Основные подходы в машинном обучении

Понятие и области машинного обучения. Эволюционные модели и алгоритмы. Типология задач обучения по прецедентам. Байесовы (вероятностные) сети. Методы эвристической самоорганизации. Программно-прагматический и агентно-ориентированный подходы к обучению.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 07.04.2016
Размер файла 45,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Волгоградский государственный социально-педагогический университет»

(ФГБОУ ВПО «ВГСПУ»)

Факультет математики, информатики и физики

Кафедра информатики и информатизации образования

Реферат

по дисциплине «Основы искусственного интеллекта»

Основные подходы в машинном обучении

Исполнитель Сайпиева Эльвира Геннадьевна

(МИФ-МИБ-51)

Проверил(а)

ст.преподаватель

Шемелова Татьяна Валерьевна

Волгоград - 2015

ВВЕДЕНИЕ

Искусственный интеллект - это раздел информатики, посвященный моделированию интеллектуальной деятельности человека. Зародившийся более 700 лет назад в средневековой Испании искусственный интеллект оформился в самостоятельную научную область в середине 20 в. В наши дни искусственный интеллект получил блестящие практические приложения, открывающие перспективы, без которых немыслимо дальнейшее развитие цивилизации. Методы искусственного интеллекта позволили создать эффективные компьютерные программы в самых разнообразных, ранее считавшихся недоступными для формализации и алгоритмизации, сферах человеческой деятельности, таких как медицина, биология, зоология, социология, экономика, бизнес и т.п. Идея обучения и самообучения компьютерных программ, накопления знаний, приемы обработки нечетких и неконкретных знаний позволили создать программы, творящие чудеса. Компьютеры успешно борются за звания чемпиона мира по шахматам, моделируют творческую деятельность человека, создавая музыкальные и поэтические произведения, распознают образы и сцены, распознают, понимают и обрабатывают речь, тексты на естественном человеческом языке. Мы уже привыкли к тому, что компьютеры «умнеют» буквально на глазах, а компьютерные программы становятся все более и более интеллектуальными. Таким образом, мы видим, что на данный момент понятие обучения мы можем применять не только к человеку, но и машине. Это главным образом, такая возможность как их обучения, накопления знаний во время работы компьютерных программ, способность самообучения, самоорганизации, самосовершенствования.

Об этой теме мы и поговорим подробнее в данной работе. А именно, разберем что же такое машинное обучение, как оно происходит. А сделаем, мы это собрав и проанализировав подходы к машинному обучению, применяющихся в различных разделах и направлениях.

1. ПОНЯТИЕ МАШИННОЕ ОБУЧЕНИЕ

машинный эволюционный модель алгоритм

Машинное обучение (Machine Learning) - обширный подраздел искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться. Различают два типа обучения. Обучение по прецедентам, или индуктивное обучение, основано на выявлении общих закономерностей по частным эмпирическим данным.

Дедуктивное обучение предполагает формализацию знаний экспертов и их перенос в компьютер в виде базы знаний. Дедуктивное обучение принято относить к области экспертных систем, поэтому термины машинное обучение и обучение по прецедентам можно считать синонимами.

Машинное обучение находится на стыке математической статистики, методов оптимизации и классических математических дисциплин, но имеет также и собственную специфику, связанную с проблемами вычислительной эффективности и переобучения.

Многие методы индуктивного обучения разрабатывались как альтернатива классическим статистическим подходам. Многие методы тесно связаны с извлечением информации и интеллектуальным анализом данных (Data Mining).

Наиболее теоретические разделы машинного обучения объединены в отдельное направление, теорию вычислительного обучения (Computational Learning Theory, COLT).

Машинное обучение -- не только математическая, но и практическая, инженерная дисциплина. Чистая теория, как правило, не приводит сразу к методам и алгоритмам, применимым на практике. Чтобы заставить их хорошо работать, приходится изобретать дополнительные эвристики, компенсирующие несоответствие сделанных в теории предположений условиям реальных задач.

Практически ни одно исследование в машинном обучении не обходится без эксперимента на модельных или реальных данных, подтверждающего практическую работоспособность метода.

Общая постановка задачи обучения по прецедентам.

Дано конечное множество прецедентов (объектов, ситуаций), по каждому из которых собраны (измерены) некоторые данные. Данные о прецеденте называют также его описанием.

Совокупность всех имеющихся описаний прецедентов называется обучающей выборкой. Требуется по этим частным данным выявить общие зависимости, закономерности, взаимосвязи, присущие не только этой конкретной выборке, но вообще всем прецедентам, в том числе тем, которые ещё не наблюдались. Говорят также о восстановлении зависимостей по эмпирическим данным - этот термин был введен в работах Вапника и Червоненкиса.

Наиболее распространённым способом описания прецедентов является признаковое описание. Фиксируется совокупность n показателей, измеряемых у всех прецедентов. Если все n показателей числовые, то признаковые описания представляют собой числовые векторы размерности n. Возможны и более сложные случаи, когда прецеденты описываются временными рядами или сигналами, изображениями, видеорядами, текстами, попарными отношениями сходства или интенсивности взаимодействия, и т.д.

Для решения задачи обучения по прецедентам в первую очередь фиксируется модель восстанавливаемой зависимости.

Затем вводится функционал качества, значение которого показывает, насколько хорошо модель описывает наблюдаемые данные. Алгоритм обучения (learning algorithm) ищет такой набор параметров модели, при котором функционал качества на заданной обучающей выборке принимает оптимальное значение. Процесс настройки (fitting) модели по выборке данных в большинстве случаев сводится к применению численных методов оптимизации.

Типология задач обучения по прецедентам.

Основные стандартные типы задач:

- Обучение с учителем (supervised learning) -- наиболее распространённый случай. Каждый прецедент представляет собой пару «объект, ответ». Требуется найти функциональную зависимость ответов от описаний объектов и построить алгоритм, принимающий на входе описание объекта и выдающий на выходе ответ. Функционал качества обычно определяется как средняя ошибка ответов, выданных алгоритмом, по всем объектам выборки.

- Задача классификации (classification) отличается тем, что множество допустимых ответов конечно. Их называют метками классов (class label). Класс -- это множество всех объектов с данным значением метки.

- Задача регрессии (regression) отличается тем, что допустимым ответом является действительное число или числовой вектор.

- Задача ранжирования (learning to rank) отличается тем, что ответы надо получить сразу на множестве объектов, после чего отсортировать их по значениям ответов. Может сводиться к задачам классификации или регрессии. Часто применяется в информационном поиске и анализе текстов.

- Задача прогнозирования (forecasting) отличается тем, что объектами являются отрезки временных рядов, обрывающиеся в тот момент, когда требуется сделать прогноз на будущее. Для решения задач прогнозирования часто удаётся приспособить методы регрессии или классификации, причём во втором случае речь идёт скорее о задачах принятия решений.

- Обучение без учителя (unsupervised learning). В этом случае ответы не задаются, и требуется искать зависимости между объектами.

- Задача кластеризации (clustering) заключается в том, чтобы сгруппировать объекты в кластеры, используя данные о попарном сходстве объектов. Функционалы качества могут определяться по-разному, например, как отношение средних межкластерных и внутрикластерных расстояний.

- Задача поиска ассоциативных правил (association rules learning). Исходные данные представляются в виде признаковых описаний. Требуется найти такие наборы признаков, и такие значения этих признаков, которые особенно часто (неслучайно часто) встречаются в признаковых описаниях объектов.

- Задача фильтрации выбросов (outliers detection) -- обнаружение в обучающей выборке небольшого числа нетипичных объектов. В некоторых приложениях их поиск является самоцелью (например, обнаружение мошенничества). В других приложениях эти объекты являются следствием ошибок в данных или неточности модели, то есть шумом, мешающим настраивать модель, и должны быть удалены из выборки, см. также робастные методы и одноклассовая классификация.

- Задача построения доверительной области (quantile estimation) -- области минимального объёма с достаточно гладкой границей, содержащей заданную долю выборки.

- Задача сокращения размерности (dimensionality reduction) заключается в том, чтобы по исходным признакам с помощью некоторых функций преобразования перейти к наименьшему числу новых признаков, не потеряв при этом никакой существенной информации об объектах выборки. В классе линейных преобразований наиболее известным примером является метод главных компонент.

- Задача заполнения пропущенных значений (missing values) -- замена недостающих значений в матрице объекты-признаки их прогнозными значениями.

Частичное обучение (semi-supervised learning) занимает промежуточное положение между обучением с учителем и без учителя. Каждый прецедент представляет собой пару «объект, ответ», но ответы известны только на части прецедентов.

Пример прикладной задачи -- автоматическая рубрикация большого количества текстов при условии, что некоторые из них уже отнесены к каким-то рубрикам.

Трансдуктивное обучение (transductive learning). Дана конечная обучающая выборка прецедентов. Требуется по этим частным данным сделать предсказания относительно других частных данных -- тестовой выборки. В отличие от стандартной постановки, здесь не требуется выявлять общую закономерность, поскольку известно, что новых тестовых прецедентов не будет. С другой стороны, появляется возможность улучшить качество предсказаний за счёт анализа всей тестовой выборки целиком, например, путём её кластеризации. Во многих приложениях трансдуктивное обучение практически не отличается от частичного обучения.

Обучение с подкреплением (reinforcement learning). Роль объектов играют пары «ситуация, принятое решение», ответами являются значения функционала качества, характеризующего правильность принятых решений (реакцию среды). Как и в задачах прогнозирования, здесь существенную роль играет фактор времени. Примеры прикладных задач: формирование инвестиционных стратегий, автоматическое управление технологическими процессами, самообучение роботов, и т.д.

Динамическое обучение (online learning) может быть как обучением с учителем, так и без учителя. Специфика в том, что прецеденты поступают потоком. Требуется немедленно принимать решение по каждому прецеденту и одновременно доучивать модель зависимости с учётом новых прецедентов. Как и в задачах прогнозирования, здесь существенную роль играет фактор времени.

Активное обучение (active learning) отличается тем, что обучаемый имеет возможность самостоятельно назначать следующий прецедент, который станет известен. См. также Планирование экспериментов.

Метаобучение (meta-learning или learning-to-learn) отличается тем, что прецедентами являются ранее решённые задачи обучения. Требуется определить, какие из используемых в нихэвристик работают более эффективно. Конечная цель -- обеспечить постоянное автоматическое совершенствование алгоритма обучения с течением времени.

-Многозадачное обучение (multi-task learning). Набор взаимосвязанных или схожих задач обучения решается одновременно, с помощью различных алгоритмов обучения, имеющих схожее внутренне представление. Информация о сходстве задач между собой позволяет более эффективно совершенствовать алгоритм обучения и повышать качество решения основной задачи.

Индуктивный перенос (inductive transfer). Опыт решения отдельных частных задач обучения по прецедентам переносится на решение последующих частных задач обучения. Для формализации и сохранения этого опыта применяются реляционные или иерархические структуры представления знаний.

Иногда к метаобучению ошибочно относят построение алгоритмических композиций, в частности, бустинг; однако в композициях несколько алгоритмов решают одну и ту же задачу, тогда как метаобучение предполагает, что решается много разных задач.

Целью машинного обучения является частичная или полная автоматизация решения сложных профессиональных задач в самых разных областях человеческой деятельности.

2. НЕЙРОПОДХОД В МАШИННОМ ОБУЧЕНИИ

Нейронные сети и нейрокомпьютеры - это одно из направлений компьютерной индустрии, в основе которой лежит идея создания искусственных интеллектуальных устройств по образу и подобию человеческого мозга. Используются для определения априорно неизвестных сложных функциональных зависимостей на основании статистических данных.

Байесовы (вероятностные) сети. Моделируют вероятностные причинно-следственные связи. Позволяют рассчитывать вероятность наступления того или иного события при известной априорной вероятности причин. Позволяют строить модели в режиме реального времени с учетом неполноты данных и возможностью корректировки результата при появлении дополнительной информации. Могут использоваться для совместной обработки данных количественного и качественного характера.

Методы эвристической самоорганизации. Методы данной группы исследуют функциональные и вероятностные взаимосвязи "входов" и "выходов" некоторой системы, т.е. позволяют моделировать сложные нелинейные процессы и системы при отсутствии априорных знаний о структуре модели. Метод группового учета аргументов (МГУА), например, позволяет моделировать неизвестные закономерности функционирования исследуемого процесса или системы по информации, неявно присутствующей в выборке "входных" и "выходных" данных.

Почему же мы рассматриваем этот подход в машинном обучении?

Действительно, мы можем не только создавать такие модели, но и обучать их. Например, персептрон Розенблатта. У. Мак-Каллок и В.Питтс предложили конструкцию сети из математических нейронов и показали, что такая сеть в принципе может выполнять числовые и логические операции. Далее они высказали идею о том, что сеть из математических нейронов способна обучаться, распознавать образы, обобщать, т.е. она обладает свойствами человеческого интеллекта.

Идея Мак-Каллока - Питтса была материализована в 1958 г. Фрэнком Розенблаттом сначала в виде компьютерной программы для ЭВМ IBM-794, а затем, спустя два года, в виде электронного устройства, моделирующего человеческий глаз. Это устройство, имеющее в качестве элементной базы модельные нейроны Мак-Каллока - Питтса и названное персептроном, удалось обучить решению сложнейшей интеллектуальной задачи - распознавание букв латинского алфавита.

3. ПРОГРАММНО-ПРАГМАТИЧЕСКИЙ ПОДХОД

Программно-прагматический подход («не имеет значения, как устроено «мыслящее» устройство, главное, чтобы на заданные входные воздействия оно реагировало, как человеческий мозг») -- занимается созданием программ, с помощью которых можно решать те задачи, решение которых до этого считалось исключительно прерогативой человека. Сюда относятся распознающие и игровые программы, программы для решения логических задач, поиска, классификации и т. п. Это направление ориентировано на поиски алгоритмов решения интеллектуальных задач на существующих моделях компьютеров.

При этом подходе не стремятся скопировать устройство мозга, а добиваются только успешного решения сложных задач.

Например, такие программы как Haskell, LISP.

Не относится язык C++.

4. ЭВОЛЮЦИОННЫЙ ПОДХОД

Идея эволюционного моделирования сводится к экспериментальной попытке заменить процесс моделирования человеческого интеллекта моделированием процесса его эволюции. При моделировании эволюции предполагается, что разумное поведение предусматривает сочетание способности предсказывать состояние внешней среды с умением подобрать реакцию на каждое предсказание, которое наиболее эффективно ведет к цели.

Этот подход открывает путь к автоматизации интеллекта и освобождению от рутинной работы. Это высвобождает время для проблемы выбора целей и выявления параметров среды, которые заслуживают исследования. Такой принцип может быть применен для использования в диагностике, управлении неизвестными объектами, в игровых ситуациях.

Эволюционное моделирование это уже достаточно сложившаяся область, в которой можно выделить:

- модели возникновения молекулярно-генетических информационных систем;

- моделирование общих закономерностей эволюции (Эволюционные алгоритмы). Это системы, которые используют только эволюционные принципы. Они успешно использовались для задач типа функциональной оптимизации и могут легко быть описаны на математическом языке. К ним относятся эволюционные алгоритмы, такие как Эволюционное программирование, Генетические алгоритмы, Эволюционные стратегии, Генетическое программирование;

- эволюционные модели. Это системы, которые являются биологически более реалистичными, чем эволюционные алгоритмы, но которые не оказались полезными в прикладном смысле. Они больше похожи на биологические системы и менее направлены на решение технических задач. Они обладают сложным и интересным поведением, и, видимо, вскоре получат практическое применение. К этим системам относят так называемую искусственную жизнь.

- прикладное эволюционное моделирование.

Коллективный интеллект -- термин, который появился в середине 1980-х годов в социологии при изучении процесса коллективного принятия решений. Исследователи из NJIT определили коллективный интеллект как способность группы находить решения задач более эффективные, чем лучшее индивидуальное решение в этой группе.

Рассмотрим на примере, стаи рыбок в океане. Одной рыбке выжить намного тяжелее в большом океане. Путем создания стаи каждая понимает, что вероятность выжить возрастает во много раз.

5. АГЕНТНО-ОРИЕНТИРОВАННЫЙ ПОДХОД

Агентно-ориентированный подход, развиваемый с начала 1990-х гг., основан на использовании интеллектуальных агентов. Согласно этому подходу, интеллект - это вычислительная часть (планирование) способности достигать поставленных перед интеллектуальной машиной целей. Сама такая машина будет интеллектуальным агентом, воспринимающим окружающий его мир с помощью датчиков и способным воздействовать на объекты в окружающей среде с помощью исполнительных механизмов.

Этот подход акцентирует внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи.

Интеллектуальные агенты в искусственном интеллекте.

В искусственном интеллекте под термином интеллектуальный агент понимаются разумные сущности, наблюдающие за окружающей средой и действующие в ней, при этом их действия всегда направлены на достижение какой-либо цели. Такой агент может быть, как роботом, так и встроенной программной системой. Об интеллектуальности агента можно говорить, если он взаимодействует с окружающей средой примерно так же, как действовал бы человек.

Агентов можно разделить на пять групп в зависимости от вида обработки воспринимаемой информации:

1. Агенты с простым поведением действуют только на основе текущих знаний. Их агентская функция основана на схеме условие-действие -- IF (условие) THEN действие.

Такая функция может быть успешной, только если окружающая среда полностью поддается наблюдению.

2. Агенты с поведением, основанным на модели, могут оперировать со средой, лишь частично поддающейся наблюдению. Внутри агента хранится представление о той части, что находится вне границ обзора.

3. Целенаправленные агенты могут выбрать среди многих путей тот, что приведет к нужной цели. Целенаправленные агенты различают только состояния, когда цель достигнута, и когда не достигнута. Они хранят информацию о тех ситуациях, которые для них желательны.

4. Практичные агенты способны различать насколько желанно для них текущее состояние. Такая оценка может быть получена с помощью «функции полезности», которая проецирует множество состояний на множество мер полезности состояний.

5. Обучающиеся агенты способны к обучению и приспосабливанию к изменяющимся обстоятельствам. Система ОА должна проявлять следующие способности:

· обучаться и развиваться в процессе взаимодействия с окружающей средой;

· приспосабливаться в режиме реального времени;

· быстро обучаться на основе большого объёма данных;

· пошагово применять новые способы решения проблем;

· обладать базой примеров с возможностью её пополнения;

· иметь параметры для моделирования быстрой и долгой памяти, возраста и т.д.;

· анализировать себя в терминах поведения, ошибки и успеха.

Согласно мнению многих учёных, важным свойством интеллекта является способность к обучению. Таким образом, на первый план выходит инженерия знаний, объединяющая задачи получения знаний из простой информации, их систематизации и использования. Достижения в этой области затрагивают почти все остальные направления исследований ИИ.

К области машинного обучения относится большой класс задач на распознавание образов. Например, это распознавание символов, рукописного текста, речи, анализ текстов.

ЗАКЛЮЧЕНИЕ

Проанализировав подходы к машинному обучению, применяющихся в различных разделах и направлениях, мы лучше познакомились, с тем как происходит машинное обучение в различных подходах и моделях.

Итак, мы выяснили, что машинное обучение и самообразование - это направление, которое изучает идеи и методы обучения интеллектуальных машин. В процессе машинного обучения происходит автоматическое накопление и формирование знаний в интеллектуальных системах.

Сегодня машинное обучение - это обширная область исследований и разработок интеллектуальных систем, предназначенных для работы в трудно формализуемых областях деятельности человека.

СПИСОК ЛИТЕРАТУРЫ

1. Ясницкий Л.Н. Введение в искусственный интеллект: учеб.пособие для студ.высш.учеб.заведений/3-е изд.,стер. - М.:Издательский центр «Академия»,2010. - 176 с.

2. Люгер Дж. Ф. Искусственный интеллект: стратегии и методы решения сложных проблем = Artificial Intelligence: Structures and Strategies for Complex Problem Solving / Под ред. Н. Н. Куссуль. -- 4-е изд.. -- М.:Вильямс, 2005.

3. Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные системы М.: Финансы и статистика, 2003. (учебник для студентов, обучающихся по информационным специальностям).

Размещено на Allbest.ur

...

Подобные документы

  • Виды машинного обучения, его основные задачи и методы. Подходы к классификации: логистическая регрессия, наивный байесовский классификатор, стохастический градиентный спуск, K-ближайший сосед, дерево решений, случайный лес, метод опорных векторов.

    курсовая работа [436,9 K], добавлен 14.12.2022

  • Сущность и экономическое обоснование, методы и подходы к прогнозированию валютного курса. Описание технологии интеллектуальных вычислений. Применение генетических алгоритмов для настройки архитектуры нейронных сетей. Основные способы улучшения модели.

    курсовая работа [1,3 M], добавлен 26.03.2016

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • Важнейшие принципы обучения в школе. Понятие и основные виды наглядности. Развитие воображения в процессе обучения. Диапазон использования компьютера в учебно-воспитательном процессе. Понятие содержательной линии. Общая классификация методов обучения.

    курсовая работа [270,9 K], добавлен 15.12.2012

  • Рост активности в области теории и технической реализации искусственных нейронных сетей. Основные архитектуры нейронных сетей, их общие и функциональные свойства и наиболее распространенные алгоритмы обучения. Решение проблемы мертвых нейронов.

    реферат [347,6 K], добавлен 17.12.2011

  • Понятие и внутренняя структура, стадии и объекты процесса проектирования баз данных. Требования, предъявляемые к данному процессу. Ограниченность реляционной модели. Группы CASE-средств. Анализ предметной области: функциональный и объектный подходы.

    презентация [114,6 K], добавлен 19.08.2013

  • Популярность алгоритмов машинного обучения для компьютерных игр. Основные техники обучения с подкреплением в динамической среде (компьютерная игра "Snake") с экспериментальным сравнением алгоритмов. Обучение с подкреплением как тип обучения без учителя.

    курсовая работа [1020,6 K], добавлен 30.11.2016

  • Агентно-ориентированная программная архитектура систем обработки потоковых данных. Обеспечение гибкости и живучести программного обеспечения распределенных информационно-управляющих систем. Спецификации программных комплексов распределенной обработки.

    реферат [1,1 M], добавлен 28.11.2015

  • Понятие дистанционного обучения, его сущность и особенности, содержание и цели. Разновидности дистанционного обучения и их характерные черты. Эффективность дистанционного обучения на современном этапе. Основные требования к программному обеспечению.

    научная работа [40,2 K], добавлен 29.01.2009

  • Machine Learning как процесс обучения машины без участия человека, основные требования, предъявляемые к нему в сфере медицины. Экономическое обоснование эффективности данной технологии. Используемое программное обеспечение, его функции и возможности.

    статья [16,1 K], добавлен 16.05.2016

  • История автоматизированного перевода. Современные компьютерные программы перевода. Сфера использования машинного перевода. Формы организации взаимодействия человека и ЭВМ в машинном переводе. Интерредактирование и постредактирование машинного перевода.

    курсовая работа [30,0 K], добавлен 19.06.2015

  • Роль и возможности адаптивной модели в организации образовательного процесса. Структура и механизм навигации в адаптивной модели обучения АЯП Prolog. Программная реализация адаптивной модели обучения. Демонстрация созданного программного продукта.

    курсовая работа [1,6 M], добавлен 19.06.2015

  • Назначение компьютерной сети - объединение нескольких ЭВМ для общего решения информационных, вычислительных, учебных и других задач. Операционные системы - машиннозависимый вид программного обеспечения, ориентированный на конкретные модели компьютеров.

    контрольная работа [37,5 K], добавлен 17.12.2009

  • Компьютер как средство обучения. Классификация учебно-программных средств. Роль интерактивных технологий в обучении школьников. Эффективное управление познавательной деятельностью учащихся первой ступени обучения с помощью интерактивной доски Smart.

    курсовая работа [856,7 K], добавлен 10.02.2012

  • Обзор существующий решений в области электронного обучения. Исследование архитектурных и технологических аспектов построения виртуальных корпоративных университетов. Анализ возможностей системы дистанционного обучения Sakai, отличительные особенности.

    дипломная работа [2,7 M], добавлен 09.04.2011

  • Применение современных компьютерных технологий в процессе обучения иностранным языкам. Использование Интернет-ресурсов, скайпа, социальных сетей в обучении и интернет-сайта для поиска дополнительно новой информации. Общение онлайн с носителями языка.

    статья [15,8 K], добавлен 23.06.2015

  • Получение и обработка данных о веб-сайте. Иерархическая классификация, алгоритмы машинного обучения. Решающие деревья, плоские классификаторы. Метрики оценки качества. Полная точность (accuracy), кросс-валидация. Параллельные вычисления, хранение данных.

    курсовая работа [276,8 K], добавлен 04.09.2016

  • Различные методы решения задачи классификации. Нейросетевые парадигмы, методы обучения нейронных сетей, возникающие при этом проблемы и пути их решения. Описание программной реализации классификатора, его функциональные возможности и результаты обучения.

    дипломная работа [1,0 M], добавлен 28.12.2015

  • Деятельность предприятия ООО "Формула торговли": объектно-ориентированный анализ. Распределение требований по субъектам и прецедентам. Моделирование динамики деятельности предприятия, увеличение его прибыли. Конструирование матрицы ответственностей.

    курсовая работа [2,3 M], добавлен 20.02.2011

  • Первые работы по симуляции эволюции. Основные понятия генетических алгоритмов. Постановка задачи и функция приспособленности. Инициализация, формирование исходной популяции. Выбор исходной популяции для генетического алгоритма, решение задач оптимизации.

    курсовая работа [714,1 K], добавлен 31.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.