Основные подходы в машинном обучении
Понятие и области машинного обучения. Эволюционные модели и алгоритмы. Типология задач обучения по прецедентам. Байесовы (вероятностные) сети. Методы эвристической самоорганизации. Программно-прагматический и агентно-ориентированный подходы к обучению.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Основы искусственного интеллекта |
Вид | реферат |
Язык | русский |
Прислал(а) | Сайпиева Эльвира Геннадьевна |
Дата добавления | 07.04.2016 |
Размер файла | 45,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Виды машинного обучения, его основные задачи и методы. Подходы к классификации: логистическая регрессия, наивный байесовский классификатор, стохастический градиентный спуск, K-ближайший сосед, дерево решений, случайный лес, метод опорных векторов.
курсовая работа [436,9 K], добавлен 14.12.2022Сущность и экономическое обоснование, методы и подходы к прогнозированию валютного курса. Описание технологии интеллектуальных вычислений. Применение генетических алгоритмов для настройки архитектуры нейронных сетей. Основные способы улучшения модели.
курсовая работа [1,3 M], добавлен 26.03.2016Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа [1,8 M], добавлен 08.02.2017Важнейшие принципы обучения в школе. Понятие и основные виды наглядности. Развитие воображения в процессе обучения. Диапазон использования компьютера в учебно-воспитательном процессе. Понятие содержательной линии. Общая классификация методов обучения.
курсовая работа [270,9 K], добавлен 15.12.2012Рост активности в области теории и технической реализации искусственных нейронных сетей. Основные архитектуры нейронных сетей, их общие и функциональные свойства и наиболее распространенные алгоритмы обучения. Решение проблемы мертвых нейронов.
реферат [347,6 K], добавлен 17.12.2011Понятие и внутренняя структура, стадии и объекты процесса проектирования баз данных. Требования, предъявляемые к данному процессу. Ограниченность реляционной модели. Группы CASE-средств. Анализ предметной области: функциональный и объектный подходы.
презентация [114,6 K], добавлен 19.08.2013Популярность алгоритмов машинного обучения для компьютерных игр. Основные техники обучения с подкреплением в динамической среде (компьютерная игра "Snake") с экспериментальным сравнением алгоритмов. Обучение с подкреплением как тип обучения без учителя.
курсовая работа [1020,6 K], добавлен 30.11.2016Агентно-ориентированная программная архитектура систем обработки потоковых данных. Обеспечение гибкости и живучести программного обеспечения распределенных информационно-управляющих систем. Спецификации программных комплексов распределенной обработки.
реферат [1,1 M], добавлен 28.11.2015Понятие дистанционного обучения, его сущность и особенности, содержание и цели. Разновидности дистанционного обучения и их характерные черты. Эффективность дистанционного обучения на современном этапе. Основные требования к программному обеспечению.
научная работа [40,2 K], добавлен 29.01.2009Machine Learning как процесс обучения машины без участия человека, основные требования, предъявляемые к нему в сфере медицины. Экономическое обоснование эффективности данной технологии. Используемое программное обеспечение, его функции и возможности.
статья [16,1 K], добавлен 16.05.2016История автоматизированного перевода. Современные компьютерные программы перевода. Сфера использования машинного перевода. Формы организации взаимодействия человека и ЭВМ в машинном переводе. Интерредактирование и постредактирование машинного перевода.
курсовая работа [30,0 K], добавлен 19.06.2015Роль и возможности адаптивной модели в организации образовательного процесса. Структура и механизм навигации в адаптивной модели обучения АЯП Prolog. Программная реализация адаптивной модели обучения. Демонстрация созданного программного продукта.
курсовая работа [1,6 M], добавлен 19.06.2015Назначение компьютерной сети - объединение нескольких ЭВМ для общего решения информационных, вычислительных, учебных и других задач. Операционные системы - машиннозависимый вид программного обеспечения, ориентированный на конкретные модели компьютеров.
контрольная работа [37,5 K], добавлен 17.12.2009Компьютер как средство обучения. Классификация учебно-программных средств. Роль интерактивных технологий в обучении школьников. Эффективное управление познавательной деятельностью учащихся первой ступени обучения с помощью интерактивной доски Smart.
курсовая работа [856,7 K], добавлен 10.02.2012Обзор существующий решений в области электронного обучения. Исследование архитектурных и технологических аспектов построения виртуальных корпоративных университетов. Анализ возможностей системы дистанционного обучения Sakai, отличительные особенности.
дипломная работа [2,7 M], добавлен 09.04.2011Применение современных компьютерных технологий в процессе обучения иностранным языкам. Использование Интернет-ресурсов, скайпа, социальных сетей в обучении и интернет-сайта для поиска дополнительно новой информации. Общение онлайн с носителями языка.
статья [15,8 K], добавлен 23.06.2015Получение и обработка данных о веб-сайте. Иерархическая классификация, алгоритмы машинного обучения. Решающие деревья, плоские классификаторы. Метрики оценки качества. Полная точность (accuracy), кросс-валидация. Параллельные вычисления, хранение данных.
курсовая работа [276,8 K], добавлен 04.09.2016Различные методы решения задачи классификации. Нейросетевые парадигмы, методы обучения нейронных сетей, возникающие при этом проблемы и пути их решения. Описание программной реализации классификатора, его функциональные возможности и результаты обучения.
дипломная работа [1,0 M], добавлен 28.12.2015Деятельность предприятия ООО "Формула торговли": объектно-ориентированный анализ. Распределение требований по субъектам и прецедентам. Моделирование динамики деятельности предприятия, увеличение его прибыли. Конструирование матрицы ответственностей.
курсовая работа [2,3 M], добавлен 20.02.2011Первые работы по симуляции эволюции. Основные понятия генетических алгоритмов. Постановка задачи и функция приспособленности. Инициализация, формирование исходной популяции. Выбор исходной популяции для генетического алгоритма, решение задач оптимизации.
курсовая работа [714,1 K], добавлен 31.03.2015