Основы информатики

Информация и формы ее представления. Описание процессов сбора, обработки, передачи и накопления информации. Информационно-логические основы электронно-вычислительных машин. Графическая операционная среда Windows. Программные средства обработки информации.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 13.09.2017
Размер файла 761,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Четвертый и последний этап предыстории связан с успехами точных наук (прежде всего математики и физики) и начинающейся в то время научно-технической революцией. Этот этап характеризуется возникновением таких мощных средств связи, как радио, телефон и телеграф, к которым по завершению этапа добавилось и телевидение. Кроме средств связи появились новые возможности по получению и хранению информации - фотография и кино. К ним также очень важно добавить разработку методов записи информации на магнитные носители (магнитные ленты, диски).

С разработкой первых ЭВМ принято связывать возникновение информатики как науки, начало ее истории. Для такой "привязки" имеется несколько причин. Во-первых, сам термин "информатика" появился на свет благодаря развитию вычислительной техники, и поначалу под ним понималась наука о вычислениях (первые ЭВМ большей частью использовались для проведения числовых расчетов). Во-вторых, выделению информатики в отдельную науку способствовало такое важное свойство современной вычислительной техники, как единая форма представления обрабатываемой и хранимой информации. Вся информация, вне зависимости от ее вида, хранится и обрабатывается на ЭВМ в двоичной форме. Так получилось, что компьютер в одной системе объединил хранение и обработку числовой, текстовой (символьной) и аудиовизуальной (звук, изображение) информации. В этом состояла инициирующая роль вычислительной техники при возникновении и оформлении новой науки.

На сегодняшний день информатика представляет собой комплексную научно-техническую дисциплину. Информатика под своим названием объединяет довольно обширный комплекс наук, каждая из которых занимается изучением одного из аспектов понятия информатика. Предпринимаются интенсивные усилия ученых по сближению наук, составляющих информатику. Однако процесс сближения этих дисциплин идет довольно медленно и создание единой и всеохватывающей науки об информации представляется делом будущего.

3.4 Понятие об информационном обществе

Информационное общество (ИО) имеет следующие основные признаки:

1. Большинство работающих в ИО (около 80%) занято в информационной сфере, то есть сфере производства информации и информационных услуг.

2. Обеспечены техническая, технологическая и правовая возможности доступа любому члену общества практически в любой точке территории и в приемлемое время к нужной ему информации (за исключением военных и государственных секретов, точно оговоренных в соответствующих законодательных актах).

3. Информация становится важным стратегическим ресурсом общества и занимает ключевое место в экономике, образовании и культуре.

Информатизацию общества следует понимать как создание и развитие информационной среды: комплекса условий и факторов, обеспечивающих наилучшие условия функционирования информационных ресурсов с учетом автоматизированных способов их переработки и использования в целях социального прогресса. Можно сказать и иначе: информатизация сводится к формированию информационных технологий и созданию условий для эффективного их использования в различных общественных системах.

Техническая база информатизации - это компьютерные и телекоммуникационные системы и сети, которые должны составлять "ядро" экономики, точнее - производственного аппарата будущего общества. Такой аппарат будет включать роботы и роботизированные производства, обрабатывающие центры, гибкие производственные системы, безлюдные участки, цехи, предприятия и, конечно, новые организационно-управленческие комплексы и системы связи.

К первоочередным проблемам информатизации следует отнести проблему готовности населения к переходу в информационное общество - психологическую проблему. Этот переход в настоящее время затрудняется низким уровнем информационной культуры населения, недостаточной компьютерной грамотностью, а отсюда и низкими информационными потребностями, а также отсутствием желания их развивать. Наблюдается невосприимчивость экономики управления на всех уровнях к результатам НТР и прежде всего в ионосфере. Психофизиологический аспект проблемы определяется совместимостью человека и новой информационной техники и технологии.

Следует еще раз подчеркнуть, что информатизация общества предполагает организацию компьютерного ликбеза населения, подготовку и переподготовку кадров - специалистов по ЭВМ и неспециалистов, то есть пользователей - профессионалов в области программирования и ВТ, компьютеризацию всех звеньев образования от начальной школы до вуза и системы послевузовского образования, создание огромной сети по переквалификации работников, формирование, особенно у молодежи, новой информационной культуры, расширение математического образования, преодоление барьеров на пути к ПЭВМ, машинным языкам и т.д.

Таким образом, ИО - это общество, структуры, техническая база и человеческий потенциал которого приспособлены для оптимального превращения знаний в информационный ресурс и переработки последнего с помощью перевода пассивных форм (книги, патенты, статьи и т.п.) в активные (модели, алгоритмы, программы, проекты). Но особенное значение для активизации информационного потенциала общества имеет создание современных баз знаний. Это достигается на путях качественного преобразования традиционных баз данных, рожденных ранними поколениями ЭВМ до появления искусственного интеллекта, в базы знаний.

3.5 Цель и задачи курса "информатика"

Информатика является естественнонаучной дисциплиной для всех технических направлений и специальностей.

Для направлений и специальностей, в которых информатика - непрофилирующая дисциплина, целью изучения является изложение фундаментальных понятий об информации, методах ее получения, хранения, обработке и передачи, а также роли информационного ресурса в информатизации общества.

В соответствии с требованиями Государственных образовательных стандартов высшего профессионального образования студенты технических направлений и специальностей в результате изучения курса "Информатика" должны:

1) знать и уметь использовать:

· базовые понятия информатики и вычислительной техники,

· предмет и основные методы информатики,

· историю развития информатики,

· закономерности протекания информационных процессов в искусственных системах (в том числе в системах управления),

· принципы и работу технических и программных средств;

2) иметь опыт:

· использования возможностей вычислительной техники и программного обеспечения;

3) иметь представление:

· об информатике как особом способе познания мира;

· об информационном ресурсе и его роли в информатизации общества, о перспективах и этапах перехода к информационному обществу.

Лекция 4. ЭВМ как средство обработки информации

Первая в мире ЭВМ - ENIAC - была создана в 1946 г. в США.

На пути развития электронной вычислительной техники (начиная с середины 40-х годов) можно выделить четыре поколения больших ЭВМ, отличающихся элементной базой, функционально-логической организацией, конструктивно-технологическим исполнением, программным обеспечением, техническими и эксплуатационными характеристиками, степенью доступа к ЭВМ со стороны пользователей. Смене поколений сопутствовало изменение основных технико-эксплуатационных и технико-экономических показателей ЭВМ, и в первую очередь таких, как быстродействие, емкость памяти, надежность и стоимость. При этом одной из основных тенденций развития было и остается стремление уменьшить трудоемкость подготовки программ решаемых задач, облегчить связь операторов с машинами, повысить эффективность использования последних. Это диктовалось и диктуется постоянным ростом сложности и трудоемкости задач, решение которых возлагается на ЭВМ в различных сферах применения.

Возможности улучшения технико-эксплуатационных показателей ЭВМ в значительной степени зависит от элементов, используемых для построения их электронных схем. Поэтому при рассмотрении этапов развития ЭВМ каждое поколение обычно в первую очередь характеризуется используемой элементной базой.

4.1 История развития ЭВМ

Основным элементом ЭВМ первого поколения являлась электронная лампа, остальные компоненты электронной аппаратуры - это обычные резисторы. Конденсаторы, трансформаторы. Для построения оперативной памяти ЭВМ уже с середины 50-х годов начали применяться специально разработанные для этой цели элементы - ферритовые сердечники с прямоугольной петлей гистерезиса. В качестве устройств ввода-вывода сначала использовалась стандартная телеграфная аппаратура (телетайпы, ленточные перфораторы, трансмиттеры, аппаратура счетно-перфорационных машин), а затем специально для ЭВМ были разработаны электромеханические устройства на магнитных лентах, барабанах, дисках и быстродействующие печатающие устройства.

Машины 1-го поколения имели внушительные размеры, потребляли большую мощность, имели сравнительно малое быстродействие, малую емкость оперативной памяти, невысокую надежность работы и недостаточно развитое программное обеспечение. В ЭВМ этого поколения были заложены основы логического построения машин и продемонстрированы возможности цифровой вычислительной техники.

На смену лампам в машинах второго поколения (в конце 50-х годов) пришли транзисторы. В отличие от ламповых ЭВМ транзисторные машины обладали бьльшими быстродействием, емкостью оперативной памяти и надежностью. Существенно уменьшились размеры, масса и потребляемая мощность. Значительным достижением явилось применение печатного монтажа. Повысилась надежность электромеханических устройств ввода-вывода, удельный вес которых увеличился. Машины второго поколения обладали бьльшими вычислительными и логическими возможностями.

Особенность машин 2-го поколения - их дифференциация по применению. Появились машины для решения научно-технических и экономических задач, для управления производственными процессами и различными объектами (управляющие машины).

Наряду с техническим совершенствованием ЭВМ развиваются методы и приемы программирования вычислений, высшей ступенью которых является автоматическое программирование, требующее минимальных затрат труда математиков-программистов. Большое развитие и применение получили алгоритмические языки, существенно упрощающие процесс подготовки задач к решению на ЭВМ. С появление алгоритмических языков резко сократились штаты "чистых" программистов, поскольку составление программ на этих языках стало под силу самим пользователям.

В период развития и совершенствования машин второго поколения наряду с однопрограммными появились многопрограммные (мультипрограммные) ЭВМ. В отличие от однопрограммных машин, в которых программы выполняются только поочередно, в многопрограммных ЭВМ возможна совместная реализация нескольких программ за счет организации параллельной работы нескольких устройств машины.

Третье поколение ЭВМ (конец 60-х - начало 70-х годов) характеризуется широким применением интегральных схем. Интегральная схема представляет собой законченный логический функциональный блок, соответствующий достаточно сложной транзисторной схеме. Благодаря использованию интегральных схем удалось существенно улучшить технические и эксплуатационные характеристики машин. Этому способствовало также применение многослойного печатного монтажа.

В машинах 3-го поколения значительно расширился набор различных электромеханических устройств для ввода и вывода информации. Развитие этих устройств носит эволюционный характер: их характеристики совершенствуются гораздо медленнее, чем характеристики электронного оборудования.

Программное обеспечение машин 3-го поколения получило дальнейшее развитие, особенно это касается операционных систем. Развитые операционные системы многопрограммных машин, снабженных периферийными устройствами ввода-вывода с автономными пультами абонентов, обеспечивают управление работой ЭВМ в различных режимах: пакетной обработки, разделения времени, вопрос-ответ и др.

В машинах 3-го поколения существенно расширены возможности по обеспечению непосредственного доступа к ним со стороны абонентов, находящихся на различных, в том числе и значительных (десятки и сотни километров) расстояниях. Удобство общения абонента с машиной достигается за счет развитой сети абонентских пунктов, связанных с ЭВМ информационными каналами связи, и соответствующего программного обеспечения.

Например, в режиме разделения времени многим абонентам предоставляется возможность одновременного, непосредственного и оперативного доступа к ЭВМ. Вследствие большого развития инерционности человека и машины у каждого из одновременно работающих абонентов складывается впечатление, будто ему одному предоставлено машинное время.

При разработке машин 3-го поколения применяются различные методы автоматизации проектирования. Основной объем документации, необходимой для монтажа, разрабатывается с помощью ЭВМ.

Для машин четвертого поколения (конец 70-х годов) характерно применение больших интегральных схем (БИС). Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности и быстродействия, снижению стоимости. Это, в свою очередь, оказывает существенное воздействие на логическую структуру ЭВМ и ее программное обеспечение. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы.

Отчетливо проявляется тенденция к унификации ЭВМ, созданию машин, представляющих собой единую систему. Ярким выражением этой тенденции является создание и развитие ЕС ЭВМ - Единой системы электронных вычислительных машин.

Таблица 4.1. Поколения ЭВМ

№ поколения, годы

Элементная база

Особенности архитектуры

Особенности программирования

Организация работы

1-е, 1950-1955 (Урал-2)

Электронные лампы

Схема Фон-Неймана

Программирование в командах ЭВМ

Программист за пультом управления

2-е, 1955-1960 (Минск, БЭСМ-4)

Транзисторы

Схема Фон-Неймана

Программирование на алгоритмических языках (Алгол, Фортран)

Пакетный режим (за пультом управления оператор)

3-е, 1960-1965 (IBM/360, БЭСМ-6)

Большие интегральные схемы

Параллельная работа внешних устройств

Операционные системы

Пакетный режим, удаленные терминалы

4-е, 1960-… (CRAY-1, Эльбрус, IBM PC)

Сверхбольшие интегральные схемы

Параллельная работа нескольких процессоров, сети ЭВМ

Распараллеливание алгоритмов

Пакетный режим, удаленные терминалы, сети ЭВМ

5-е, 1990-… (проект, Япония)

Сверхбольшие интегральные схемы

Дружественность по отношению к пользователю

Промышленный выпуск первых моделей ЕС ЭВМ был начат в 1972 г., при их создании были использованы все современные достижения в области электронной вычислительной техники, технологии и конструирования ЭВМ, в области построения систем программного обеспечения. Объединение знаний и производственных мощностей стран-разработчиков позволило в довольно сжатые сроки решить комплексную научно-техническую проблему. ЕС ЭВМ представляла собой непрерывно развивающуюся систему, в которой улучшались технико-эксплуатационные показатели машин, совершенствовалось периферийное оборудование и расширялась его номенклатура.

Со второй половины 50-х годов кроме больших ЭВМ начали развиваться мини-ЭВМ, отличающимися меньшими функциональными возможностями главным образом из-за ограниченного набора команд и меньшей разрядности чисел, представляющих обрабатываемые данные.

С появлением в 1971 г. в США микропроцессоров начал развиваться новый класс вычислительных машин - микро ЭВМ.

4.2 Основные характеристики ЭВМ

Первые электронные вычислительные машины (ЭВМ) появились в середине 40-х годов прошлого века. За это время микроэлектроника, вычислительная техника и вся индустрия информатики стали одними из составляющих мирового научно-технического прогресса. Влияние вычислительной техники на все сферы деятельности человека продолжает распространяться вширь и вглубь. В настоящее время ЭВМ используются не только для выполнения сложных расчетов, но и в управлении производственными процессами, в образовании, здравоохранении, экологии и т.д. Это объясняется тем, что ЭВМ способны обрабатывать любые виды информации: числовую, текстовую, табличную, графическую, видео, звуковую.

Электронная вычислительная машина - это комплекс технических и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей. Под пользователем понимают человека, в интересах которого проводится обработка данных на ЭВМ. В качестве пользователя могут выступать заказчики вычислительных работ, программисты, операторы. Как правило, время подготовки задач во много раз превышает время их решения.

Требования пользователей к выполнению вычислительных работ удовлетворяются специальным подбором и настройкой технических и программных средств. Обычно эти средства взаимосвязаны и объединяются в одну структуру.

Структура - совокупность элементов и их связей. Различают структуры технических, программных и аппаратно-программных средств. Выбирая ЭВМ для решения своих задач, пользователь интересуется функциональными возможностями технических и программных модулей (как быстро может быть решена задача, насколько ЭВМ подходит для решения данного круга задач, какой сервис программ имеется в ЭВМ, возможности диалогового режима, стоимость подготовки и решения задач и т.п.). При этом пользователь интересуется не конкретной технической и программной реализацией отдельных программных модулей, а общими вопросами организации вычислений. Последнее включается в понятие архитектуры ЭВМ, содержание которого достаточно обширно.

Архитектура ЭВМ - это многоуровневая иерархия аппаратно-программных средств, из которых строится ЭВМ. Каждый из уровней допускает многовариантное построение и применение. Конкретная организация уровней определяет особенности структурного построения ЭВМ.

Детализацией архитектурного и структурного построения ЭВМ занимаются различные категории специалистов вычислительной техники. Инженеры-схемотехники проектируют отдельные технические устройства и разрабатывают методы их сопряжения друг с другом. Системные программисты создают программы управления техническими средствами, информационного взаимодействия между уровнями, организации вычислительного процесса. Программисты-прикладники разрабатывают пакеты программ более высокого уровня, которые обеспечивают взаимодействие пользователей с ЭВМ и необходимый сервис при решении ими своих задач. Перечисленные специалисты рассматривают понятие архитектуры в более узком смысле. Для них наиболее важные структурные особенности сосредоточены в наборе команд ЭВМ, разграничивающем аппаратные и программные средства.

Сами же пользователи ЭВМ, которые обычно не являются профессионалами в области вычислительной техники, рассматривают архитектуру через более высокоуровневые аспекты, касающиеся их взаимодействия с ЭВМ, определяющих ее структуру:

· технические и эксплуатационные характеристики ЭВМ (быстродействие и производительность, показатели надежности, достоверности, точности, емкости оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации и др.);

· характеристики и состав функциональных модулей базовой конфигурации ЭВМ; возможность расширения технических и программных средств; возможность изменения структуры;

· состав программного обеспечения (ПО) и сервисных услуг (операционная система или среда, пакеты прикладных программ, средства автоматизации программирования).

Архитектура ЭВМ охватывает широкий круг проблем, связанных с построением комплекса аппаратных и программных средств и учитывающих множество факторов. Среди этих факторов важнейшими являются: стоимость, сфера применения, функциональные возможности, удобство эксплуатации, а одним из главных компонентов архитектуры являются аппаратные средства. Основные компоненты архитектуры можно представить в виде следующей схемы:

Архитектуру вычислительного средства следует отличать от его структуры. Структура вычислительного средства определяет его конкретный состав на некотором уровне детализации (устройства, блоки, узлы и т.д.) и описывает связи внутри средства во всей их полноте. Архитектура же определяет правила взаимодействия составных частей вычислительного средства, описание которых выполняется в той мере, в какой это необходимо для формирования правил их взаимодействия. Она регламентирует не все связи, а наиболее важные, которые должны быть известны для более грамотного использования данного средства.

Важнейшими характеристиками ЭВМ являются быстродействие и производительность. И хотя эти характеристики тесно связаны, тем не менее их не следует смешивать. Быстродействие характеризуется числом определенного типа команд (чаще сложений и вычитаний - так называемых "коротких" операций), выполняемых ЭВМ за одну секунду. Производительность - это объем работ (например, число стандартных программ), выполненный ЭВМ в единицу времени.

Другой важнейшей характеристикой ЭВМ является емкость запоминающих устройств. Она измеряется количеством структурных единиц информации, которые одновременно можно разместить в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти.

Наименьшей структурной единицей информации является бит - одна двоичная цифра. Как правило, емкость памяти оценивается в более крупных единицах измерения - байтах (байт равен восьми битам). Следующими единицами измерения служат:

1 Кбайт = 210 байт = 1024 байт;

1 Мбайт = 210 Кбайта = 220 байта;

1 Гбайт = 210 Мбайта = 220 Кбайта = 230 байта.

Обычно отдельно характеризуют емкость оперативной памяти и емкость внешней памяти. Современные персональные ЭВМ могут иметь емкость оперативной памяти, равную от 256 Мбайт до 4 Гбайт. Этот показатель очень важен для определения, какие программные пакеты и их приложения могут одновременно обрабатываться в машине.

Емкость внешней памяти зависит от типа носителя. Так, емкость одной дискеты составляет 1,2; 1,4 и 2,88 Мбайта в зависимости от типа дисковода и характеристик дискет. Емкость оптических дисков CD и DVD соответственно 200 Мбайт и 1,4 Гбайт для дисков диаметром 8 см и от 700 Мбайт для CD и 4,7 Гбайт (для однослойных дисков) и 8,5 Гбайт (для двухслойных дисков) - для дисков диаметром 12 см. Емкость сменных дисков (так называемая флэш-память) - в пределах от 16 Мбайт (такие диски уже сняты с производства) до 64 Гбайт. Подобные диски, а также различного типа карты памяти (XD, SD, Mini-SD, Micro-SD, Memory Stick), используются как просто отдельные накопители, так и в цифровых фото- и видеокамерах, диктофонах, мобильных телефонах и т.п. Емкость жесткого диска может варьироваться от нескольких Гбайт до 320 и более Гбайт. Емкость внешней памяти характеризует объем программного обеспечения и отдельных программных продуктов, которые могут устанавливаться в ЭВМ. Например, для установки операционной среды Windows 2000 требуется объем памяти жесткого диска не менее 600 Мбайт и не менее 64 Мбайт оперативной памяти ЭВМ.

Надежность - это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного времени (стандарт ISO - международной организации стандартов - 2382/14-78).

Высокая надежность ЭВМ закладывается в процессе ее производства. Переход на новую элементную базу - сверхбольшие интегральные схемы (СБИС) - резко сокращает число используемых интегральных схем, а значит, и число их соединений друг с другом. Хорошо продуманы компоновка компьютера и обеспечение требуемых режимов работы (охлаждение, защита от пыли). Модульный принцип построения позволяет легко проверять и контролировать работу всех устройств, проводить диагностику и устранять неисправности.

Точность - возможность различать почти равные значения (стандарт ISO - 2382/2-76). Точность получения результатов обработки определяется разрядностью ЭВМ, которая в зависимости от класса ЭВМ может составлять 32, 64 и 128 двоичных разрядов.

Во многих применениях ЭВМ не требуется большой точности (при обработке текстов и документов, при управлении технологическими процессами). В этом случае достаточно воспользоваться 8- и 16-разрядными двоичными кодами. При выполнении же сложных математических расчетов следует использовать высокую разрядность (32, 64 и даже более). Для работы с такими данными применяются соответствующие структурные единицы представления информации (байт, слово, двойное слово). Программными способами диапазон представления и обработки данных может быть увеличен в несколько раз, что позволяет достигать очень высокой точности.

Достоверность - свойство информации быть правильно воспринятой. Достоверность характеризуется вероятностью получе7ния безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратно-программными средствами контроля самой ЭВМ. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других ЭВМ и сравнение результатов.

4.3 Классификация ЭВМ

Чтобы судить о возможностях ЭВМ, их принято разделять на группы по определенным признакам, то есть классифицировать. Сравнительно недавно классифицировать ЭВМ по различным признакам не составляло большого труда. Важно было только определить признак классификации, например, по назначению, по габаритам, по производительности, по стоимости, по элементной базе и т.д.

С развитием технологии производства ЭВМ классифицировать их стало все более затруднительно, ибо стирались грани между такими важными характеристиками, как производительность, емкость внутренней и внешней памяти, габариты, вес, электропотребление и др. Например, персональный компьютер, для размещения которого достаточно стола, имеет практически те же возможности и технические характеристики, что и достаточно совершенная в недавнем прошлом ЭВМ Единой системы (ЕС), занимающая машинный зал в сотни квадратных метров. Поэтому разделение ЭВМ по названных признакам нельзя воспринимать как классификацию по техническим параметрам. Это, скорее, эвристический подход, где большой вес имеет предполагаемая сфера применения компьютеров.

С этой точки зрения классификацию вычислительных машин по таким показателям, как габариты и производительность, можно представить следующим образом:

· сверхпроизводительные ЭВМ и системы (супер-ЭВМ);

· большие ЭВМ (универсальные ЭВМ общего назначения);

· средние ЭВМ;

· малые или мини-ЭВМ;

· микро-ЭВМ;

· персональные компьютеры;

· микропроцессоры.

Отметим, что понятия "большие", "средние" и "малые" для отечественных ЭВМ весьма условны и не соответствуют подобным категориям зарубежных ЭВМ.

Лекция 5. ЭВМ как средство обработки информации (окончание)

5.1 Общие принципы построения современных ЭВМ

Основным принципом построения всех современных ЭВМ является программное управление. В его основе лежит представление алгоритма решения любой задачи в виде программы вычислений.

В соответствии со стандартом ISO 2382/1-84 г., "алгоритм - конечный набор предписаний, определяющий решение задачи посредством конечного количество операций". "Программа для ЭВМ - упорядоченная последовательность команд, подлежащая обработке". Следует отметить, что строгого, однозначного определения алгоритма, равно как и однозначных методов его преобразования в программу вычислений, не существует. Принцип программного управления может быть осуществлен различными способами. Стандартом для построения практически всех ЭВМ стал способ, описанный Дж. фон Нейманом в 1945 г. при построении еще первых образцов ЭВМ. Суть его заключается в следующем.

Все вычисления, предписанные алгоритмом решения задачи, должны быть представлены в виде программы, состоящей из последовательности управляющих слов - команд. Каждая команда содержит указания на конкретную выполняемую операцию, местонахождение (адреса) операндов и ряд служебных признаков. Операнды - переменные, значения которых участвуют в операциях преобразования данных. Список (массив) всех переменных (входных данных, промежуточных значений и результатов вычислений) является еще одним неотъемлемым элементом любой программы.

Для доступа к программам, командам и операндам используются их адреса. В качестве адресов выступают номера ячеек памяти ЭВМ, предназначенных для хранения объектов. Информация (командная и данные: числовая, текстовая, графическая и т.п.) кодируется двоичными цифрами "0" и "1". Поэтому различные типы информации, размещенные в памяти ЭВМ, практически не различимы, идентификация их возможна лишь при выполнении программы, согласно ее логике, по контексту.

Каждый тип информации имеет свои форматы - структурные единицы информации, закодированные двоичными цифрами "0" и "1". Обычно все форматы данных, используемые в ЭВМ, кратны байту, то есть состоят из целого числа байтов.

Последовательность битов в формате, имеющая определенный смысл, представлена полем. Например, в каждой команде программы различают поле кода операций, поле адресов операндов. Применительно к числовой информации выделяют знаковые разряды, значащие разряды чисел, старшие и младшие разряды.

Последовательность, состоящая из определенного, принятого для данной ЭВМ числа байтов, называется словом. Для больших ЭВМ размер слова составляет 4 байта, для ПЭВМ - 2 байта. В качестве структурных элементов информации различают также полуслово, двойное слово и др.

Схема ЭВМ, отвечающая программному принципу управления, логично вытекает из последовательного характера преобразований, выполняемых человеком по некоторому алгоритму (программе). Обобщенная структурная схема ЭВМ первых поколений представлена на рис. 5.1.

Рис. 5.1. Структурная схема ЭВМ первого поколения

В любой ЭВМ имеются устройства ввода информации (УВв), с помощью которых пользователи вводят в ЭВМ программы решаемых задач и данные к ним. Сначала введенная информация частично или полностью запоминается в оперативном запоминающем устройстве (ОЗУ), а затем переносится во внешнее запоминающее устройство (ВЗУ), предназначенное для длительного хранения информации, где преобразуется в специальный программный объект - файл. Файл - это имеющий имя информационный массив (программа, данные, текст и т.п.), размещенный во внешней памяти и рассматриваемый как неделимый объект при пересылках и обработке.

При использовании файла в вычислительном процессе его содержимое переносится в ОЗУ. Затем программная информация команда за командой считывается в устройство управления.

Устройство управления (УУ) предназначается для автоматического управления программ путем принудительной координации работы всех остальных устройств ЭВМ. Цепи сигналов управления показаны на рис. 5.1 штриховыми линиями. Вызываемые из ОЗУ команды дешифрируются УУ: определяются код операции, которую необходимо выполнить, и адреса операндов, принимающих участие в данной операции.

Арифметико-логическое устройство (АЛУ) выполняет арифметические и логические операции над данными. Основной частью АЛУ является операционный автомат, в состав которого входят сумматоры, счетчики, регистры, логические преобразователи и др. Оно каждый раз перестраивается на выполнение очередной операции. Результаты выполнения отдельных операций сохраняются для последующего использования на одном из регистров АЛУ или записываются в память. Отдельные признаки результатов (результат = 0, результат < 0, результат > 0 и др.) УУ использует для изменения порядка выполнения команд программы. Результаты, полученные после выполнения все программы вычислений, передаются на устройства вывода (УВыв) информации. В качестве УВыв могут использоваться экран дисплея, принтер, графопостроитель и др.

Современные ЭВМ имеют достаточно развитые системы машинных операций. Например, ЭВМ типа IBM PC имеют около 200 различных операций (от 170 до 230 в зависимости от типа микропроцессора). Любая операция в ЭВМ выполняется по определенной микропрограмме, реализуемой в схемах АЛУ соответствующей последовательностью сигналов управления (микрокоманд). Каждая отдельная микрокоманда - это простейшее преобразование данных типа алгебраического сложения, сдвига, перезаписи информации и т.п.

Уже в первых ЭВМ для увеличения их производительности широко применялось совмещение операций. При этом последовательные фазы выполнения отдельных команд программы (формирование адресов операндов, выборка операндов, выполнение операции, отсылка результата) выполнялись отдельными функциональными блоками. В своей работе они образовывали своеобразный конвейер, а их параллельная работа позволяла обрабатывать различные фазы целого блока команд. Этот принцип получил дальнейшее развитие в ЭВМ следующих поколений. Но все же первые ЭВМ имели очень сильную централизацию управления, единые стандарты форматов команд и данных, "жесткое" построение циклов выполнения отдельных операций, что во многом объясняется ограниченными возможностями используемой в них элементной базы. Центральное УУ обслуживало не только вычислительные операции, но и операции ввода-вывода, пересылок данных между ЗУ и др. Все это позволило в какой-то степени упростить аппаратуру ЭВМ, но значительно сдерживало рост их производительности.

В ЭВМ 3-го поколения произошло усложнение структуры за счет разделения процессов ввода-вывода информации и процесса ее обработки.

Рис. 5.2. Структурная схема ЭВМ 3-го поколения

Сильно связанные устройства АЛУ и УУ получили название процессор. В структуре ЭВМ появились дополнительные устройства, которые стали называться: процессоры ввода-вывода, устройства управления обмена информацией, каналы ввода-вывода (КВВ). Последние получили наибольшее распространение применительно к большим ЭВМ. Здесь наметилась тенденция в децентрализации управления и параллельной работе отдельных устройств, что позволило резко повысить быстродействие ЭВМ в целом.

Среди каналов ввода-вывода выделяли мультиплексные каналы, способные обслуживать большое количество медленно работающих устройств ввода-вывода, и селекторные каналы, обслуживающие в монопольных режимах скоростные внешние запоминающие устройства (ВЗУ).

5.2 Программное обеспечение ЭВМ и его функции

Электронные вычислительные машины являются универсальными техническими средствами автоматизации вычислительных работ, то есть они способны решать любые задачи, связанные с преобразованием информации. Однако подготовка задач к решению на ЭВМ была и остается до настоящего времени достаточно трудоемким процессом, требующим от пользователя во многих случаях специальных знаний и навыков.

Для снижения трудоемкости подготовки задач к решению, более эффективного использования отдельных технических, программных средств и ЭВМ в целом, а также облегчения их эксплуатации каждая ЭВМ имеет специальный комплекс программных средств регулярного применения. Эти средства обеспечивают взаимодействие пользователей с ЭВМ и являются своеобразным "посредником" между ними. Они получили название программного обеспечения ЭВМ.

Под программным обеспечением будем понимать комплекс программных средств регулярного применения, предназначенный для подготовки и решения задач пользователей.

Программное обеспечение (ПО) отдельных ЭВМ и вычислительных систем (ВС) может сильно различаться составом используемых программ, который определяется классом задействованной вычислительной техники, режимами ее применения, содержанием вычислительных работ пользователей и т.п. Развитие ПО современных ЭВМ и ВС в значительный степени носит эволюционный и эмпирический характер, но можно выделить закономерности в его построении.

В общем случае процесс подготовки и решения задач на ЭВМ пользователями предусматривает выполнение следующей последовательности этапов:

· формулировка проблемы и математическая постановка задачи;

· выбор метода и разработка алгоритма решения;

· программирование (запись алгоритма) с использованием некоторого алгоритмического языка;

· планирование и организация вычислительного процесса - порядка и последовательности использования ресурсов ЭВМ и ВС;

· формирование "машинной программы", то есть программы, которую непосредственно будет выполнять ЭВМ;

· собственно решение задачи - выполнение вычислений по готовой программе.

По мере развития ВТ автоматизация этих этапов идет снизу вверх. В ЭВМ 1-го поколения автоматизации подлежал только шестой этап. Все пять предыдущих этапов пользователь должен был готовить вручную самостоятельно. Трудоемкий и рутинный характер этих работ был источником большого количества ошибок в заданиях. Поэтому в ЭВМ следующих поколений появились сначала элементы, а затем целые системы, облегчающие процесс подготовки задач к решению.

Для ЭВМ 2-го поколения характерно широкое применение алгоритмических языков (Автокоды, Алгол, Фортран и др.) и соответствующих трансляторов, позволяющих автоматически формировать машинные программы по их описанию. На алгоритмическом языке. Здесь же стали широко внедряться библиотеки стандартных программ, что позволило строить машинные программы блоками, используя накопленный и приобретенный программистами опыт. Отметим, что временные границы появления всех нововведений достаточно размыты. Обычно их истоки можно обнаружить в недрах ЭВМ предыдущих поколений.

ЭВМ 3-го поколения характеризуются расцветом операционных систем, отвечающих за организацию и управление вычислительным процессом. Именно здесь слово "ЭВМ" все чаще стало заменяться понятием "вычислительная система", что в большей степени отражало усложнение как аппаратной, так и программной части ЭВМ. Стоимость ПО стала расти и в настоящее время намного опережает стоимость аппаратуры.

В ЭВМ 4-го поколения продолжается усложнение технических и программных структур (иерархия управления средствами, увеличение их количества). Следует отметить заметное повышение "интеллектуальности" машин. Особенно это стало видно при появлении персональных ЭВМ (ПЭВМ), ориентированных на определенные категории пользователей. ПО этих машин создает "дружественную" среду общения человека и компьютера. Оно, с одной стороны, управляет процессом обработки информации, а с другой - создает необходимый сервис для пользователя, снижая трудоемкость его рутинной работы и предоставляя ему возможность больше уделять внимание творчеству.

Подобные тенденции будут сохраняться и в ЭВМ последующих поколений. ПО мнению некоторых исследователей машины будущего будут иметь встроенный в них "искусственный интеллект", что позволит пользователям обращаться к машинам (системам) на естественном языке, вводить и обрабатывать тексты, документы, иллюстрации, создавать системы обработки знаний и т.д. Все это приводит к необходимости разработки сложного, многоэшелонного иерархического программного обеспечения систем обработки данных.

5.3 Состав и назначение основных элементов ПК, их характеристики

5.3.1 Общие сведения о ПЭВМ и их классификация

Успехи в развитии микропроцессоров и микро-ЭВМ привели к появлению персональных ЭВМ (ПЭВМ), предназначенных для индивидуального обслуживания пользователя и ориентированных на решение различных задач неспециалистами в области вычислительной техники. Все оборудование персональной ЭВМ размещается в пределах стола.

Появление в 1975 г. в США первого серийного персонального компьютера (персональной ЭВМ - ПЭВМ) вызвало революционный переворот во всех областях человеческой деятельности.

Первые персональные компьютеры создавались в виде электронных блоков, обеспечивающих возможность конструировать различные ЭВМ из отдельных узлов. Такие наборы пользовались большим успехом у любителей-электронщиков. Однако уже в 1981 г. стали выпускаться ПЭВМ, имеющие блочно-модульную конструкцию. Эти машины, простые в эксплуатации и сравнительно дешевые, предназначались для потребителей, не обладающих знаниями в области вычислительной техники и программирования.

ПЭВМ относится к классу микроЭВМ и является машиной индивидуального пользования. Это общедоступный и универсальный инструмент, многократно повышающий производительность интеллектуального труда специалистов различного профиля. ПЭВМ предназначена для автономной работы в диалоговом режиме с пользователем. Общедоступность ПЭВМ определяется сравнительно низкой стоимостью, компактностью, отсутствием специальных требований как к условиям эксплуатации, так и степени подготовленности пользователя.

Основой ПЭВМ является микропроцессор (МП). Развитие техники и технологии микропроцессоров определило смену поколений ПЭВМ:

Таблица 5.1. Поколения ПЭВМ

Поколение

Годы разработки

Разрядность МП

1

1975-1980

на базе 8-разрядного МП

2

1981-1985

на базе 16-разрядного МП

3

1986-1992

на базе 32-разрядного МП

4

1993 - по настоящее время

на базе 64-разрядного МП

Большую роль в развитии ПЭВМ сыграло появление компьютера IBM PC, произведенного корпорацией IBM (США) на базе микропроцессора Intel-8086 в 1981 г. Этот персональный компьютер занял ведущее место на рынке ПЭВМ. Его основное преимущество - так называемая "открытая архитектура", благодаря которой пользователи могут расширять возможности приобретенной ПЭВМ, добавляя различные периферийные устройства и модернизируя компьютер.

В дальнейшем другие фирмы начали создавать компьютеры, совместимые с IBM PC и, таким образом, компьютер IBM PC стал как бы стандартом класса ПЭВМ. В наши дни около 85% всех продаваемых ПЭВМ базируется на архитектуре IBM PC.

Бытовые ПЭВМ предназначены для массового потребителя и используются в домашних условиях для развлечений (видеоигры), для обучения и тренировки, управления бытовой техникой.

Персональные ПЭВМ общего назначения применяются для решения задач научно-технического и экономического характера, а также для обучения и тренировки. Они размещаются на рабочих местах пользователей: на предприятиях, в учреждениях, в магазинах, на складах и т.п. Этот класс ПЭВМ получил наибольшее распространение на рынке.

Профессиональные ПЭВМ используются в научной сфере, для решения сложных информационных и производственных задач, где требуется высокое быстродействие, эффективная передача больших массивов информации, достаточно большая емкость оперативной памяти.

В LAPTOP-компьютере ("наколенный" компьютер) клавиатура и системный блок выполнены в одном корпусе, закрываемом сверху, как крышкой, жидкокристаллическим дисплеем, неразъемно соединенным со своим электронным основанием.

NOTEBOOK (компьютеры-блокноты) имеют размеры одного листа бумаги стандарта А4 (297х210), обладают неполной клавиатурой (около 80 клавиш). В них используются НЖМД и НГМД. Могут использоваться в деловых поездках, не требуют места на рабочем столе, могут храниться в ящике для бумаг, в портфеле.

ПЭВМ HANDHELD - ПЭВМ, размер которой меньше листа бумаги стандарта А4, поэтому они всегда под рукой (в кармане) в готовом к работе состоянии. Эти модели могут работать независимо от электросети. Программы при автономной работе вводятся с помощью твердой карточки (ROM CARD). Для хранения результатов расчета, введенного текста, составленных электронных таблиц и других результатов пользователь применяет ROM CARD со встроенной батарейкой.

5.3.2 Структурная схема ПЭВМ

ПЭВМ включает три основных устройства: системный блок, клавиатуру и дисплей (монитор). Однако для расширения функциональных возможностей ПЭВМ можно подключить различные дополнительные периферийные устройства, в частности: печатающие устройства (принтеры), накопители на магнитной ленте (стримеры), различные манипуляторы (мышь, джойстик, трекбол, световое перо), устройства оптического считывания изображений (сканеры), графопостроители (плоттеры) и др.

Системная магистраль выполняется в виде совокупности шин (кабелей), используемых для передачи данных, адресов и управляющих сигналов. информация вычислительный программный windows

Системный блок является главным в ПЭВМ и включает в состав центральный микропроцессор, сопроцессор, модули оперативной и постоянной памяти, контроллеры, накопители на магнитных дисках и другие функциональные модули. Набор модулей определяется типом ПЭВМ. Пользователи могут по своему желанию изменять конфигурацию ПЭВМ, подключая дополнительные периферийные устройства.

Контроллеры служат для управления внешними устройствами.

Микропроцессор (МП) является ядром любой ПЭВМ и выполняет функции обработки информации и управления работой всех блоков ПЭВМ.

Конструктивно микропроцессор, как правило, выполнен на одном кристалле (на одной СБИС). В состав МП входят:

· центральное устройство управления;

· арифметико-логическое устройство;

· внутренняя регистровая память;

· КЭШ-память;

· схема формирования действительных адресов операндов для обращения к оперативной памяти;

· схемы управления системной шиной и др.

5.3. Структурная схема ПЭВМ

5.3.3 Внешние устройства ПЭВМ

Клавиатура (клавишное устройство) реализует диалоговое общение пользователя с ПЭВМ:

· ввод команд пользователя, обеспечивающих доступ к ресурсам ПЭВМ;

· запись, корректировку и отладку программ;

· ввод данных и команд в процессе решения задач.

Дисплей (монитор) - основное устройство для отображения информации, выводимой во время работы программ на ПЭВМ. Дисплеи могут существенно различаться, от их характеристик зависят возможности машин и используемого программного обеспечения. Различают дисплеи, пригодные лишь для вывода алфавитно-цифровой информации, и графические дисплеи. Другой важный признак - возможность поддержки цветного или только монохромного изображения. Важными техническими параметрами являются текстовый формат (число символов в строке и число строк на экране) и разрешающая способность изображения (число точек по горизонтали и число точечных строк по вертикали). Не менее важными параметрами являются количество поддерживаемых уровней яркости и размер экрана.

В профессиональных ПЭВМ широко применяются цветные мониторы с очень высоким разрешением (1024х1024 и 2048х2048 точек) и возможностью получения изображений из 4096 базовых цветов, что обеспечивает до 16 млн. оттенков.

Для вывода информации на твердый носитель (бумагу) в ПЭВМ используются матричные, лепестковые, струйные и лазерные принтеры.

В последнее время наиболее распространены лазерные и струйные принтеры. Лазерные принтеры имеют собственный расширяемый блок памяти. Они позволяют масштабировать шрифты, широко использовать "загружаемые" шрифты. "Паспортная" скорость печати у различных моделей лазерных принтеров, как правило, колеблется от 4 до 64 страниц в минуту. Вместе с тем эта скорость зависит от объема собственной памяти принтера (и может заметно сократиться при ее недостатке для конкретной печатаемой информации) и сложности выводимого изображения.

Лазерные принтеры используют исключительно листовую бумагу (форматов А4, А3 и др.), в связи с чем существенное значение приобретает емкость подающего бумагу лотка, так как от нее зависит скорость работы принтера: бумагу периодически приходится подкладывать в лоток вручную. Недостатком лазерных принтеров являются довольно жесткие требования к качеству бумаги - она должна быть достаточно плотной (80 г/см2) и должна быть рыхлой; недопустима печать на бумаге с пластиковым покрытием и т.д. Лазерные принтеры не пригодны для изготовления значительных тиражей, поскольку печать одного листа обходится существенно дороже ксерокопии.

В последние годы появилась целая гамма лазерных принтеров, обеспечивающих не только черно-белую, но и многокрасочную цветную печать.

Струйные принтеры в последние годы получают все более широкое распространение среди пользователей ПЭВМ. Этот тип принтера занимает промежуточное положение между матричными и лазерными принтерами. Качество печати струйных принтеров приближается к качеству печати лазерных принтеров. Они просты в эксплуатации и работаю практически бесшумно. Струйные принтеры применяются во всех случаях, когда скорость печати и качество не являются главными факторами. Красящая жидкость ("чернила") для струйных принтеров помещается в специальных компактных картриджах. Она производится нескольких цветов. Ряд моделей струйных принтеров допускают одновременную многоцветную печать.

5.3.4 Запоминающие устройства ПЭВМ

Персональные ЭВМ имеют два вида памяти: внутреннюю и внешнюю. Внутренняя память ПЭВМ состоит из оперативной памяти и постоянной памяти.

Оперативная память (ОП) ПЭВМ построена на больших или сверхбольших интегральных схемах и является энергозависимой: при отключении питания информация в ОП теряется. В оперативной памяти хранятся исполняемые машинные программы, исходные и промежуточные данные и результаты. Емкость ОП в ПЭВМ измеряется в Кбайтах и Мбайтах, для отдельных моделей - в Гбайтах. В наиболее распространенных конфигурациях ПЭВМ емкость ОП составляет от 64 до 1024 и более Мбайт.

В ОП обычно выделяется область, называемая стеком. Обращение к стековой памяти возможно только в той ячейке, которая адресуется указателем стека. Стек удобен при организации прерываний и обращению к подпрограммам.

Постоянная память (ПП) является энергозависимой, используется для хранения системных программ, в частности, так называемой базовой системы ввода-вывода (BIOS - Basic Input and Output System), вспомогательных программ. Программы, хранящиеся в ПП, предназначены для постоянного использования микропроцессора.

В качестве внешних запоминающих устройств (ВЗУ) в ПЭВМ в основном используются накопители на гибких магнитных дисках (НГМД) и накопители на жестких магнитных дисках (НЖМД) типа винчестер.

В последние годы актуальность использования НГМД резко упала, так как магнитные диски (дискеты) позволяют хранить объем информации не более 1,44 Мбайт. Появились файлы достаточно больших объемов (прежде всего мультимедийных и графических форматов), которые невозможно разместить на одной дискете, в результате чего возникла необходимость в другом способе хранения таких файлов. Архивирование этих файлов, как правило, не приводит к желаемому результату (некоторые форматы файлов плохо сжимаются, из-за чего приходилось формировать десятки многотомных архивов для одного или нескольких таких файлов). Появились оптические диски CD и DVD, позволяющие хранить до 9 Гбайт информации (до 9,4 Гбайт для двухсторонних и до 8,5 Гбайт для двухслойных дисков) и устройства для их чтения и записи вместе с соответствующим программным обеспечением. Запись информации на такие диски осуществляется посредством прожигания рабочей поверхности диска лазерным лучом.

...

Подобные документы

  • Информатика - наука об общих свойствах и закономерностях информации. Появление электронно-вычислительных машин. Математическая теория процессов передачи и обработки информации. История компьютера. Глобальная информационная сеть.

    реферат [120,1 K], добавлен 18.04.2004

  • Технология сбора информации традиционными методами. Правила сбора оффлайновой информации. Технические средства сбора информации. Операции для быстрого восстановления данных в системах хранения. Технологический процесс и процедуры обработки информации.

    курсовая работа [304,5 K], добавлен 02.04.2013

  • Требования, предъявляемые к свойствам систем распределенной обработки информации. Логические слои прикладного программного обеспечения вычислительных систем. Механизмы реализации распределенной обработки информации. Технологии обмена сообщениями.

    курсовая работа [506,8 K], добавлен 03.03.2011

  • Общая характеристика информационных систем, предназначенных для передачи, преобразования и хранения информации. Изучение форм представления детерминированных сигналов. Энтропия сложных сообщений. Рассмотрение основных элементов вычислительных машин.

    лекция [1,5 M], добавлен 13.04.2014

  • Кодирование символьной и числовой информации. Основные системы счисления. Двоичная система счисления. Устройства вывода информации. Правила выполнения арифметических операций. Логические основы построения, функциональные узлы ЭВМ. Синтез логических схем.

    презентация [1,2 M], добавлен 08.11.2016

  • Микропроцессор как универсальное устройство для выполнения программной обработки информации. Функциональные возможности и архитектурные решения. Микроконтроллеры в системах управления и обработки информации. Классификация электронно-вычислительных машин.

    курсовая работа [189,6 K], добавлен 12.10.2015

  • Характеристика организации автоматизированной обработки. Схема данных и ее описание. Характеристика входной и выходной информации. Организация технологического процесса сбора, передачи, обработки и выдачи информации. Формализация автоматизируемых задач.

    курсовая работа [941,7 K], добавлен 22.11.2013

  • Анализ понятия информатика. История появления первых вычислительных машин. Развитие речи, письменности, книгопечатания и научно-технической революции как средств хранения, обработки и передачи информации. Информационно-логическое представление знаний.

    презентация [839,2 K], добавлен 17.05.2016

  • Электронно-вычислительная машина (ЭВМ) как средство обработки информации. Аппаратные и программные средства ЭВМ. Системы счисления и представления информации. Элементы структурного программирования. Построение блок-схем алгоритмов решения задач.

    презентация [152,5 K], добавлен 26.07.2013

  • Краткая история появления и развития информатики как науки. Понятие и основные свойства информации, формы ее адекватности. Структурная организация персональных компьютеров. Основные понятия электронных таблиц Microsoft Excel. Операционная система Windows.

    лекция [820,6 K], добавлен 22.09.2013

  • Понятие информации и основные принципы ее кодирования, используемые методы и приемы, инструментарий и задачи. Специфические особенности процессов кодирования цифровой и текстовой, графической и звуковой информации. Логические основы работы компьютера.

    курсовая работа [55,8 K], добавлен 23.04.2014

  • Процесс обработки информации на электронно-вычислительных машинах в 50-х гг. Возможность редактирования и форматирования текстовых документов в 70-х гг. Отличительные черты данных и программ. Операционная система и аппаратное обеспечение компьютера.

    презентация [68,1 K], добавлен 27.12.2011

  • Центральное понятие кибернетики – информация. Комплексная автоматизация процессов восприятия, преобразования, передачи, обработки и отображения информации и создание автоматизированных систем управления на различных уровнях. Система передачи информации.

    книга [663,7 K], добавлен 07.05.2009

  • Основные понятия алгебры логики. Логические основы работы ЭВМ. Вычислительные устройства как устройства обработки информации. Основные формы мышления. Обзор базовых логических операций. Теоремы Булевой алгебры. Пути минимизации логических функций.

    контрольная работа [62,8 K], добавлен 17.05.2016

  • Общие сведения о графической информации. Характеристика растровой, векторной и демонстрационной графики. Обзор программ обработки и просмотра графических изображений Paint, Adobe Photoshop, MS Power Point, ACDSee. Возможности графических редакторов.

    курсовая работа [55,7 K], добавлен 01.07.2010

  • Формы и системы представления информации для ее машинной обработки. Аналоговая и дискретная информация, представление числовой, графической и символьной информации в компьютерных системах. Понятие и особенности файловых систем, их классификация и задачи.

    реферат [170,3 K], добавлен 14.11.2013

  • Технология обработки графической информации с помощью ПК, применение в научных и военных исследованиях: формы, кодирование информации, ее пространственная дискретизация. Создание и хранение графических объектов, средства обработки векторной графики.

    реферат [20,7 K], добавлен 28.11.2010

  • Автоматизированная обработка информации: понятия и технология. Организация размещения, обработки, поиска, хранения и передачи информации. Защита информации от несанкционированного доступа. Антивирусные средства защиты информации. Сетевые технологии.

    методичка [28,8 K], добавлен 14.01.2009

  • Требования и структура систем обработки экономической информации. Технология обработки информации и обслуживание системы, защита информации. Процесс создания запросов, форм, отчетов, макросов и модулей. Средства организации баз данных и работы с ними.

    курсовая работа [2,7 M], добавлен 25.04.2012

  • Понятие информации как одно из фундаментальных в современной науке и базовое для информатики. Дискретизация входной информации как условие пригодности для компьютерной обработки. Понятия, виды, свойства информации, ее классификация. Информация и рынок.

    курсовая работа [31,0 K], добавлен 12.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.