Техническое обслуживание средств вычислительной техники

Сведения о микропроцессорах и микро электронно-вычисленных машинах: классификация, базовые и технические характеристики. Структура аппаратной части и назначения основных функциональных узлов. Арифметические операции над числами с фиксированной точкой.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 17.12.2014
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство просвещения ПМР

ТИРАСПОЛЬСКИЙ ТЕХНИКУМ ИНФОРМАТИКИ И ПРАВА

Конспект лекций

По дисциплине: «Микросхемотехника»

по специальности: «Техническое обслуживание средств вычислительной техники»

Разработала:

преподаватель кафедры

информационных технологий

Васькина Ю.В.

Раздел 1. Основные сведения о микропроцессорах и микроЭВМ

1.1 Классификация ЭВМ

Электронная вычислительная машина - комплекс технических и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей. Под пользователем понимают человека, в интересах которого проводится обработка данных на ЭВМ. В качестве пользователя могут выступать заказчики вычислительных работ, программисты, операторы. Как правил?, время подготовки задач во много раз превышает время их решения.

По принципу действия вычислительные машины делятся на три больших класса:

аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ).

Критерием деления вычислительных машин на эти три класса является форма представления информации, с которой они работают. ЦВМ работают с информацией, представленной в дискретной, а точнее, в цифровой форме. АВМ работают с информацией, представленной в непрерывной форме, т.е. в виде непрерывного ряда значений какой-либо величины (чаще всего электрического напряжения). ГВМ работают с информацией, представленной и в цифровой, и в аналоговой форме. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами. Наиболее широкое применение получили ЦВМ с электрическим представлением дискретной информации - электронные вычислительные машины (ЭВМ).

По этапам создания и используемой элементной базе ЭВМ условно делятся на поколения:

1-е поколение, 50-е годы: ЭВМ на электронных вакуумных лампах;

2-е поколение, 60-е годы: ЭВМ на дискретных полупроводниковых приборах (транзисторах);

3-е поколение, 70-е годы: ЭВМ на полупроводниковых интегральных схемах с малой и средней степенью интеграции (сотни - тысячи транзисторов в одном корпусе);

4-е поколение, 80-е годы: ЭВМ на больших и сверхбольших интегральных схемах - микропроцессорах (десятки тысяч - миллионы транзисторов в одном кристалле);

5-е поколение, 90-е годы: ЭВМ с многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;

6-е поколение и последующие поколения: оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой - с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Каждое следующее поколение ЭВМ имеет по сравнению с предшествующими существенно лучшие характеристики.

По назначению ЭВМ можно разделить на три группы: универсальные (общего назначения), проблемно-ориентированные и специализированные.

Универсальные ЭВМ предназначены для решения самых различных инженерно- технических задач: математических, экономических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных. К проблемно- ориентированным ЭВМ можно отнести управляющие вычислительные комплексы.

Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость. К специализированным ЭВМ можно отнести программируемые микропроцессоры специального назначения, адаптеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами, агрегатами и процессами.

По размерам и функциональным возможностям ЭВМ можно разделить на суперЭВМ, большие, малые и микроЭВМ.

Исторически первыми появились большие ЭВМ, элементная база которых прошла путь от электронных ламп до интегральных схем со сверхвысокой степенью интеграции.

Производительность больших ЭВМ оказалась недостаточной для ряда задач: прогнозирования метеообстановки, управления сложными оборонными комплексами и др. Это явилось предпосылкой для разработки и создания суперЭВМ, интенсивно развивающихся и в настоящее время.

Появление в 70-х годах малых ЭВМ обусловлено, с одной стороны, прогрессом в области элементной базы, а с другой - избыточностью ресурсов больших ЭВМ для ряда приложений.

Дальнейшие успехи в области элементной базы и архитектурных решений привели к возникновению супермини-ЭВМ - вычислительной машины, относящейся по архитектуре, размерам и стоимости к классу малых ЭВМ, но по производительности сравнимой с большой ЭВМ.

Изобретение в 1969 г. микропроцессора (МП) привело к появлению в 70-х годах еще одного класса ЭВМ - микроЭВМ. Именно наличие МП служило первоначально определяющим признаком микроЭВМ. Сейчас микропроцессоры используются во всех без исключения классах ЭВМ.

1.2 Базовые параметры и технические характеристики ЭВМ

Основные характеристики ЭВМ

Быстродействие - это число команд, выполняемых ЭВМ за одну секунду.

Сравнение по быстродействию различных типов ЭВМ, не обеспечивает достоверных оценок. Очень часто вместо характеристики быстродействия используют связанную с ней характеристику производительности.

Производительность - это объем работ, осуществляемых ЭВМ в единицу времени.

Единицей измерения производительности компьютера является время: компьютер, выполняющий тот же объем работы за меньшее время является более быстрым. Время выполнения любой программы измеряется в секундах. Часто производительность измеряется как скорость появления некоторого числа событий в секунду, так что меньшее время подразумевает большую производительность.

Однако в зависимости от того, что мы считаем, время может быть определено различными способами. Наиболее простой способ определения времени называется астрономическим временем, временем ответа (response time), временем выполнения (execution time) или прошедшим временем (elapsed time). Это задержка выполнения задания, включающая буквально все: работу процессора, обращения к диску, обращения к памяти, ввод/вывод и накладные расходы операционной системы.

В процессе поиска стандартной единицы измерения производительности компьютеров было принято несколько популярных единиц измерения.

Одной из альтернативных единиц измерения производительности процессора является MIPS - (миллион команд в секунду).

В общем случае MIPS есть скорость операций в единицу времени, т.е. для любой данной программы MIPS есть просто отношение количества команд в программе к времени ее выполнения. Таким образом, производительность может быть определена как обратная к времени выполнения величина, причем более быстрые машины при этом будут иметь более высокий рейтинг MIPS.

Измерение производительности компьютеров при решении научно-технических задач, в которых существенно используется арифметика с плавающей точкой оценивается в MFLOPS (миллионах чисел-результатов вычислений с плавающей точкой в секунду, или миллионах элементарных арифметических операций над числами с плавающей точкой, выполненных в секунду).

Как единица измерения, MFLOPS, предназначена для оценки производительности только операций с плавающей точкой, и поэтому не применима вне этой ограниченной области. Например, программы компиляторов имеют рейтинг MFLOPS близкий к нулю вне зависимости от того, насколько быстра машина, поскольку компиляторы редко используют арифметику с плавающей точкой.

Емкость запоминающих устройств. Емкость памяти измеряется количеством структурных единиц информации, которое может одновременно находится в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти.

Наименьшей структурной единицей информации является бит. Как правило, емкость памяти оценивается в более крупных единицах измерения - байтах (байт равен восьми битам). Следующими единицами измерения служат 1 Кбайт = 210 = 1024 байта, 1 Мбайт = 210 Кбайта = 220 байта, 1 Гбайт =210 Мбайта = 220 Кбайта = 230 байта.

Емкость оперативной памяти (ОЗУ) и емкость внешней памяти (ВЗУ) характеризуются отдельно. Этот показатель очень важен для определения, какие программные пакеты и их приложения могут одновременно обрабатываться в машине.

Надежность - это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного периода времени (стандарт ISO (Международная организация стандартов) 2382/14-78).

Высокая надежность ЭВМ закладывается в процессе ее производства. Применение сверхбольших интегральных схем (СБИС) резко сокращает число используемых интегральных схем, а значит, и число их соединений друг с другом. Модульный принцип построения позволяет легко проверять и контролировать работу всех устройств, проводить диагностику и устранение неисправностей.

Точность - это возможность различать почти равные значения (стандарт ISO - 2382/2-76).

Точность получения результатов обработки в основном определяется разрядностью ЭВМ, а также используемыми структурными единицами представления информации (байтом, словом, двойным словом).

Достоверность - это свойство информации быть правильно воспринятой.

Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратурно-программными средствами контроля самой ЭВМ. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других ЭВМ и сравнение результатов.

1.3 Архитектура вычислительной системы. Структура аппаратной части и назначение основных функциональных узлов

Вычислительная система -- это совокупность одного или нескольких компьютеров или процессоров, программного обеспечения и периферийного оборудования, организованная для совместного выполнения информационно-вычислительных процессов. В вычислительной системе компьютер может быть один, но агрегированный с многофункциональным периферийным оборудованием.

1. Процессор (центральный процессор) -- основной вычислительный блок компьютера, содержит важнейшие функциональные устройства:

- устройство управления с интерфейсом процессора (системой сопряжения и связи процессора с другими узлами машины);

- арифметико-логическое устройство;

- процессорную память.

Процессор, по существу, является устройством, выполняющим все функции элементарной вычислительной машины.

2. Оперативная память -- запоминающее устройство, используемое для оперативного хранения и обмена информацией с другими узлами машины.

3. Каналы связи (внутримашинный интерфейс) служат для сопряжения центральных узлов машины с ее внешними устройствами;

4. Внешние устройства обеспечивают эффективное взаимодействие компьютера с окружающей средой: пользователями, объектами управления, другими машинами. В состав внешних устройств обязательно входят внешняя память и устройства ввода-вывода.

Структура типового микропроцессора

Архитектура типичной небольшой вычислительной системы на основе микроЭВМ показана на рис. 2.1 Такая микроЭВМ содержит все 5 основных блоков цифровой машины: устройство ввода информации, управляющее устройство (УУ), арифметико-логическое устройство (АЛУ) (входящие в состав микропроцессора), запоминающие устройства (ЗУ) и устройство вывода информации.

микропроцессор вычислительный аппаратный арифметический

Рис. 2.1. Архитектура типового микропроцессора

Микропроцессор координирует работу всех устройств цифровой системы с помощью шины управления (ШУ). Помимо ШУ имеется 16-разрядная адресная шина (ША), которая служит для выбора определенной ячейки памяти, порта ввода или порта вывода. По 8-разрядной информационной шине или шине данных (ШД) осуществляется двунаправленная пересылка данных к микропроцессору и от микропроцессора. Важно отметить, что МП может посылать информацию в память микроЭВМ или к одному из портов вывода, а также получать информацию из памяти или от одного из портов ввода.

Микропроцессор является ядром системы и осуществляет управление всеми операциями. Его работа представляет последовательную реализацию микропроцедур выборки-дешифрации-исполнения.

В микропроцессорных системах микропроцессор выполняет следующие функции:

- выборку команд программы из основной памяти;

- дешифрацию команд;

- выполнение арифметических, логических и других операций, закодированных в командах;

- управление пересылкой информации между регистрами и основной памятью, между устройствами ввода/вывода;

- отработку сигналов от устройств ввода/вывода, в том числе реализацию прерываний с этих устройств;

- управление и координацию работы основных узлов МП.

Компьютер обменивается информацией с внешним миром с помощью периферийных устройств. Периферийные устройства делятся на устройства ввода, устройства вывода, устройства хранения информации и устройства обмена данными.

Устройство ввода информации: клавиатура - это стандартное устройство, предназначенное для ручного ввода информации. Работой клавиатуры управляет контроллер клавиатуры, расположенный на материнской плате и подключаемый к ней через разъем на задней панели компьютера. При нажатии пользователем клавиши на клавиатуре, контроллер клавиатуры преобразует код нажатой клавиши в соответствующую последовательность битов и передает их компьютеру. Отображение символов, набранных на клавиатуре, на экране компьютера называется эхом. Обычная современная клавиатура имеет, как правило, 101-104 клавиши, среди которых выделяют алфавитно-цифровые клавиши, необходимые для ввода текста, клавиши управления курсором и ряд специальных и управляющих клавиш. Существуют беспроводные модели клавиатуры, в них связь клавиатуры с компьютером осуществляется посредством инфракрасных лучей.

К манипуляторам относят устройства, преобразующие движения руки пользователя в управляющую информацию для компьютера. Среди манипуляторов выделяют мыши, трекболы, джойстики.

Мышь предназначена для выбора и перемещения графических объектов экрана монитора компьютера. Для этого используется указатель, перемещением которого по экрану управляет мышь. Мышь позволяет существенно сократить работу человека с клавиатурой при управлении курсором и вводе команд. У мыши могут быть одна, две или три клавиши. Между двумя крайними клавишами современных мышей часто располагают скрол. Это дополнительное устройство в виде колесика, которое позволяет осуществлять прокрутку документов вверх-вниз и другие дополнительные функции.

Трекбол по функциям близок мыши, но шарик в нем больших размеров, и перемещение указателя осуществляется вращением этого шарика руками. Трекбол удобен тем, что его не требуется перемещать по поверхности стола, которого может не быть в наличии. Поэтому, по сравнению с мышью, он занимает на столе меньше места. Большинство переносных компьютеров оснащаются встроенным трекболом.

Джойстик представляет собой основание с подвижной рукояткой, которая может наклоняться в продольном и поперечном направлениях. Рукоятка и основание снабжаются кнопками. Внутри джойстика расположены датчики, преобразующие угол и направление наклона рукоятки в соответствующие сигналы, передаваемые операционной системе. В соответствии с этими сигналами осуществляется перемещение и управление графических объектов на экране.

Графический планшет (дигитайзер) - это устройство для ввода графических данных, таких как чертежи, схемы, планы и т. п. Он состоит из планшета, соединенного с ним визира или специального карандаша. Перемещая карандаш по планшету, пользователь рисует изображение, которое выводится на экран.

Сканер - это устройство, позволяющее вводить в компьютер черно-белое или цветное изображения, считывать графическую и текстовую информацию. Сканер используют в случае, когда возникает потребность ввести в компьютер из имеющегося оригинала текст и/или графическое изображение для его дальнейшей обработки (редактирование и т.д.). Ввод такой информации с помощью стандартных устройств ввода требует много времени. Сканированная информация после обрабатывается с помощью специального программного обеспечения (например, программой FineReader) и сохраняется в виде текстового или графического файла.

Принцип действия

Основным элементом сканера является CCD-матрица (Charge Coupled Device - устройство с зарядовой связью) или PMT (PhotoMultiplier Tube - фотомножитель). Колбы-фотомножители используются лишь в сложных и дорогих барабанных профессиональных сканерах, поэтому далее рассмотрен лишь принцип действия сканеров с CCD-матрицей.

CCD-матрица - это набор диодов, которые реагируют на свет при действии внешнего напряжения. От качества матрицы зависит качество распознавания изображения. Дешевые модели распознают наличие/отсутствие цвета, сложные модели - оттенки серого цвета, еще более сложные - все цвета. Сканируемый объект, освещается ксеноновой лампой или набором светодиодов. Отраженный луч с помощью системы зеркал или линз проектируется на CCD-матрицу. Под действием света и внешнего напряжения, матрица генерирует аналоговый сигнал, который изменяется при перемещении относительно ее листа и интенсивности отображения разных элементарных фрагментов. Сигнал подается на аналогово-цифровой преобразователь, где он оцифровуется (представляется в виде набора нулей и единиц) и передается в память компьютера. Существует два способа сканирования: перемещение листа относительно неподвижной CCD-матрицы или перемещение светочувствительного элемента при неподвижном листе.

Классификация сканеров

Существует немало моделей сканеров, которые различаются методом сканирования, допустимым размером оригинала и качеством оптической системы. По способу организации перемещения считывающего узла относительно оригинала сканеры делятся на планшетные, барабанные и ручные. В планшетных сканерах оригинал кладут на стекло, под которым двигается оптико-электронное считывающее устройство. В барабанных сканерах оригинал через входную щель втягивается барабаном в транспортный тракт и пропускается мимо неподвижного считывающего устройства. Барабанные сканеры не дают возможности сканировать книги, переплетенные брошюры и т.п.. Ручной сканер необходимо плавно перемещать вручную по поверхности оригинала, что не очень удобно. При систематическом использовании лучше иметь, хоть и более дорогой, настольный планшетный сканер.

Устройства вывода

Выводимая информация может отображаться в графическом виде, для этого используются мониторы, принтеры или плоттеры. Информация может также воспроизводиться в виде звуков с помощью акустических колонок или головных телефонов, регистрироваться в виде тактильных ощущений в технологии виртуальной реальности, распространяться в виде управляющих сигналов устройства автоматики, передаваться в виде электрических сигналов по сети.

Мониторисплей) является основным устройством вывода графической информации. По принципу действия мониторы подразделяются на мониторы с электронно-лучевой трубкой (Catode Ray Tube - CRT), жидкокристаллические - (Liquid Crystal Display - LCD) и плазменные.

В мониторах с электронно-лучевой трубкой изображение формируется с помощью зерен люминофора - вещества, которое светится под воздействием электронного луча. Различают три типа люминофоров в соответствии с цветами их свечения: красный, зеленый и синий. Цвет каждой точки экрана определяется смешением свечения трех разноцветных точек (триады), отвечающих за данный пиксель. Яркость соответствующего цвета меняется в зависимости от мощности электронного пучка, попавшего в соответствующую точку. Электронный пучок формируется с помощью электронной пушки. Электронная пушка состоит из нагреваемого при прохождении электрического тока проводника с высоким удельным электрическим сопротивлением, эмитирующего электроны покрытия, фокусирующей и отклоняющей системы.

При прохождении электрического тока через нагревательный элемент электронной пушки, эмитирующее покрытие, нагреваясь, начинает испускать электроны. Под действием ускоряющего напряжения электроны разгоняются и достигают поверхности экрана, покрытой люминофором, который начинает светиться. Управление пучком электронов осуществляется отклоняющей и фокусирующей системой, которые состоят из набора катушек и пластин, воздействующих на электронный пучек с помощью магнитного и электрического полей. В соответствии с сигналами развертки, подаваемыми на электронную пушку, электронный луч побегает по каждой строчке экрана, последовательно высвечивая соответствующие точки люминофора. Дойдя до последней точки, луч возвращается к началу экрана. Таким образом, в течение определенного периода времени изображение перерисовывается.

Жидко-кристаллические дисплеи

Жидкокристаллические дисплеи делятся на два класса по принципу управления: с пассивной и активной (построенной на тонкопленочных транзисторах TFT, Thin Film Transistor) матрицей. Опишем общий принцип действия только TFT-мониторов, так как дисплеи этого класса занимают лидирующее положение на рынке, поскольку производство качественных мониторов с пассивной матрицей практически невозможно. TFT-технология подразумевает прохождение света от неоновой лампы подсветки через систему отражателей и фильтров, после чего свет попадает на слой жидких кристаллов (где каждый пиксель контролируется транзистором), а затем проходит через цветовые фильтры (система цвета RGB). Управляющий транзистор регулирует электрическое поле, определяющее пространственную ориентацию жидких кристаллов. Благодаря этому, проходящий свет меняет свою поляризацию и после прохождения поляризационного фильтра меняется его интенсивность, а соответственно, получаются различные цветовые оттенки. Особенностей: сокращение угла обзора, время отклика, контрастность.

Под контрастностью монитора понимается соотношение между максимальной и минимальной яркостью в этом и заключается один из минусов указанной технологии. Иначе говоря, мы получим настолько черный цвет, насколько жидкие кристаллы смогут поляризовать проходящий непрерывный световой поток от лампы подсветки, и соответственно, насколько поляризационный фильтр сможет заблокировать поляризационный свет. Следствие сильной поляризации и блокировки светового потока недостаточное количество цветовых оттенков, в частности, темные оттенки сливаются в один цвет и становятся неразличимыми.

Далее следуют такие параметры, как угол обзора угол, при обзоре с которого контрастность изображения падает в 10 раз, и время отклика параметр, определяющий время, за которое транзистор успевает изменить пространственную ориентацию жидких кристаллов. Здесь кроется еще один важный нюанс. Различные производители трактуют этот параметр по-разному: время включения пикселя, время выключения пикселя, время перехода от одного крайнего положения к другому, среднее значение между временем включения и выключения. Для обеспечения широкого угла обзора жидким кристаллам необходимо поворачиваться на более широкий угол, а на это требуется дополнительное время. Технологию производства жидкокристаллических TFT-панелей: на подложку (стекло) наносится слой хромовых проводников для создания проводящей структуры TFT и конденсаторов. Затем добавляется слой оксида кремния, после чего формируются каналы для транзисторов путем нанесения слоя аморфного кремния, далее происходит легирование азотом для создания эмиттера и коллектора, и далее наносится еще ряд технологических слоев. Приблизительно представляя эту технологию, становится понятно, что если после производства панели не работает хотя бы один транзистор, а соответственно, не светится пиксель, и если их больше восьми (как правило), панель отбраковывается. Это становится особенно актуальным и создает определенные сложности при производстве больших ЖК панелей.

Плазменные дисплеи

Принцип работы плазменных мониторов: в нем присутствует люминофор, который светится под воздействием плазменного разряда. Каждая ячейка плазменного дисплея представляет собой флуоресцентную мини-лампу, которая способна излучать только один цвет из схемы RGB.

К подложкам каждого пикселя плазменного дисплея, между которыми находится инертный газ (ксенон или неон), прикладывается высокое напряжение, которое вызывает плазменный разряд распад инертного газа на положительные и отрицательные ионы, которые под воздействием электрического поля начинают движение соответственно к аноду и катоду. Вследствие такого движения происходит столкновение элементарных частиц с атомами, наблюдается физико-химическое взаимодействие, в результате чего испускается поток ультрафиолета, невидимого человеческим глазом. И поток фотонов, бомбардируя подложку пикселя, покрытую люминофором, вызывает свечение. 97 % ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Заметим, что для постоянного движения заряженных частиц (соответственно и свечения) необходимо периодически менять полярность прикладываемого напряжения. А величиной подходящего управляющего напряжения будет регулироваться яркость свечения пикселя, чем можно получить необходимые оттенки.

Трудности: для панели высокого качества размер пикселя должен быть минимальным, а их количество очень велико. Учитывая, что достичь размера пикселя менее 0,5 мм в настоящее время практически невозможно. Добавим к этому необходимость подведения большого напряжения на высоких частотах к каждому пикселю, учитывая, что подводящие проводники на передней стенке должны быть максимально прозрачными, а также необходимость применения высококачественных и высокоэффективных материалов. Передние дорожки питания обычно выстраивают в строчки, а задние в столбцы. Таким образом, получается управляющая матрица, и встроенный процессор адресует необходимые управляющие импульсы. Еще одной особенностью плазменных дисплеев является их высокое энергопотребление, что делает невозможным их использование в портативных устройствах (ноутбуках, карманных компьютерах).

Принтеры

Принтеры предназначены для вывода информации на твердые носители, большей частью на бумагу. Существует большое количество разнообразных моделей принтеров, которые различаются по принципу действия, интерфейсу, производительности и функциональным возможностями. По принципу действия различают: матричные, струйные и лазерные принтеры.

Матричные принтеры

До недавнего времени являлись самыми распространенными устройствами вывода информации, поскольку лазерные были дорогими, а струйные малонадежными. Основным преимуществом является низкая цена и универсальность, то есть возможность печатать на бумаге любого качества.

Принцип действия

Печать происходит при помощи встроенной в печатающий узел матрицы, состоящей из нескольких иголок. Бумага втягивается в принтер с помощью вала. Между бумагой и печатающим узлом располагается красящая лента. При ударе иголки по ленте, на бумаге появляются точки. Иголки, расположенные в печатающем узле управляются электромагнитом. Сам печатающий узел передвигается по горизонтали и управляется шаговым двигателем. Во время продвижения печатающего узла по строке, на бумаге появляются отпечатки символов, состаящие из точек. В памяти принтера хранятся коды отдельных букв, знаков и т.п.. Эти коды определяют, какие иголки и в какой момент следует активизировать для печати определенного символа.

Матрица может иметь 9, 18 или 24 иголки. Качество печати 9-иголочными принтерами невысокая. Для повышения качества, возможна печать 2-х и 4-х кратным прохождением узла по строке. Для современных матричных принтеров стандартом является матрица с 24 иглами. Иголки расположены в два ряда по 12 в каждом. Качество печати значительно выше. Матричные принтеры разрешают печатать сразу несколько копий документа. Для этого листы перекладывают копировальной калькой. Матричные принтеры не требовательны и могут печатать на поверхности любой бумаги - картоне, рулонной бумаге и т.п..

Струйные принтеры

Первые струйные принтеры выпустила фирма Hewlett Packard. Принцип действия похож на принцип действия матричных принтеров, но вместо иголок в печатающем узле расположены капиллярные распылители и резервуар с чернилами. В среднем, число распылителей от 16 до 64, но существуют модели, где количество распылителей для черных чернил до 300, а для цветных до 416. Резервуар с чернилами может располагаться отдельно и через капилляры соединяться с печатающим узлом, а может быть встроенным в печатающий узел и заменяться вместе с ним. Каждая конструкция имеет свои недостатки и преимущества. Встроенный в печатающий узел резервуар представляет собой конструктивно отдельное устройство (картридж), его очень легко заменить. Большинство современных струйных принтеров разрешают использовать картриджи для черно-белой и цветной печати.

Принцип действия

Существует два метода распыления чернила: пьезоэлектрический метод и метод газовых пузырьков. В первом, в распылител пьезоэлектрического узла установлен плоский пьезоэлемент, связанный с диафрагмой. При печати он сжимает и разжимает диафрагму, вызывая распыление чернил через распылитель. При попадании потока аэрозоля на носитель, печатается точка (используется в моделях принтеров фирм Epson, Brother). При методе газовых пузырьков, каждый распылитель оборудован нагревающим элементом. При прохождении сквозь элемент микросекундного импульса тока, чернила нагреваются до температуры кипения, и образуются пузырьки, выдавливающие чернила из распылителя, которые образовывают отпечатки на носителе (используется в моделях принтеров фирм Hewlett Packard, Canon).

Цветная печать выполняется путем смешивания разных цветов в определенных пропорциях. Преимущественно, в струйных принтерах реализуется цветовая модель CMYK (Cyan-Magenta-Yellow). Смешивание цветов не может дать чистый черный цвет и потому в составную модели входит черный цвет (Black). При цветной печати картридж имеет 3 или 4 резервуара с чернилами. Печатающий узел проходит по одному месту листа несколько раз, нанося нужное количество чернил разного цвета. После смешивания чернил, на листе появляется участок нужного цвета.

Лазерные принтеры

Современные лазерные принтеры позволяют достичь более высокого качества печати. Качество приближено к фотографическому. Основным недостатком лазерных принтеров является высокая цена, но цены имеют тенденцию к снижению.

Принцип действия

У большинства лазерных принтеров используется механизм печати, как в копировальных аппаратах. Основным узлом является подвижный барабан, который наносит изображения на бумагу. Барабан представляет собой металлический цилиндр, покрытый слоем полупроводника. Поверхность барабана статически заряжается разрядом. Луч лазера, направленный на барабан, изменяет электростатический заряд в точке попадания и создает на поверхности барабана электростатическую копию изображения. После этого, на барабан наносится слой красящего порошка (тонера). Частицы тонера притягиваются лишь к электрически заряженным точкам. Лист втягивается с лотка и ему передается электрический заряд. При наложении на барабан, лист притягивает на себя частицы тонера с барабана. Для фиксации тонера, лист снова заряжается и проходит между валами, нагретыми до 180 градусов. По окончании, барабан разряжается, очищается от тонера и снова используется.

При цветной печати изображение формируется смешиванием тонеров разного цвета за 4 прохода листа через механизм. При каждом проходе на бумагу наносится определенное количество тонера одного цвета. Цветной лазерный принтер является сложным электронным устройством с 4 резервуарами для тонера, оперативной памятью, процессором и жестким диском, что соответственно увеличивает его габариты и цену.

Устройства хранения данных

Необходимость во внешних устройствах хранения данных возникает в двух случаях:

когда на вычислительной системе обрабатывается больше данных, чем можно разместить на базовом жестком диске;

когда данные имеют повышенную ценность и необходимо выполнять регулярное резервное копирование на внешнее устройство (копирование данных на жестком диске не является резервным и только создает иллюзию безопасности).

Стримеры

Стримеры -- это накопители на магнитной ленте. Их отличает сравнительно низкая цена. К недостаткам стримеров относят малую производительность (она связана прежде всего с тем, что магнитная лента -- это устройство последовательного доступа) и недостаточную надежность (кроме электромагнитных наводок, ленты стримеров испытывают повышенные механические нагрузки и могут физически выходить из строя).

Емкость магнитных кассет (картриджей) для стримеров составляет до нескольких сот Мбайт. Дальнейшее повышение емкости за счет повышения плотности записи снижает надежность хранения, а повышение емкости за счет увеличения длины ленты сдерживается низким временем доступа к данным.

Дискеты. Оптические диски. Магнитооптические носители

ZIP-накопители.(ZIP-накопители выпускаются компанией Iomega, специализирующейся на создании внешних устройств для хранения данных. Устройство работает с дисковыми носителями, по размеру незначительно превышающими стандартные гибкие диски и имеющими емкость 100/250 Мбайт).

Накопители HiFD(Основным недостатком ZIP-накопителей является отсутствие их совместимости со стандартными гибкими дисками 3,5 дюйма. Такой совместимостью обладают устройства HiFD. Они позволяют использовать как специальные носители емкостью 200Мбайт, так и обычные гибкие диски).

Флеш-память -- разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти (ПППЗУ).

Принцип действия

Программирование флеш-памяти и стирание флеш-памяти

Флеш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками. В традиционных устройствах с одноуровневыми ячейками, каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

NOR

В основе этого типа флеш-памяти лежит ИЛИ-НЕ элемент (англ. NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.

Транзистор имеет два затвора: управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Часть электронов туннелирует сквозь слой изолятора и попадает на плавающий затвор. Заряд на плавающем затворе изменяет «ширину» канала сток-исток и его проводимость, что используется при чтении.

Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.

Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

В NOR-архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND-архитектуры.

NOR-тип памяти чаще применяется в BIOS и ROM-памяти устройств, таких, как DSL-модемы, маршрутизаторы и т. д

NAND

В основе NAND-типа лежит И-НЕ элемент (англ. NAND). Принцип работы такой же, от NOR-типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND-чипа может быть существенно меньше. Также запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.

NAND и NOR-архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.

Устройства обмена данными

Модем - это устройство, предназначенное для подсоединения компьютера к обычной телефонной линии. Название происходит от сокращения двух слов - Модуляция и Демодуляция.

Компьютер вырабатывает дискретные электрические сигналы (последовательности двоичных нулей и единиц), а по телефонным линиям информация передается в аналоговой форме (то есть в виде сигнала, уровень которого изменяется непрерывно, а не дискретно). Модемы выполняют цифро-аналоговое и аналого-цифровое преобразования. При передаче данных, модемы накладывают цифровые сигналы компьютера на непрерывную частоту телефонной линии (модулируют ее), а при их приеме демодулируют информацию и передают ее в цифровой форме в компьютер. Модемы передают данные по обычным, то есть комутированным, телефонным каналам со скоростью от 300 до 56 000 бит в секунду, а по арендованным (выделенным) каналам скорость может быть и выше. Кроме того, современные модемы осуществляют сжатие данных перед отправлением, и соответственно, реальная скорость может превышать максимальную скорость модема.

По конструктивному выполнению модемы бывают встроенными (вставляются в системный блок компьютера в один из слотов расширения) и внешними (подключаются через один из коммуникационных портов, имеют отдельный корпус и собственный блок питания). Однако, без соответствующего коммуникационного программного обеспечения, важнейшей составляющей которого является протокол, модемы не могут работать. Наиболее распространенными протоколами модемов являются v.32 bis, v.34, v.42 bis и прочие.

Современные модемы для широкого круга пользователей имеют встроенные возможности отправления и получения факсимильных сообщений. Такие устройства называются факсами-модемами. Также, есть возможность поддержки языковых функций, с помощью звукового адаптера.

Плоттер (графопостроитель) - это устройство для отображения векторных изображений на бумаге, кальке, пленке и других подобных материалах. Плоттеры снабжаются сменными пишущими узлами, которые могут перемещаться вдоль бумаги в продольном и поперечном направлениях. В пишущий узел могут вставляться цветные перья или ножи для резки бумаги. Графопостроители могут быть миниатюрными, и могут быть настолько большими, что на них можно вычертить кузов автомобиля или деталь самолета в натуральную величину.

Раздел 2. Информационно-логические основы ЭВМ

2.1 Системы счисления

Системой счисления называется способ изображения чисел с помощью ограниченного набора символов, имеющих определенные количественные значения. Систему счисления образует совокупность правил и приемов представления чисел с помощью набора знаков (цифр).

Различают позиционные и непозиционные системы счисления. В позиционных системах каждая цифра числа имеет определенный вес, зависящий от позиции цифры в последовательности, изображающей число. Позиция цифры называется разрядом. В позиционной системе счисления любое число можно представить в виде:

An=am-1am-2…aia0*a-1a-2…a-k=am-1*Nm-1+am-2*Nm-2…+a-k*N-k

, (2.1)

где ai - i-я цифра числа; k - количество цифр в дробной части числа; m - количество цифр в целой части числа; N - основание системы счисления.

Основание системы счисления N показывает, во сколько раз “вес” г-го разряда больше (i-1) разряда. Целая часть числа отделяется от дробной части точкой (запятой).

Пример 2.1. А10=37.25.

В соответствии с формулой (2.1)это число формируется из цифр с весами рядов:

А10=3*101+7*100+2*10-1+5*10-2.

Во всех современных ЭВМ для представления числовой информации используется двоичная система счисления.

При N=2 число различных цифр, используемых для записи чисел, ограничено множеством из двух цифр (нуль и единица). Кроме двоичной системы счисления широкое распространение получили и производные системы:

? двоичная- {0,1};

? десятичная представление десятичных чисел, - {0, 1,...,9};

? шестнадцатеричная - {0,1,2, ...9, А, В, С, D, Е, F}. Здесь шестнадцатеричная цифра А обозначает число 10,В-число 11, ...,F-число 15;

? восьмеричная (от слова восьмерик) - {0,1,2,3,4,5, б, 7}..

Восьмеричная и шестнадцатеричная системы счисления являются производными от двоичной, так как 16 = 24 и 8 = 23. Они используются в основном для более компактного изображения двоичной информации, так как запись значения чисел производится существенно меньшим числом знаков.

Пример 2.2. Число в двоичной, восьмеричной и шестнадцатеричной системах счисления имеет следующее представление:

А2=1100100,101;

Аg=144.5;

A16=64.A;

A2=1*26+1*25+0*24+0*23+1*22+0*21+1*20+1*2-1+0*2-2+1*2-3;

A8=1*82+4*81+4*80+5*8-1;

A16=6*161+4*160+10*16-1.

Представление чисел в различных системах счисления допускает однозначное преобразование их из одной системы в другую. В ЭВМ перевод из одной системы в другую осуществляется автоматически по специальным программам. Правила перевода целых и дробных чисел отличаются.

2.1.1 Перевод целых чисел

Целое число с основанием N1 переводится в систему счисления с основанием N2 путем последовательного деления числа An1, на основание N2 , записанного в виде числа с основанием N1, до получения остатка. Полученное частное следует вновь делить на основание N2, и этот процесс надо повторять до тех пор, пока частное не станет меньше делителя. Полученные остатки от деления и последнее частное записываются в порядке, обратном полученному при делении. Сформированное число и будет являться числом с основанием N2.

2.1.2 Перевод дробных чисел

Дробное число с основанием N1 переводится в систему счисления с основанием N2 путем последовательного умножения An1 на основание N2, записанное в виде числа с основанием N1. При каждом умножении целая часть произведения берется в виде очередной цифры соответствующего разряда, а оставшаяся дробная часть принимается за новое множимое. Число умножений определяет разрядность полученного результата, представляющего число An1 в системе счисления N2.

Так как двоичная, восьмеричная и шестнадцатеричная системы связаны через степени числа 2, то преобразования между ними можно выполнять другим более простым способом. Для перевода из шестнадцатеричной (восьмеричной) системы счисления в двоичную достаточно двоичным кодом записать шестнадцатеричные коды цифр тетрадами (по 4 двоичных разряда) и триадами (по 3 двоичных разряда) - для восьмеричных цифр. Обратный перевод из двоичного кода производится в обратном порядке: двоичное число разбивается влево и вправо от границы целой и дробной частей на тетрады - для последующей записи цифр в шестнадцатеричном представлении, на триады - для записи их значений восьмеричными цифрами.

2.1.3 Представление информации в ЭВМ

Информация - это сведения об окружающем мире и протекающих в нем процессах, воспринимаемые человеком или специализированным устройством, например ЭВМ, для обеспечения целенаправленной деятельности.

Информация может быть по своей физической природе: числовой, текстовой, графической, звуковой, видео и др. Она также может быть постоянной, переменной, случайной, вероятностной. Наибольший интерес представляет переменная информация, так как она позволяет выявлять причинно-следственные связи в процессах и явлениях. Существуют различные способы оценки количества информации. Классическим является подход, использующий формулу К. Шеннона. Применительно к двоичной системе она имеет вид:

H=log2N,

где H - количество информации, несущей представление о состоянии, в котором находится объект; N - количество равновероятных альтернативных состояний объекта.

Любая информация, обрабатываемая в ЭВМ, должна быть представлена двоичными цифрами {0,1}, т.е. должна быть закодирована комбинацией этих цифр. Различные виды информации (числа, тексты, графика, звук) имеют свой правила кодирования. Коды отдельных значений, относящиеся к различным! видам информации, могут совпадать. Поэтому расшифровка кодированных! данных осуществляется по контексту при выполнении команд программы.

2.1.4 Представление числовой информации

В ЭВМ используются три вида чисел: с фиксированной точкой (запятой), с плавающей точкой (запятой) и двоично-десятичное представление. Точка (запятая) - это подразумеваемая граница целой и дробной частей числа.

У чисел с фиксированной точкой в двоичном формате предполагается строго определенное место точки (запятой). Обычно это место определяется или перед первой значащей цифрой числа, или после последней значащей цифрой числа. Если точка фиксируется перед первой значащей цифрой, то это означает, что число по модулю меньше единицы. Диапазон изменения значений чисел определяется неравенством

.

Если точка фиксируется после последней значащей цифры, то это означает, что п- разрядные двоичные числа являются целыми. Диапазон изменения их значений составляет:

Перед самым старшим из возможных разрядов двоичного числа фиксируется его знак. Положительные числа имеют нулевое значение знакового разряда, отрицательные - единичные.

Другой формой представления чисел является представление их в виде чисел с плавающей точкой (запятой). Числа с плавающей точкой представляются в виде мантиссы тa и порядка рa , иногда это представление называют полулогарифмической формой числа. Например, число A10= 373 можно представить в виде 0.373 * 103, при этом т = 0.373, р= 3, основание системы счисления подразумевается фиксированным и равным десяти. Для двоичных чисел А2 в этом представлении также формируется тa и порядок рa при основании системы счисления равным двум.

что соответствует записи

Порядок числа рa определяет положение точки (запятой) в двоичном числе. Значение порядка лежит в диапазоне amax<=рa<=рamax , где величина pamах определяется числом разрядов к, отведенных для представления порядка

Положительные и отрицательные значения порядка значительно усложняют обработку вещественных чисел. Поэтому во многих современных ЭВМ используют не прямое значение рa, а модифицированное р'a приведенное к интервалу

Значение р'a носит название “характеристика числа”. Обычно под порядок (модифицированный порядок - характеристику) выделяют один байт. Старший разряд характеристики отводится под знак числа, а семь оставшихся разрядов обеспечивают изменение порядка в диапазоне

Модифицированный порядок р'a вычисляется по зависимости

Этим самым значения р'a формируются в диапазоне положительных чисел

Мантисса числа ma представляется двоичным числом, у которого точка фиксируется перед старшим разрядом, т. е.

где k - число разрядов, отведенных для представления мантиссы.

Если

то старший значащий разряд мантиссы в системе счисления с основанием N отличен от нуля. Такое число называется нормализованным. Например, A2 =(100;0.101101)2 -нормализованное число А2= 1011.01 или А10= 11.25, а то же самое число А2 = (101 ;0.0101101) - число ненормализованное, так как старший разряд мантиссы равен нулю.

Диапазон представления нормализованных чисел с плавающей точкой определяется

где r и k - соответственно количество разрядов, используемых для представления порядка и мантиссы.

Третья форма представления двоичных чисел - двоично-десятичная. Ее появление объясняется следующим. При обработке больших массивов десятичных чисел (например, больших экономических документов) приходится тратить существенное время на перевод этих чисел из десятичной системы счисления в двоичную для последующей обработки и обратно -для вывода результатов. Каждый такой перевод требует выполнения двух - четырех десятков машинных команд. С включением в состав отдельных ЭВМ специальных функциональных блоков или спецпроцессоров десятичной арифметики появляется возможность обрабатывать десятичные числа напрямую, без их преобразования, что сокращает время вычислений. При этом каждая цифра десятичного числа представляется двоичной тетрадой. Например, A10=3759, A2-10= 0011 0111 0101 1001. Положение десятичной точки (запятой), отделяющей целую часть от дробной, обычно заранее фиксируется. Значение знака числа отмечается кодом, отличным от кодов цифр. Например, “+” имеет значение тетрады “1100”, а “-” - “1101”.

2.2 Арифметические основы ЭВМ

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.