрытие шифра RSA для 500-значного ключа. Для этого с помощью сети Интернет было задействовано 1600 компьютеров.

Сами авторы RSA рекомендуют использовать следующие размеры модуля n:

· 768 бит - для частных лиц;

· 1024 бит - для коммерческой информации;

· 2048 бит - для особо секретной информации.

Третий немаловажный аспект реализации RSA - вычислительный. Ведь приходится использовать аппарат длинной арифметики. Если используется ключ длиной k бит, то для операций по открытому ключу требуется О(k2) операций, по закрытому ключу - О(k3) операций, а для генерации новых ключей требуется О(k4) операций.

Криптографический пакет BSAFE 3.0 (RSA D.S.) на компьютере Pentium-90 осуществляет шифрование со скоростью 21.6 Кбит/c для 512-битного ключа и со скоростью 7.4 Кбит/c для 1024 битного. Самая «быстрая» аппаратная реализация обеспечивает скорости в 60 раз больше.

По сравнению с тем же алгоритмом DES, RSA требует в тысячи и десятки тысяч раз большее время.

Лекция 7. Другие ассиметричные криптосистемы

7.1 Криптосистема Эль-Гамаля

Данная система является альтернативой RSA и при равном значении ключа обеспечивает ту же криптостойкость.

В отличие от RSA метод Эль-Гамаля основан на проблеме дискретного логарифма. Этим он похож на алгоритм Диффи-Хелмана. Если возводить число в степень в конечном поле достаточно легко, то восстановить аргумент по значению (то есть найти логарифм) довольно трудно.

Основу системы составляют параметры p и g - числа, первое из которых - простое, а второе - целое.

Александр генерирует секретный ключ а и вычисляет открытый ключ y = gа mod p. Если Борис хочет послать Александру сообщение m, то он выбирает случайное число k, меньшее p и вычисляет

y1 = gk mod p и

y2 = m yk,

где означает побитовое сложение по модулю 2. Затем Борис посылает (y1,y2) Александру.

Александр, получив зашифрованное сообщение, восстанавливает его:

m = (y1a mod p) y2.

Алгоритм цифровой подписи DSA, разработанный NIST (National Institute of Standard and Technology) и являющийся частью стандарта DSS частично опирается на рассмотренный метод.

7.2 Криптосистемы на основе эллиптических уравнений

Эллиптические кривые - математический объект, который может определен над любым полем (конечным, действительным, рациональным или комплексным). В криптографии обычно используются конечные поля. Эллиптическая кривая есть множество точек (x,y), удовлетворяющее следующему уравнению:

y2 = x3 + ax + b,

а также бесконечно удаленная точка. Для точек на кривой довольно легко вводится операция сложения, которая играет ту же роль, что и операция умножения в криптосистемах RSA и Эль-Гамаля.

В реальных криптосистемах на базе эллиптических уравнений используется уравнение

y2 = x3 + ax + b mod p,

где р - простое.

Проблема дискретного логарифма на эллиптической кривой состоит в следующем: дана точка G на эллиптической кривой порядка r (количество точек на кривой) и другая точка Y на этой же кривой. Нужно найти единственную точку x такую, что Y = xG, то есть Y есть х-я степень G.

Лекция 8. Цифровая подпись

8.1 Общее понятие электронной подписи

В конце обычного письма или документа исполнитель или ответственное лицо обычно ставит свою подпись. Подобное действие обычно преследует две цели. Во-первых, получатель имеет возможность убедиться в истинности письма, сличив подпись с имеющимся у него образцом. Во-вторых, личная подпись является юридическим гарантом авторства документа. Последний аспект особенно важен при заключении разного рода торговых сделок, составлении доверенностей, обязательств и т.д.

Если подделать подпись человека на бумаге весьма непросто, а установить авторство подписи современными криминалистическими методами - техническая деталь, то с подписью электронной дело обстоит иначе. Подделать цепочку битов, просто ее скопировав, или незаметно внести нелегальные исправления в документ сможет любой пользователь.

С широким распространением в современном мире электронных форм документов (в том числе и конфиденциальных) и средств их обработки особо актуальной стала проблема установления подлинности и авторства безбумажной документации.

В разделе криптографических систем с открытым ключом было показано, что при всех преимуществах современных систем шифрования они не позволяют обеспечить аутентификацию данных. Поэтому средства аутентификации должны использоваться в комплексе и криптографическими алгоритмами.

8.2 Типы правонарушений в компьютерной сети

Итак, пусть имеются два пользователя Александр и Борис. От каких нарушений и действий злоумышленника должна защищать система аутентификации.

Отказ (ренегатство).

Александр заявляет, что он не посылал сообщение Борису, хотя на самом деле он все-таки посылал.

Для исключения этого нарушения используется электронная (или цифровая) подпись.

Модификация (переделка).

Борис изменяет сообщение и утверждает, что данное (измененное) сообщение послал ему Александр.

Подделка.

Борис формирует сообщение и утверждает, что данное (измененное) сообщение послал ему Александр.

Активный перехват.

Владимир перехватывает сообщения между Александром и Борисом с целью их скрытой модификации.

Для защиты от модификации, подделки и маскировки используются цифровые сигнатуры.

Маскировка (имитация).

Владимир посылает Борису сообщение от имени Александра .

В этом случае для защиты также используется электронная подпись.

Повтор.

Владимир повторяет ранее переданное сообщение, которое Александра посылал ранее Борису. Несмотря на то, что принимаются всевозможные меры защиты от повторов, именно на этот метод приходится большинство случаев незаконного снятия и траты денег в системах электронных платежей.

Наиболее действенным методом защиты от повтора являются:

1) использование имитовставок,

2) учет входящих сообщений.

Возможные нарушения защиты сообщений,. посылаемых пользователем А пользователю В изображены на рисунке.

8.3 Электронная подпись на основе алгоритма RSA

Наиболее простым и распространенным инструментом электронной подписи является уже знакомый алгоритм RSA. Ниже оно будет рассмотрена в качестве примера. Кроме этого существуют еще десятки других схем цифровой подписи.

Предположим, что

d,p,q - секретные, а е, n=pq - открытые.

Замечания.

1. Разложение по n дает: (n)=(p-1)(q-1); зная (n) и e, можно найти d.

2. Из e и d можно найти кратность (n); кратность (n) позволяет определить делители n.

Пусть DATA - передаваемое Александром Борису сообщение.

Александр подписывает DATA для Бориса при передаче:

EeB,nB { EdA,nA {DATA}}.

При этом он использует:

· закрытый ключ EdA,nA Александра,

· открытый ключ EeB,nB Бориса.

Борис может читать это подписанное сообщение сначала при помощи закрытого ключа EdВ,nВ Бориса с целью получения

EdA,nA {DATA} = EdB,nB {EeB,nB {EdA,nA {DATA}}}

и затем - открытого ключа EeA,nA Александра для получения

DATA = EeA,nA { EdA,nA {DATA}}.

Таким образом, у Бориса появляется сообщение DATA, посланное ему Александром.

Очевидно, что данная схема позволяет защититься от нескольких видов нарушений.

Александр не может отказаться от своего сообщения, если он признает, что секретный ключ известен только ему.

Нарушитель без знания секретного ключа не может ни сформировать, ни сделать осмысленное изменение сообщения, передаваемого по линии связи.

Данная схема позволяет при решении многих конфликтных ситуаций обходиться без посредников.

Иногда нет необходимости зашифровывать передаваемое сообщение, но нужно его скрепить электронной подписью. В этом случае текст шифруется закрытым ключом отправителя и полученная цепочка символов прикрепляется к документу. Получатель с помощью открытого ключа отправителя расшифровывает подпись и сверяет ее с текстом.

В 1991 г. Национальный институт стандартов и технологии (NIST) предложил для появившегося тогда алгоритма цифровой подписи DSA (Digital Signature Algorithm) стандарт DSS (Digital Signature Standard), в основу которого положены алгоритмы Эль-Гамаля и RSA.

Лекция 9. Цифровая сигнатура

9.1 Понятие цифровой сигнатуры

Часто возникают ситуации, когда получатель должен уметь доказать подлинность сообщения внешнему лицу. Чтобы иметь такую возможность, к передаваемым сообщениям должны быть приписаны так называемые цифровые сигнатуры.

Цифровая сигнатура - это строка символов, зависящая как от идентификатора отправителя, так и содержания сообщения.

Никто при этом кроме пользователя А не может вычислить цифровую сигнатуру А для конкретного сообщения. Никто, даже сам пользователь не может изменить посланного сообщения так, чтобы сигнатура осталась неизменной. Хотя получатель должен иметь возможность проверить является ли цифровая сигнатура сообщения подлинной. Чтобы проверить цифровую сигнатуру, пользователь В должен представить посреднику С информацию, которую он сам использовал для верификации сигнатуры.

Если помеченное сигнатурой сообщение передается непосредственно от отправителя к получателю, минуя промежуточное звено, то в этом случае идет речь об истинной цифровой сигнатуре.

Рассмотрим типичную схему цифровой сигнатуры.

Пусть Е - функция симметричного шифрования и f - функция отображения некоторого множества сообщений на подмножество мощности р из последовательности {1, ..., n}.

Например р=3 и n=9. Если m - сообщение , то в качестве f можно взять функцию f(m) = {2, 5, 7}.

Для каждого сообщения пользователь А выбирает некоторое множество ключей K=[K1, ..., Kn} и параметров V={v1, ...,vn} для использования в качестве пометок сообщения, которое будет послано В. Множества V и V'={E(v1,K1) ..., E(vn,Kn)} посылаются пользователю В и заранее выбранному посреднику С.

Пусть m - сообщение и idm - объединение идентификационных номеров отправителя, получателя и номера сообщения. Если f({idm, m}), то цифровая сигнатура m есть множество K'=[Ki, ..., Kj}. Сообщение m, идентификационный номер idm и цифровая сигнатура К' посылаются В.

Получатель В проверяет сигнатуру следующим образом. Он вычисляет функцию f({idm, m}) и проверяет ее равенство К'.

Затем он проверяет, что подмножество {vi, ...,vj} правильно зашифровано в виде подмножества {E(vi,Ki) ..., E(vj,Kj)} множества V'.

В конфликтной ситуации В посылает С сообщение m, идентификационный номер idm и множество ключей K', которое В объявляет сигнатурой m. Тогда посредник С так же, как и В, будет способен проверить сигнатуру. Вероятность раскрытия двух сообщений с одним и тем же значением функции f должна быть очень мала. Чтобы гарантировать это, число n должно быть достаточно большим, а число р должно быть больше 1, но меньше n.

Ряд недостатков этой модели очевиден:

· должно быть третье лицо - посредник, которому доверяют как получатель, так и отправитель;

· получатель, отправитель и посредник должны обменяться существенным объемом информации, прежде чем будет передано реальное сообщение;

· передача этой информации должна осуществляться в закрытом виде;

· эта информация используется крайне неэффективно, поскольку множества K, V, V' используются только один раз.

Тем не менее, даже такая схема цифровой сигнатуры может использоваться в информационных системах, в которых необходимо обеспечить аутентификацию и защиту передаваемых сообщений.

9.2 Хэш-функции

Использование цифровой сигнатуры предполагает использование некоторых функций шифрования:

S = H(k, T),

где S - сигнатура, k - ключ, T - исходный текст.

Функция H(k, T) - является хэш-функцией, если она удовлетворяет следующим условиям:

1) исходный текст может быть произвольной длины;

2) само значение H(k, T) имеет фиксированную длину;

3) значение функции H(k, T) легко вычисляется для любого аргумента;

4) восстановить аргумент по значению с вычислительной точки зрения - практически невозможно;

5) функция H(k, T) - однозначна.

Из определения следует, что для любой хэш-функции есть тексты-близнецы - имеющие одинаковое значение хэш-функции, так как мощность множества аргументов неограниченно больше мощности множества значений. Такой факт получил название «эффект дня рождения».

Наиболее известные из хэш-функций - MD2, MD4, MD5 и SHA.

Три алгоритма серии MD разработаны Ривестом в 1989-м, 90-м и 91-м году соответственно. Все они преобразуют текст произвольной длины в 128-битную сигнатуру.

Алгоритм MD2 предполагает:

· дополнение текста до длины, кратной 128 битам;

· вычисление 16-битной контрольной суммы (старшие разряды отбрасываются);

· добавление контрольной суммы к тексту;

· повторное вычисление контрольной суммы.

Алгоритм MD4 предусматривает:

· дополнение текста до длины, равной 448 бит по модулю 512;

· добавляется длина текста в 64-битном представлении;

· 512-битные блоки подвергаются процедуре Damgard-Merkle, причем каждый блок участвует в трех разных циклах.

В алгоритме MD4 довольно быстро были найдены «дыры», поэтому он был заменен алгоритмом MD5, в котором каждый блок участвует не в трех, а в четырех различных циклах.

Алгоритм SHA (Secure Hash Algorithm) разработан NIST (National Institute of Standard and Technology) и повторяет идеи серии MD. В SHA используются тексты более 264 бит, которые закрываются сигнатурой длиной 160 бит. Данный алгоритм предполагается использовать в программе Capstone.

Размещено на Allbest.ru

...

Подобные документы

  • Значение применения криптоалгоритмов в современном программном обеспечении. Классификация методов и средств защиты информации, формальные, неформальные средства защиты. Традиционные симметричные криптосистемы. Принципы криптографической защиты информации.

    методичка [359,6 K], добавлен 30.08.2009

  • Криптография и шифрование. Симметричные и асимметричные криптосистемы. Основные современные методы шифрования. Алгоритмы шифрования: замены (подстановки), перестановки, гаммирования. Комбинированные методы шифрования. Программные шифраторы.

    реферат [57,7 K], добавлен 24.05.2005

  • Проблема выбора между необходимым уровнем защиты и эффективностью работы в сети. Механизмы обеспечения защиты информации в сетях: криптография, электронная подпись, аутентификация, защита сетей. Требования к современным средствам защиты информации.

    курсовая работа [32,1 K], добавлен 12.01.2008

  • Способы и средства защиты информации от несанкционированного доступа. Особенности защиты информации в компьютерных сетях. Криптографическая защита и электронная цифровая подпись. Методы защиты информации от компьютерных вирусов и от хакерских атак.

    реферат [30,8 K], добавлен 23.10.2011

  • Краткие сведения о истории криптографии. Симметричные криптосистемы (системы с секретным ключом) и системы с открытым ключом. Аутентификация и идентификация, электронная цифровая подпись. Управление ключами, их архивирование, хранение и восстановление.

    доклад [458,9 K], добавлен 08.11.2013

  • Обзор технологий защиты информации в компьютерных сетях: криптография, электронная подпись, аутентификация, защита сетей. Организация защиты информации на клиентской машине с помощью системы Avast. Конфигурация и настройка системы Avast на компьютере.

    курсовая работа [1,3 M], добавлен 11.05.2014

  • Виды информационных систем и защита информации в них. Проблемы, возникающие в процессе защиты ИС различных видов. Электронная цифровая подпись и ее применение для защиты информационной системы предприятия. Анализ защищенности хозяйствующего субъекта.

    дипломная работа [949,0 K], добавлен 08.11.2016

  • Симметричные и асиметричные методы шифрования. Шифрование с помощью датчика псевдослучайных чисел. Алгоритм шифрования DES. Российский стандарт цифровой подписи. Описание шифрования исходного сообщения асимметричным методом с открытым ключом RSA.

    курсовая работа [101,1 K], добавлен 09.03.2009

  • Возможные каналы утечки информации. Особенности и организация технических средств защиты от нее. Основные методы обеспечения безопасности: абонентское и пакетное шифрование, криптографическая аутентификация абонентов, электронная цифровая подпись.

    курсовая работа [897,9 K], добавлен 27.04.2013

  • Информационная безопасность человека и общества. Технические средства охраны объектов и защиты от утечки информации. Противодействие наблюдению в оптическом диапазоне. Идентификация и аутентификация. Защита паролями . Электронная подпись.

    контрольная работа [27,6 K], добавлен 07.08.2007

  • Принципы обеспечения достоверности и сохранности, основанные на шифровании информации. Создание электронной цифровой подписи. Обеспечение достоверности и сохранности информации в автоматизированных системах. Симметричное и асимметричное шифрование.

    курсовая работа [897,3 K], добавлен 19.01.2015

  • Характеристика ГОСТ Р 34.10-2001 "Информационная технология. Криптографическая защита информации. Процессы формирования и проверки электронной цифровой подписи". Его обозначения, отличия от старого стандарта. Алгоритм формирования цифровой подписи.

    курсовая работа [253,5 K], добавлен 16.08.2012

  • Схема формирования электронной цифровой подписи, её виды, методы построения и функции. Атаки на электронную цифровую подпись и правовое регулирование в России. Средства работы с электронной цифровой подписью, наиболее известные пакеты и их преимущества.

    реферат [27,8 K], добавлен 13.09.2011

  • Шифрование и дешифрование с помощью сети Фейстеля. Процесс блочного преобразования открытой информации в зашифрованную информацию. Таблица перевода чисел и букв. Криптостойкость шифра как показатель его эффективности. Подстановки и перемещение битов.

    курсовая работа [475,6 K], добавлен 30.12.2013

  • Проблема защиты информации. Особенности защиты информации в компьютерных сетях. Угрозы, атаки и каналы утечки информации. Классификация методов и средств обеспечения безопасности. Архитектура сети и ее защита. Методы обеспечения безопасности сетей.

    дипломная работа [225,1 K], добавлен 16.06.2012

  • Назначение и особенности применения электронной цифровой подписи, история ее возникновения, алгоритмы, схемы. Использование хэш-функций. Подделка подписей, модели атак и их возможные результаты. Управление ключами открытого типа. Хранение закрытого ключа.

    презентация [883,5 K], добавлен 18.05.2017

  • Статистический анализ текстов, созданных программой симметричного шифрования. Реализация симметричного криптоалгоритма. Основные шаги в использовании криптосистемы PGP. Генерация ключей, шифрование и расшифровка сообщений. Защита от сетевых атак.

    лабораторная работа [1,7 M], добавлен 06.07.2009

  • Основные положения теории защиты информации. Сущность основных методов и средств защиты информации в сетях. Общая характеристика деятельности и корпоративной сети предприятия "Вестел", анализ его методик защиты информации в телекоммуникационных сетях.

    дипломная работа [1,1 M], добавлен 30.08.2010

  • Виды программного обеспечения и способы защиты информации. Отличие простого копирования файлов от инсталляции программ. Лицензионные, условно бесплатные и бесплатные программы. Правовая охрана информации. Защита доступа к компьютеру и электронная подпись.

    конспект урока [24,3 K], добавлен 24.11.2011

  • Важнейшие стороны обеспечения информационной безопасности. Технические средства обработки информации, ее документационные носители. Типовые пути несанкционированного получения информации. Понятие об электронной подписи. Защита информации от разрушения.

    реферат [138,5 K], добавлен 14.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.