Методологические аспекты выявления, представления и использования знаний в АСК-анализе и интеллектуальной системе "Эйдос"
Методологические аспекты технологии выявления знаний из эмпирических данных, представления знаний и их использования для решения задач прогнозирования, принятия решений. Меню режима задания параметров импорта данных из внешних баз в систему "Эйдос".
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 28.04.2017 |
Размер файла | 1,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Материалы данной статьи могут быть использованы при разработке интеллектуальных систем, а также при проведении лабораторных работ по дисциплинам: «Интеллектуальные информационные системы» для специальности: 080801.65 - Прикладная информатика (по областям) и «Представление знаний в информационных системах» для специальности: 230201.65 - Информационные системы и технологии.
Библиографический список
Мичи Д., Джонстон Р. Компьютер - творец. - М.: Мир, 1987. -251 с.
Луценко Е.В. Лабораторный практикум по интеллектуальным информационным системам: Учебное пособие для студентов специальности "Прикладная информатика (по областям)" и другим экономическим специальностям. 2-е изд., перераб. и доп. - Краснодар: КубГАУ, 2006. - 318с.
Луценко Е.В. Автоматизированный системно-когнитивный анализ в управлении активными объектами (системная теория информации и ее применение в исследовании экономических, социально-психологических, технологических и организационно-технических систем): Монография (научное издание). - Краснодар: КубГАУ. 2002. - 605с Для удобства читателей ряд работ из списка приведен на сайте автора: http://lc.kubagro.ru/ .
Луценко Е.В. 30 лет системе «Эйдос» - одной из старейших отечественных универсальных систем искусственного интеллекта, широко применяемых и развивающихся и в настоящее время / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. - Краснодар: КубГАУ, 2009. - №10(54). - Шифр Информрегистра: 0420900012\0110. - Режим доступа: http://ej.kubagro.ru/2009/10/pdf/04.pdf
Луценко Е.В. Универсальная когнитивная аналитическая система "ЭЙДОС". Пат. № 2003610986 РФ. Заяв. № 2003610510 РФ. Опубл. от 22.04.2003.
Луценко Е.В. Системно-когнитивный анализ как развитие концепции смысла Шенка - Абельсона / Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. - Краснодар: КубГАУ, 2004. - №03(5). - Режим доступа: http://ej.kubagro.ru/2004/03/pdf/04.pdf знание данные эйдос
Луценко Е.В. Системная теория информации и нелокальные интерпретируемые нейронные сети прямого счета / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2003. - №01(1). - Режим доступа: http://ej.kubagro.ru/2003/01/pdf/11.pdf
Луценко Е.В. Типовая методика и инструментарий когнитивной структуризации и формализации задач в СК-анализе / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2004. - №01(3). - Режим доступа: http://ej.kubagro.ru/2004/01/pdf/16.pdf
Луценко Е.В. Когнитивные функции как адекватный инструмент для формального представления причинно-следственных зависимостей / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2010. - №09(63). С. 1 - 23. - Шифр Информрегистра: 0421000012\0233. - Режим доступа: http://ej.kubagro.ru/2010/09/pdf/01.pdf, 1,438 у.п.л.
Луценко Е.В. Метод визуализации когнитивных функций - новый инструмент исследования эмпирических данных большой размерности / Е.В. Луценко, А.П. Трунев, Д.К. Бандык // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2011. - №03(67). С. 240 - 282. - Режим доступа: http://ej.kubagro.ru/2011/03/pdf/18.pdf, 2,688 у.п.л.
Луценко Е.В. Неформальная постановка и обсуждение задач, возникающих при системном обобщении теории множеств на основе системной теории информации (Часть 2-я: задачи 4-9) / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2008. - №04(38). С. 26 - 65. - Шифр Информрегистра: 0420800012\0049. - Режим доступа: http://ej.kubagro.ru/2008/04/pdf/03.pdf, 2,5 у.п.л.
Кун Т., Структура научных революций, М., Прогресс, 1977.
Луценко Е.В. Неформальная постановка и обсуждение задач, возникающих при системном обобщении теории множеств на основе системной теории информации (Часть 1-я: задачи 1-3) / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2008. - №03(37). С. 154 - 185. - Шифр Информрегистра: 0420800012\0031. - Режим доступа: http://ej.kubagro.ru/2008/03/pdf/12.pdf, 2 у.п.л.
Луценко Е.В. Лабораторный практикум по интеллектуальным информационным системам: Учебное пособие для студентов специальности "Прикладная информатика (по областям)" и другим экономическим специальностям. 2-е изд., перераб. и доп. - Краснодар: КубГАУ, 2006. - 318с. - Режим доступа: http://lc.kubagro.ru/aidos/aidos06_lab/index.htm
Размещено на Allbest.ru
...Подобные документы
База знаний - структурированная информация из области знаний для использования кибернетическим устройством (человеком). Классификация, структура, формат представления знаний, интеллектуальные системы поиска информации. Базы знаний на примере языка Пролог.
презентация [51,3 K], добавлен 17.10.2013Изучение фреймового способа представления знаний, его специфики и основных характеристик. Обзор других методов представления знаний, их плюсы и минусы. Иерархическая структура данных фрейма. Механизм управления выводом с помощью присоединенной процедуры.
реферат [2,6 M], добавлен 22.12.2014Сущность данных и информации. Особенности представления знаний внутри ИС. Изучение моделей представления знаний: продукционная, логическая, сетевая, формальные грамматики, фреймовые модели, комбинаторные, ленемы. Нейронные сети, генетические алгоритмы.
реферат [203,3 K], добавлен 19.06.2010Изучение в реальных условиях способов представления знаний во Всемирной сети. Представления данных в интернет и способы эффективной публикации данных. Конфигурация Web-сервера на виртуальном хостинге. Настройка и отладка работы сайтов на разных CMS.
отчет по практике [947,2 K], добавлен 09.02.2012Основные модели представления знаний. Системы поддержки принятия решений. Диаграмма UseCase. Разработка базы данных на основе трех моделей: продукционные правила, семантическая сеть, фреймовая модель. Программная реализация системы принятия решений.
курсовая работа [715,1 K], добавлен 14.05.2014Проблема представления знаний. Представление декларативных знаний как данных, наделенных семантикой. Представление процедурных знаний как отношений между элементами модели, в том числе в виде процедур и функций. Представление правил обработки фактов.
курсовая работа [33,1 K], добавлен 21.07.2012Классы и группы моделей представления знаний. Состав продукционной системы. Классификация моделей представления знаний. Программные средства для реализации семантических сетей. Участок сети причинно-следственных связей. Достоинства продукционной модели.
презентация [380,4 K], добавлен 14.08.2013Представление знаний в когнитологии, информатике и искусственном интеллекте. Связи и структуры, язык и нотация. Формальные и неформальные модели представления знаний: в виде правил, с использованием фреймов, семантических сетей и нечетких высказываний.
контрольная работа [29,9 K], добавлен 18.05.2009Определения знаний и приобретения знаний человеком. Виды знаний и способы их представления. Приобретение и извлечение знаний. Визуальное проектирование баз знаний как инструмент обучения. Программное обеспечение для проведения лабораторных работ.
дипломная работа [960,9 K], добавлен 12.12.2008Анализ процессов диагностики повреждений трубопровода. Разработка модели продукционной базы знаний: обзор методов представления знаний, описание создания базы знаний и разработки механизма логического вывода. Экономическое обоснование концепции проекта.
дипломная работа [3,0 M], добавлен 16.04.2017Проблема представления знаний в компьютерных системах – одна из основных проблем в области искусственного интеллекта. Исследование различных моделей представления знаний. Определения их понятия. Разработка операции над знаниями в логической модели.
курсовая работа [51,9 K], добавлен 18.02.2011Основные виды и технологии интеллектуальных информационных систем. Аспекты представления знаний. Функциональная структура использования ИИС. Интеллектуальная поддержка дистанционного образования и экстерната. Электронные учебники и тесты.
контрольная работа [93,8 K], добавлен 29.11.2006Анализ существующих методов и средств выявления требований. Стадии разработки программного обеспечения. Структуризация требований в базе знаний на основе расширенной классификации. Наблюдение за бизнесом заказчика. Моделирование бизнес-процессов компании.
диссертация [2,1 M], добавлен 21.02.2016Фреймовые модели представления знаний. Разработка структуры фреймов для реализации экспертной системы. Разработка экспертной системы с фреймовой моделью представления знаний. Редактирование базы фактов кандидатов и описание режима консультации.
курсовая работа [1,3 M], добавлен 13.10.2012Фреймы как один из распространенных формализмов представления знаний в электронных системах, их классификация и типы, структура и элементы. Иерархические фреймовые структуры и принципы их построения. Код программы Интерфейс. Разработка программного кода.
лабораторная работа [524,2 K], добавлен 02.11.2013Data Mining как процесс поддержки принятия решений, основанный на поиске в данных скрытых закономерностей (шаблонов информации). Его закономерности и этапы реализации, история разработки данной технологии, оценка преимуществ и недостатков, возможности.
эссе [36,8 K], добавлен 17.12.2014Рассмотрение понятия и истории возникновения систем поддержки принятия решения. Приспособленность информационных систем к задачам повседневной управленческой деятельности. Понятие термина "интеллектуальный анализ данных". Методика извлечения знаний.
реферат [79,8 K], добавлен 14.04.2015Построение баз знаний для семантической сети. Цели создания и язык представления онтологий. Структура исследований в области многоагентных интеллектуальных информационных систем, архитектура агента. Экономическое обоснование разработки базы знаний.
дипломная работа [1,6 M], добавлен 29.09.2013Потребность отражения человеческих знаний в памяти компьютера. Модели представления знаний. Продукционные и формально-логические модели. Исчисление предикатов первого порядка. Основные свойства теории фреймов. Аналитическая платформа Deductor.
курсовая работа [538,2 K], добавлен 09.04.2015Проектирование системы принятия решения для аттестации знаний абитуриента на основе тестирования. Особенности создания базы данных и плана перевозок с минимизацией затрат. Разработка информационно-логической модели предметной области "Книга" с атрибутами.
курсовая работа [7,9 M], добавлен 10.10.2012