Язык программирования Паскаль

Определение данных в языке Паскаль. Особенности линейного вычислительного процесса. Характеристика разветвляющегося вычислительного процесса и условного оператора. Рассмотрение директивы компилятора и обработки ошибок ввода. Обзор открытых массивов.

Рубрика Программирование, компьютеры и кибернетика
Вид учебное пособие
Язык русский
Дата добавления 26.09.2017
Размер файла 635,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рис. 7.1. Блок-схема короткого условного оператора

Если по условию требуется выполнить несколько операторов, их необходимо заключить в операторные скобки begin...end;, образуя единый составной оператор:

if d>0 then begin

x1:=(-b+sqrt(d))/(2*a);

x2:=(-b-sqrt(d))/(2*a);

writeln (x1:8:3,x2:8:3);

end;

Здесь по условию d>0 выполняется 3 оператора, первые два из которых вычисляют корни x1 и x2 квадратного уравнения, а последний выводит на экран найденные значения корней.

Следующий пример иллюстрирует поиск значения y=max(a,b,c). Поскольку стандартной функции для нахождения максимума в Паскале нет, применим 2 коротких условных оператора:

y:=a;

if b>y then y:=b;

if c>y then y:=c;

Вообще, для условной обработки N значений требуется N-1 короткий условный оператор.

7.5 Полный условный оператор

Эта форма условного оператора позволяет запрограммировать 2 ветви вычислений. Общий вид полного условного оператора следующий:

if логическое_выражение then оператор1

else оператор2;

Оператор работает следующим образом: если логическое выражение имеет значение true, то выполняется оператор1, иначе выполняется оператор2. Всегда выполняется только один из двух операторов. Перед ключевым словом else ("иначе") точка с запятой не ставится, т.к. if-then-else - единый оператор.

Вычислим значение m=min(x,y) с помощью полного условного оператора:

if x<y then m:=x else m:=y;

В следующем примере выполним обработку двух переменных: если значения a и b одного знака, найти их произведение, иначе заменить нулями.

if a*b>0 then c:=a*b

else begin

a:=0; b:=0;

end;

Из примера видно, что к ветви алгоритма после ключевого слова else, состоящей более чем из одного оператора, также применяются операторные скобки.

7.6 Составной условный оператор

Эта форма условного оператора применяется, когда есть более 2 вариантов расчета. Общий вид составного оператора может включать произвольное число условий и ветвей расчета:

if логическое_выражение1 then оператор1

else if логическое_выражение2 then оператор2

...

else if логическое_выражениеN then операторN

else оператор0;

При использовании оператора последовательно проверяются логические выражения 1, 2, ... ,N, если некоторое выражение истинно, то выполняется соответствующий оператор и управление передается на оператор, следующий за условным. Если все условия ложны, выполняется оператор0 (если он задан). Число ветвей N неограниченно, ветви else оператор0; может и не быть.

Существенно то, что если выполняется более одного условия из N, обработано все равно будет только первое истинное условие. В показанной ниже программе составной условный оператор неверен, если ее разработчик хотел отдельно учесть значения x, меньшие единицы по модулю:

var x:real;

begin

write ('Введите x:'); readln (x);

if x<0 then writeln ('Отрицательный')

else if x=0 then writeln ('Ноль')

else if abs(x)<1 then

writeln ('По модулю меньше 1')

else writeln ('Больше 1');

end.

Условие x<0 сработает, например, для значения x=-0.5, что не позволит программе проверить условие abs(x)<1.

Еще одну распространенную ошибку работы с составным условным оператором показывает произведенный ниже расчет знака n переменной a:

if a<0 then n:=-1;

if a=0 then n:=0

else n:=1;

Применение одного короткого и одного полного условных операторов является здесь грубой ошибкой - ведь после завершения короткого условного оператора для всех ненулевых значений a будет выполнено присваивание n:=1. Правильных вариантов этого расчета, по меньше мере, два:

if a<0 then n:=-1;

if a=0 then n:=0;

if a>0 then n:=1;

-- с помощью 3 коротких условных операторов, вариант не очень хорош тем, что проверяет лишние условия даже тогда, когда знак уже найден.

if a<0 then n:=-1;

else if a<0 then n:=1;

else n:=0;

-- с помощью составного условного оператора, этот вариант лучше. На практике следует помнить, что для вещественных значений сравнение с нулем может быть проблематично.

Можно сделать вывод, что при программировании многовариантных расчетов следует соблюдать осторожность, чтобы не допустить "потерянных" или неверно срабатывающих ветвей алгоритма.

В качестве еще одного примера рассчитаем значение функции, заданной графически (рис. 7.2).

Рис. 7.2. Функция, заданная графически

Перепишем функцию в аналитическом виде:

Одним из вариантов запрограммировать вычисление y(x) мог бы быть следующий:

if abs(x)>1 then y:=0

else if x<0 then y:=x+1

else y:=1-x;

Возможна и последовательная проверка условий слева направо, которая породит немного избыточный, но легче воспринимающийся код:

if x<-1 then y:=0

else if x<0 then y:=x+1

else if x<1 then y:=1-x

else y:=0;

7.7 Вложенные условные операторы

Когда после ключевых слов then или else вновь используются условные операторы, они называются вложенными. Число вложений может быть произвольно, при этом действует правило: else всегда относится к ближайшему оператору if, для которого ветка else еще не указана. Часто вложением условных операторов можно заменить использование составного.

В качестве примера рассмотрим программу для определения номера координатной четверти p, в которой находится точка с координатами (x,y). Для простоты примем, что точка не лежит на осях координат. Без использования вложений основная часть программы может иметь следующий вид:

if (x>0) and (y>0) then p:=1

else if (x<0) and (y>0) then p:=2

else if (x<0) and (y<0) then p:=3

else p:=4;

Однако использование такого количества условий представляется явно избыточным. Перепишем программу, используя тот факт, что по каждое из условий x>0, x<0 оставляет в качестве значения p только по 2 возможных четверти из 4:

if x>0 then begin

if y>0 then p:=1

else p:=4;

end

else begin

if y>0 then p:=2

else p:=3;

end;

В первом фрагменте программе проверяется от 2 до 6 условий, во втором - всегда только 2 условия. Здесь использование вложений дало существенный выигрыш в производительности.

Рассмотренный в п. 7.6 пример с определением знака числа может быть переписан и с использованием вложения:

if a>0 then n:=1

else begin

if a<0 then n:=-1

else n:=0;

end;

Однако, как эти операторы, так и составной условный оператор из п. 7.6 проверяют не более 2 условий, так что способы примерно равноценны.

7.8 Оператор выбора

Для случаев, когда требуется выбор одного значения из конечного набора вариантов, оператор if удобнее заменять оператором выбора (переключателем) case:

case выражение of

список1: оператор1;

список2: оператор2;

. . .

списокN: операторN;

else оператор0;

end;

Оператор выполняется так же, как составной условный оператор.

Выражение должно иметь порядковый тип (целый или символьный). Элементы списка перечисляются через запятую, ими могут быть константы и диапазоны значений того же типа, что тип выражения. Диапазоны указываются в виде:

Мин.значение .. Макс.значение

Оператор диапазона записывается как два рядом стоящих символа точки. В диапазон входят все значения от минимального до максимального включительно.

В качестве примера по номеру месяца m определим число дней d в нем:

case m of

1,3,5,7..8,10,12: d:=31;

2: d:=28;

4,6,9,11: d:=30;

end;

Следующий оператор по заданному символу c определяет, к какой группе символов он относится:

case c of

'A'..'Z','a'..'z':

writeln ('Латинская буква');

'А'..'Я','а'..'п','р'..'я':

writeln ('Русская буква');

'0'..'9':

writeln ('Цифра');

else writeln ('Другой символ');

end;

Здесь отдельные диапазоны для русских букв от "а" до "п" и от "р" до "я" связаны с тем, что между "п" и "р" в кодовой таблице DOS находится ряд не-буквенных символов (см. Приложение 1).

Если по ветви оператора case нужно выполнить несколько операторов, действует то же правило, что для оператора if, т. е. ветвь алгоритма заключается в операторные скобки begin ... end;.

7.9 Примеры программ с условным оператором

Приведем несколько примеров законченных программ, использующих РВП.

1. Проверить, может ли быть построен прямоугольный треугольник по длинам сторон a, b, c.

Проблема с решением этой задачи - не в проверке условия теоремы Пифагора, а в том, что в условии не сказано, какая из сторон может быть гипотенузой. Подходов возможно несколько - запрашивать у пользователя ввод данных по возрастанию длины сторон, проверять все три возможных условия теоремы Пифагора и т. п. Используем наиболее естественное решение - перед проверкой условия теоремы Пифагора упорядочим величины a, b, c так, чтобы выполнялись соотношения a?b?c. Для этого применим прием с обменом значений переменных из п. 4.1.

var a,b,c, {Длины сторон}

s:real;{Буферная переменная для обмена}

begin

{ Секция ввода данных }

writeln;

write ('Введите длину 1 стороны:');

readln (a);

write ('Введите длину 2 стороны:');

readln (b);

write ('Введите длину 3 стороны:');

readln (c);

{ Сортируем стороны по неубыванию }

if (a>b) then begin

s:=a; a:=b; b:=s;

end;

if (a>c) then begin

s:=a; a:=c; c:=s;

end;

if (b>c) then begin

s:=b; b:=c; c:=s;

end;

{ Проверка и вывод }

if abs(a*a+b*b-c*c)<1e-8 then writeln

('Прямоугольный треугольник ',

'может быть построен!')

else writeln('Прямоугольный треугольник ',

'не может быть построен!')

end.

2. Определить, попадает ли точка плоскости, заданная координатами (a, b) в прямоугольник, заданный координатами двух углов (x1, y1) и (x2, y2).

Как и в предыдущей задаче, было бы не совсем корректно требовать от пользователя вводить данные в определенном порядке - гораздо лучше при необходимости поменять x- и y-координаты прямоугольника так, чтобы пара переменных (x1, y1) содержала координаты левого нижнего угла прямоугольника, а (x2, y2) - правого верхнего.

var x1,y1,x2,y2,a,b:real;

begin

writeln ('Введите координаты 1 угла:');

read (x1,y1);

writeln ('Введите координаты 2 угла:');

read (x2,y2);

if x1>x2 then begin

a:=x1; x1:=x2; x2:=a;

end;

if y1>y2 then begin

a:=y1; y1:=y2; y2:=a;

end;

writeln ('Введите координаты точки:');

read (a,b);

if (x1<=a) and (a<=x2)

and (y1<=b) and (b<=y2) then writeln

('Точка попадает в прямоугольник')

else writeln

('Точка не попадает в прямоугольник');

end.

3. Вводится денежная сумма в рублях и копейках. Программа печатает введенную сумму с правильной формой слов "рубли" и "копейки", например, "123 рубля 15 копеек".

Окончание, используемое для слов "рубли" и "копейки", зависит от последней цифры суммы, которую можно получить, взяв остаток от деления на 10 (1058 рублей, 38 рублей и т.д.). Исключения - суммы с последними двумя цифрами от 11 до 19 включительно, которые всегда произносятся "рублей" и "копеек" (511 рублей, но 51 рубль). Используя эту информацию, составим программу.

var r,k,o10,o100:integer;

begin

writeln;

write ('Введите количество рублей, ',

'затем пробел и количество копеек:');

read (r,k);

writeln;

o10:=r mod 10; {Взяли последнюю цифру}

o100:=r mod 100; {...и 2 последних цифры}

write ('Правильно сказать: ',r,' ');

{Печатаем число рублей, затем пробел}

if (o100>10) and (o100<20)

or (o10>4) or (o10=0) then

write ('рублей')

else if (o10>1) and (o10<5) then

write ('рубля')

else

write ('рубль');

{аналогично для копеек:}

o10:=k mod 10;

o100:=k mod 100;

write (' ',k,' ');

{печатаем число копеек с пробелами}

if (o100>10) and (o100<20) or

(o10>4) or (o10=0) then

write ('копеек')

else if (o10>1) and (o10<5) then

write ('копейки')

else write ('копейка');

end.

8. Директивы компилятора и обработка ошибок ввода

Компилятор Паскаля - сложное приложение, имеющее множество настроек. При написании учебных программ большинство этих настроек не имеют значения, но некоторые из них окажутся нам полезны. Для управления компилятором существует 2 основных возможности: настройка режимов работы с помощью верхнего меню Options оболочки Turbo Pascal и настройка конкретной программы с помощью директив компилятора, которую мы кратко рассмотрим. В общем виде директива компилятора представляет собой конструкцию вида {$X+} или {$X-}, где X - латинская буква. Вариант со знаком "+" включает некоторый режим работы компилятора (например, строгий контроль программой соответствия типов данных, вывод системных диагностических сообщений и т. д.), а вариант со знаком "-" выключает его. Расположение директив, в общем, произвольно, однако, директивы, влияющие на всю программу, принято располагать в самом начале файла с исходным текстом. Фигурные скобки комментария { ... } необходимы как часть синтаксиса директивы.

Подробную информацию о назначении всех директив можно получить в справочной системе оболочки. Основные директивы компилятора также кратко описаны в Приложении 2.

Наиболее полезной для нас выглядит директива {$I-}/{$I+}, соответственно, выключающая и включающая автоматический контроль программой результатов операций ввода/вывода (в/в). К операциям в/в относятся, в числе прочего, ввод данных пользователем, вывод строки на принтер, открытие файла для получения или вывода данных и т. п. Понятно, что даже несложная учебная программа выглядит лучше, если она умеет реагировать на неправильные действия пользователя или возникающие ошибки не просто выводом маловразумительного системного сообщения на английском языке, а доступным неискушенному пользователю текстом. По умолчанию контроль в/в включен и системные сообщения об ошибках генерируются автоматически. Все они кратко приведены в Приложении 3. Для замены системной диагностики своей собственной следует, во-первых, отключить директиву контроля оператором {$I-}, а во-вторых, сразу же после оператора, который мог породить ошибку, проверить значение, возвращаемое системной функцией IoResult. Эта функция возвращает ноль, если последняя операция в/в прошла успешно, в противном случае возвращается ненулевое значение. После завершения "критического" оператора директиву следует включить снова, чтобы не создавать потенциально опасных ситуаций в коде, который будет писаться далее. Приведем пример, написав "расширенную" программу решения квадратного уравнения, корректно реагирующую на возникающие ошибки:

uses printer;

var a,b,c,d,x1,x2:real;

begin

writeln;

writeln ('Введите коэффициенты a,b,c:');

{$I-} read (a,b,c); {$I+}

if IoResult<>0 then begin

{Возникла ошибка!}

writeln ('Вы не ввели 3 числа, ',

'это что-то другое!');

reset (input); {очищаем стандартный

поток ввода перед ожиданием нажатия Enter}

readln;

halt; {а этим оператором можно

аварийно завершить программу}

end;

d:=sqr(b)-4*a*c;

if d<0 then begin

writeln ('Ошибка - дискриминант<0');

reset (input); readln; halt;

end;

x1:=(-b+sqrt(d))/(2*a);

x2:=(-b-sqrt(d))/(2*a);

{$I-}

writeln (lst,'x1=',x1:8:2,' x2=',x2:8:2);

{$I+}

if IoResult<>0 then

writeln ('Не удалось напечатать')

else writeln ('Результаты напечатаны');

reset (input); readln; halt;

end.

Специальной директивы для контроля математических ошибок в Паскале не предусмотрено, но это почти всегда можно сделать обычными проверками корректности данных. Обратите внимание на альтернативное решение проблемы "двух readln" в этом коде, а также на новый оператор halt и способ контроля того, удалось ли вывести строку на принтер.

В дальнейшем мы не всегда будем выполнять подобные проверки, однако, их никогда не помешает делать, если вы хотите создать удобные для пользователя и понятные для разработчика программы.

Для работы с вещественными числами с двойной точностью (тип double) может также понадобиться указать перед программой директиву {$N+}, позволяющую сгенерировать код для аппаратной обработки таких чисел.

9. Оператор цикла. Циклы с предусловием и постусловием

Циклический вычислительный процесс (ЦВП) характеризуется повторением одних и тех же вычислений над некоторым набором данных. Числом повторений цикла управляет специальная переменная, называемая его счетчиком или управляющей переменной цикла. На счетчик накладывается условие, определяющее, до каких пор следует выполнять цикл.

Повторяемый блок вычислений называют телом цикла. В теле цикла должно быть обеспечено изменение значения счетчика, чтобы он мог завершиться. Если тело цикла состоит более чем из одного оператора, оно заключается в операторные скобки begin ... end;. Однократное выполнение тела цикла называют его шагом.

Таким образом, для программирования цикла достаточно определить условие, управляющее числом его повторений и описать операторы, образующие тело цикла. С этой точки зрения, теоретически возможны всего два вида циклов - проверка условия либо предшествует выполнению тела цикла, либо происходит после него. Изобразим эти циклы в виде блок-схем (рис. 9.1).

В цикле с предусловием сначала проверяется условие, затем, в зависимости от того, истинно оно или ложно, либо выполняется тело цикла, либо следует переход к оператору, следующему за телом цикла. После завершения тела цикла управление вновь передается на проверку условия. Естественно, предполагается, что в теле цикла было обеспечено некоторое изменение входящих в условие переменных - в противном случае произойдет зацикливание и программа "зависнет".

Рис. 9.1. Блок-схемы циклов с предусловием и постусловием

Для цикла с постусловием сначала выполняется тело цикла, затем управление передается на проверку условия. В зависимости от истинности или ложности условия, тело цикла выполняется повторно или же происходит переход к оператору, следующему за телом цикла. Всё, сказанное о возможном зацикливании для цикла с предусловием, справедливо и для цикла с постусловием.

Исходя из приведенных блок-схем, очевидно основное различие двух циклов: цикл с постусловием гарантированно выполняется хотя бы раз, а цикл с предусловием может не выполняться ни разу, если условие сразу же окажется ложным.

В языке Паскаль реализованы оба вида циклов. Цикл с предусловием имеет следующий общий вид:

while логическое_выражение do begin

{операторы тела цикла}

end;

Работу цикла можно описать словами: "пока логическое выражение истинно, повторяется тело цикла".

Логическое выражение строится по правилам, изученным в гл. 7. Тело цикла могут образовывать любые операторы Паскаля. Если в цикле находится всего один оператор, операторные скобки, показывающие начало и конец тела цикла, можно не писать.

Общая запись цикла с постусловием следующая:

repeat

{операторы тела цикла}

until логическое_выражение;

Работает цикл с постусловием следующим образом: "тело цикла повторяется до тех пор, пока логическое выражение не станет истинным". Обратите внимание, что, в отличие от while, цикл repeat в Паскале работает, пока условие ложно. Это отличие подчеркивается использованием ключевого слова until ("до тех пор, пока не") вместо while ("до тех пор, пока"). Кроме того, в виде исключения, тело цикла repeat, даже если оно состоит из нескольких операторов, можно не заключать в операторные скобки.

Довольно часто циклы взаимозаменяемы. Представим, например, что для каждого из значений переменной x=1, 2, ... ,20, нужно выполнить некоторый расчет (математически этот закон изменения x можно записать как или ). Это можно сделать как в цикле while:

x:=1;

while x<=20 do begin

{операторы расчета}

x:=x+1;

end;

так и с помощью repeat:

x:=1;

repeat

{операторы расчета}

x:=x+1;

until x>20;

Как видно из листинга, управляющей переменной x в обоих случаях присвоено начальное значение 1, оба цикла изменяют значение x и, соответственно, условие цикла, оператором x:=x+1;, но для цикла repeat условие "перевернуто" ("пока x не станет больше 20"), а тело не заключено в операторные скобки.

Зачастую использование одного из циклов выглядит предпочтительней. Например, обработка ввода пользователя с клавиатуры удобней с помощью repeat (сначала пользователь должен нажать клавишу, затем следуют проверки и обработка).

10. Цикл со счетчиком и досрочное завершение циклов

Прежде, чем перейти к примерам, обсудим еще ряд проблем, связанных с циклами. Как для while, так и для repeat, во-первых, нигде в явном виде не задается число шагов цикла (хотя его обычно можно вычислить), во-вторых, при использовании обоих циклов программист должен заботиться об изменении управляющей переменной. Между тем, весьма распространены задачи, где объем последовательно обрабатываемых данных известен заранее (а значит, известно и требуемое число шагов цикла), а управляющая переменная меняется с шагом, равным единице. Рассмотренный выше пример с двадцатью значениями x относится именно к таким задачам. Поэтому для обработки заранее известного объема данных с шагом по управляющей переменной, равным единице, вместо цикла while используется цикл со счетчиком (цикл for). Его общий вид следующий:

for счетчик := НЗ to КЗ do begin

{операторы тела цикла}end;

Здесь счетчик - целочисленная переменная, НЗ (начальное) и КЗ (конечное) значения - целочисленные выражения или константы. Тело цикла образовано не менее чем одним оператором, если этот оператор единственный, операторные скобки можно не писать. Работает цикл for следующим образом: счетчик автоматически меняется от начального значения до конечного включительно, для каждого значения счетчика повторяется тело цикла. После каждого шага цикла значение счетчика автоматически увеличивается на единицу. Если требуется, чтобы значение счетчика уменьшалось, а не увеличивалось, вместо ключевого слова to используется downto.

Подобно while, цикл for может не выполниться и ни разу - если начальное значение управляющей переменной сразу же больше конечного (при использовании to) или меньше (при использовании downto).

Запишем рассмотренный выше цикл по переменной x с помощью оператора for:

for x:=1 to 20 do begin

{операторы тела цикла}

end;

Удобства очевидны - границы изменения x заданы сразу же при входе в цикл, а выполнять шаг по x отдельным оператором не требуется. Понятны и ограничения - x должен быть описан с типом данных integer, а в случае изменения значения x с шагом, не равным единице, использовать for вместо while не удалось бы.

Еще одна проблема связана с тем, что при выполнении программы довольно часто возникает необходимость завершить цикл досрочно - например, если искомое в нем значение уже найдено или возникла ошибка, из-за которой дальнейшие шаги становятся бессмысленными. Теоретически цикл можно было бы завершить, присвоив управляющей переменной значение, выходящее за пределы ее изменения:

x:=1;

while x<10 do begin

y:=ln(x);

if y>2 then x:=10;

{При y>2 цикл нужно завершить}

x:=x+0.5;

end;

Однако, во избежание трудноуловимых ошибок, управляющую переменную не принято менять иначе, чем для выполнения шага цикла. Например, после оператора if y>2 then x:=10; в нашем листинге выполнение текущего шага продолжится, что чревато лишними или неправильными вычислениями. Кроме того, текст такой программы воспринимается нелегко.

Поэтому для досрочного выхода из цикла существует оператор break (от англ. "to break" - прервать), немедленно прекращающий его выполнение:

x:=1;

while x<10 do begin

y:=ln(x);

if y>2 then break;

x:=x+0.5;

end;

Указание break здесь передаст управление на оператор, следующий непосредственно за циклом. В отличие от предыдущего примера, здесь не будет выполняться часть тела цикла, следующая за break;.

Для немедленного продолжения цикла со следующего шага используется оператор continue (от англ. "to continue" - продолжить):

var n:integer;

begin

repeat

writeln ('Введите положительное число:');

read (n);

if n<1 then continue;

{Если введено n<1, снова запросить число}

{Операторы обработки числа}

break; {Выход из цикла обработки}

until false;

end.

В этом примере оператор continue использован для повторного перехода к вводу n, если введено n<1. Так как цикл обработки здесь - бесконечный, для выхода из него необходим break;. Кроме того, пример показывает одну из возможностей контроля правильности ввода данных. Указав директиву {$I-}, изученную в гл. 8, мы могли бы защитить программу и от ввода пользователем нечисловых значений в качестве n.

В теме "Кратные циклы" второй части курса будет рассмотрен оператор goto, также способный решить проблему аварийного завершения циклов.

11. Типовые алгоритмы табулирования функций, вычисления количества, суммы и произведения

Итак, основное назначение циклов - обработка большого объема данных. Математически эта обработка зачастую сводится к поиску, выбору и статистической обработке нужных величин. Практически в любой реальной задаче мы ищем максимальные и минимальные значения в наборе данных, суммируем или перемножаем требуемые данные, определяем арифметическое среднее или количество элементов, отвечающих условию. Для решения всех этих распространенных задач существуют типовые алгоритмы, задающие правила выполнения соответствующих расчетов. Изучением этих алгоритмов мы займемся в гл. 11 и 12.

Разумеется, настоящие задачи, встающие перед программистами, значительно сложнее, чем приведенные далее примеры, но из типовых алгоритмов, как из кирпичиков, строится здание любой сложной программы.

11.1 Алгоритм табулирования

Применяется для составления всевозможных таблиц, которыми могут быть как абстрактная таблица значений математической функции, так и конкретная таблица стоимости товара или платежей, совершенных абонентом сотового оператора.

В общем виде алгоритм можно описать так:

до цикла задается начальное значение управляющей переменной, условием выхода из цикла служит достижение управляющей переменной конечного значения;

в теле цикла на каждом шаге вычисляется очередное значение функции, зависящее от управляющей переменной, затем формируется строка таблицы;

в конце шага цикла значение управляющей переменной (обозначим ее x) изменяется оператором вида x:=x+d;, где d - заданный шаг по управляющей переменной.

В качестве примера составим таблицу синусов в пределах от 0 до р с шагом по аргументу 0.25. Обозначим аргумент как x, значение синуса от x обозначим как y. В простейшем случае программа табулирования может выглядеть так:

var x,y:real;

begin

writeln('x':10,'sin(x)':10);

{печать заголовка таблицы до цикла}

x:=0; {начальное значение аргумента}

while x<=pi+1e-6 do begin

y:=sin(x); {вычисление функции}

writeln (x:10:2, y:10:2);

{печать строки таблицы}

x:=x+0.25; {шаг по x}

end;

end.

"Расширим" задачу за счет использования произвольных границ изменения аргумента и произвольного шага, а также выполнения всех необходимых проверок корректности. Пусть, например, требуется составить таблицу значений следующей функции:

, значения a, b вводятся пользователем.

Напишем текст программы, сопроводив его соответствующими комментариями.

var x,f,a,b,dx:real;

n:integer; {счетчик выведенных строк}

begin

repeat {Цикл ввода с контролем

правильности значений: a,dx,b должны быть

числами, dx>0, a+dx должно быть меньше b}

writeln ('Введите a,dx,b:');

{$I-}read (a,dx,b);{$I+}

if IoResult <> 0 then begin

writeln ('Вы не ввели 3 числовых ',

'значения, попробуем еще раз');

continue;

end;

if (dx<=0) or (a+dx>=b) then begin

writeln ('Вы не ввели допустимые ',

'данные, попробуем еще раз');

continue;

end

else break;

until false;

{Печать заголовка таблицы}

writeln;

writeln ('x':10,'f(x)':10);

x:=a;

n:=2; {2 строки уже использованы}

while x<=b+1e-6 do begin

{в условии цикла учитываем возможную

погрешность работы с real!}

if x<=0 then f:=sqr(x)*x

else f:=exp(1/3*ln(abs(x)));

{корень 3 степени взяли через exp и ln}

writeln (x:10:2,f:10:2);

n:=n+1;

if n=24 then begin

{На экране консоли по умолчанию 25 строк}

write ('Нажмите Enter...');

reset (input); readln;

n:=1;

end;

x:=x+dx;

end;

writeln ('Таблица выведена');

reset (input); readln;

end.

Как видно из примера, основной порядок действий - такой же, как в предыдущей задаче. Так как экран консоли по умолчанию содержит всего 25 строк, с помощью переменной n мы дополнительно контролируем число уже выведенных строк и делаем по заполнении экрана паузу до нажатия пользователем клавиши Enter.

Разумеется, другие изученные нами виды циклов также могут применяться при табулировании. Рассмотрим в качестве примера следующую задачу.

Известна стоимость единицы товара. Составить таблицу стоимости 1, 2, ..., K единиц товара, значение K вводится.

Так как число единиц товара - заведомо целое, при программировании задачи будет удобен цикл for:

var t:real;

i,k:integer;

begin

writeln;

writeln ('Стоимость единицы товара:');

read (t);

writeln ('Количество единиц товара:');

read (k);

writeln ('Единиц':10,'Стоимость':10);

for i:=1 to k do

writeln (i:10,(i*t):10:2);

end.

Здесь для простоты мы исключили сделанные в предыдущем примере проверки. Стоимость единицы товара обозначена t, переменная i необходима для перебора возможных значений единиц товара в цикле for. Поскольку счетчик цикла for автоматически меняется с шагом 1, а оператором writeln можно выводить не только значения переменных, но и выражения, основной цикл программы состоит из одного оператора и не нуждается в операторных скобках.

11.2 Алгоритм организации счетчика

Этот алгоритм применяется, когда требуется подсчитать количество элементов данных, отвечающих какому-либо условию или условиям. В общем виде алгоритм описывается следующим образом:

в разделе var описать переменную целочисленного типа, с помощью которой будет вестись подсчет;

до цикла присвоить ей начальное значение 0;

в теле цикла, если очередной элемент данных отвечает условию подсчета, увеличить эту переменную на 1 оператором вида k:=k+1;.

Необходимость присваивания начальных значений на шаге 2 этого и последующих алгоритмов связана с тем, что после описания в разделе var значение переменной еще не определено. "Пока мы не начали подсчитывать количество, оно равно нулю" - этот очевидный для человека факт не очевиден для компьютера! Поэтому любой переменной, которая может изменяться в теле цикла, необходимо присвоить до цикла начальное значение, что и делает оператор вида k:=0;.

Рассматриваемый нами алгоритм очень часто встречается в самых различных задачах, поэтому для "быстрой" записи операции по увеличению счетчика (она называется инкремент) или его уменьшению (декремент) существуют специальные стандартные процедуры:

Inc(X,N); - увеличивает значение переменной.

Здесь параметр X - переменная порядкового типа, а N - переменная или выражение целочисленного типа. Значение X увеличивается на 1, если параметр N не определен, или на N, если параметр N определен, то есть Inc(X); соответствует X:=X+1;, а Inc(X,N); соответствует X:=X+N;.

Dec(X,N); - уменьшает значение переменной.

Параметр X - также переменная порядкового типа, N - целочисленное значение или выражение. Значение X уменьшается на 1, если параметр N не определен, или на N, если параметр N определен, то есть Dec(X); соответствует X:=X-1;, а Dec(X,N); соответствует X:=X-N;.

С помощью Inc и Dec генерируется более оптимизированный код, особенно полезный в сложных циклах. Возможно, мы будем использовать их не во всех примерах, но вам советую о них не забывать.

В качестве примера реализации алгоритма рассмотрим следующую задачу.

Последовательность z(i) задана соотношениями , i=1,2,...,100. Найти количество элементов последовательности, больших значения 0.5.

Обозначив искомое количество за k, составим программу:

var z:real;

i,k:integer;

begin

k:=0;

for i:=1 to 100 do begin

if i mod 2 = 0 then z:=sqr(i)*cos(i)

else z:=sin(i/2);

if z>0.5 then inc(k);

end;

writeln ('Количество=',k);

end.

Так как шаг по переменной i равен 1, в программе использован цикл for, для проверки того, является ли значение i четным, использована операция mod.

В следующей задаче займемся обработкой данных по мере их ввода пользователем.

Известны оценки за экзамен по информатике для группы из n студентов, 2?n?25. Оценить количественную и качественную успеваемость группы по формулам:

, , где k1 - количество "троек", "четверок" и "пятерок", k2 - количество только "четверок" и "пятерок".

Для ввода текущей оценки используем целочисленную переменную a, в качестве счетчика цикла for введем переменную i ("номер студента"), остальные величины описаны в условии задачи. При вводе значения n и очередного значения a для простоты не будем контролировать корректность вводимых данных.

var a,i,n,k1,k2:integer;

ykol,ykach:real;

begin

writeln;

writeln ('Введите количество студентов:');

read (n);

k1:=0;

k2:=0;

for i:=1 to n do begin

write ('Введите оценку ',i,' студента:');

read (a);

if a>2 then begin

inc(k1);

if a>3 then inc(k2);

end;

end;

ykol:=k1/n*100;

ykach:=k2/n*100;

writeln

('Количественная успеваемость=',ykol:6:2);

writeln

('Качественная успеваемость =',ykach:6:2);

reset (input); readln;

end.

11.3 Алгоритмы накопления суммы и произведения

Данные алгоритмы применяются, когда требуется сложить или перемножить выбранные данные. В общем виде эти широко применяемые алгоритмы можно описать так:

для подсчета каждой суммы или произведения описать по одной переменной того же типа, что суммируемые или перемножаемые данные;

до цикла переменной-сумме присвоить начальное значение 0, а произведению - значение 1;

в теле цикла, если очередной элемент данных t отвечает условию суммирования или перемножения, сумма накапливается оператором вида s:=s+t;, а произведение - оператором вида p:=p*t;

Очевидно, почему начальное значение произведения - 1, а не 0. После оператора p:=0; оператор p:=p*t;, расположенный в теле цикла, будет возвращать только нули.

Рассмотрим типовую задачу. Для функции , найти арифметическое среднее ее положительных значений и произведение ненулевых значений.

Для поиска арифметического среднего необходимо сначала найти сумму s и количество k положительных значений функции. Составим следующую программу:

var x,f,s,p:real;

k:integer;

begin

s:=0; k:=0; p:=1;

x:=-5;

while x<=5+1e-6 do begin

if x<0 then f:=sqr(ln(abs(x)))

else if x>0 then f:=sin(sqr(x))

else f:=0;

if f>0 then begin

s:=s+f;

k:=k+1;

end;

if f<>0 then p:=p*f;

x:=x+0.5;

end;

s:=s/k; {теперь в s - искомое среднее}

writeln

('Среднее положительных =',s:10:6);

writeln

('Произведение ненулевых=',p:10:6);

reset (input); readln;

end.

В следующей задаче также применяется алгоритм накопления суммы.

Требуется написать программу, имитирующую работу кассового аппарата: пользователь в цикле вводит цену очередного товара или 0 для завершения ввода, программа суммирует цены. По завершении цикла ввода программа начисляет скидку с общей стоимости товара по правилам: скидки нет, если общая стоимость покупки - менее 10000 руб.; скидка равна 5%, если общая стоимость - от 10000 до 20000 руб.; скидка равна 7%, если общая стоимость - свыше 20000 руб. После начисления скидки выводится окончательная стоимость покупки.

Обозначив общую стоимость покупки s, а цену очередного товара - t, напишем следующую программу:

var s,t:real;

begin

writeln;

s:=0; {начальное значение суммы!}

repeat

writeln ('Введите стоимость товара или '

'0 для завершения ввода:');

{$I-}read(t);{$I+}

if (IoResult<>0) or (t<0) then begin

writeln ('Ошибка! Повторите ввод');

continue;

end;

if t=0 then break;

{Округляем t до 2 знаков после запятой -

на случай, если есть копейки}

t:=round (t*100) / 100;

s:=s+t; {накопление суммы}

until false;

{Начисление скидки и вывод ответа}

writeln ('Стоимость без скидки:',s:8:2);

if s>20000 then s:=s-s*0.07

else if s>10000 then s:=s-s*0.05;

writeln ('Стоимость со скидкой:',s:8:2);

writeln ('Спасибо за покупку!');

reset (input); readln;

end.

Тип данных real выбран для s и t не случайно - выбор integer ограничил бы диапазон обрабатываемых значений и не позволил в удобном виде ввести копейки. Проверки корректности ввода, делаемые программой, знакомы по предыдущим примерам и поэтому не закомментированы.

12. Типовые алгоритмы поиска максимума и минимума

В этой главе мы изучим простейшие статистические алгоритмы, главный из которых - определение максимального и минимального значений на множестве данных.

Рассмотрим алгоритм в общем виде:

описать для каждого максимума и минимума по одной переменной того же типа, что анализируемые данные;

до цикла максимуму присваивается либо заведомо малое для анализируемых данных значение, либо первый элемент данных; минимуму присваивается либо заведомо большое для анализируемых данных значение, либо первый элемент данных;

в теле цикла каждый подходящий для поиска элемент данных t обрабатывается операторами вида:

if t>max then max:=t; - для максимума;

if t<min then min:=t; - для минимума,

где max и min - переменные, введенные для величин максимума и минимума соответственно.

Шаг 2 этого алгоритма требует комментариев, которые мы сделаем на примере поиска максимума. Очевидно, что сам алгоритм несложен - каждый элемент данных t последовательно сравнивается с ячейкой памяти max и, если обнаружено значение t, большее текущего значения max, оно заносится в max оператором max:=t;. Как мы помним, после описания на шаге 1 переменной max, ее значение еще не определено, и может оказаться любым, откуда следует необходимость задания начального значения. Представим, что после выбора начального значения max, равного нулю, при анализе встретились только отрицательные значения элементов t. В этом случае условие t>max не выполнится ни разу и ответом будет max, равное нулю, что неправильно. Выбор заведомо малого начального значения max (например, значение -1E30, т. е., -1030, вряд ли встретится в любых реальных данных) гарантирует, что условие t>max выполнится хотя бы раз и максимум будет найден. Альтернативный способ - присвоить переменной max значение отдельно вычисленного первого элемента последовательности данных. В этом случае ответ либо уже найден, если первый элемент и есть максимальный, либо будет найден в цикле.

Аналогичные рассуждения помогают понять, почему минимуму следует присваивать в качестве начального значения заведомо большое число.

Перейдем к примерам. Для функции y(x)=sin2(x), найти минимальное среди положительных и максимальное значения.

Обозначив искомые значения min и max соответственно, напишем следующую программу:

var x,y,max,min:real;

begin

x:=-pi/3;

max:=-2;

min:=2; {эти начальные значения

- заведомо малое и большое для синуса}

while x<=pi/3+1e-6 do begin

y:=sqr(sin(x));

if y>0 then

{ищем min только среди положительных!}

if y<min then min:=y;

if y>max then max:=y;

x:=x+pi/24;

end;

writeln ('Минимум =',min:8:2);

writeln ('Максимум=',max:8:2);

reset (input); readln;

end.

В следующем примере дополнительно сохраним значения аргументов функции, для которых найдены минимум и максимум.

Последовательность T(k) задана соотношениями T(k)=max(sin k, cos k), k=1, 2, ... ,31. Найти номера максимального и минимального элементов последовательности.

Поиск номеров не избавит нас от необходимости поиска значений. Поэтому, кроме переменных min и max, нам понадобятся две целочисленные переменные для хранения номеров минимального и максимального значений, обозначим их kmin и kmax соответственно. Обратите также внимание, что на каждом шаге цикла дополнительно потребуется находить максимальное из значений sin(k) и cos(k), для занесения его в переменную t.

var t,max,min:real;

k,kmin,kmax:integer;

begin

min:=1e30;

max:=-1e30;

{задаем "надежные" значения,

близкие к плюс и минус бесконечности}

for k:=1 to 31 do begin

if sin(k)>cos(k) then t:=sin(k)

else t:=cos(k);

if t<min then begin

{по условию нужны 2 оператора -

сохранение нового мин. значения

и сохранение номера элемента,

отсюда операторные скобки!}

min:=t; kmin:=k;

end;

if t>max then begin

max:=t; kmax:=k;

end;

end;

writeln ('Номер мин. элемента =',kmin);

writeln ('Номер макс. элемента=',kmax);

reset (input); readln;

end.

13. Решение учебных задач на циклы

Применяя полученные навыки работы с типовыми алгоритмами, рассмотрим несколько учебных задач различных типов.

На практике нередко встречаются задачи, для которых число шагов цикла заранее неизвестно и не может быть вычислено. Как правило, в этом случае расчетный цикл работает до выполнения некоторого условия, определяющего достижение требуемого результата. Приведем пример подобной задачи.

Задана функция и ее разложение в ряд:

n=0, 1, 2, ... (здесь n! обозначает факториал числа n, равный 1*2*3*...*n; при этом 0!=1). Найти число элементов ряда k, требуемое для достижения заданной точности е.

Перед нами - типичная задача на ряды. С ростом величины n слагаемые становятся все меньше, равно как и модуль разности между двумя соседними слагаемыми. Поэтому под достижением заданной точности будем понимать выполнение условия где sn, sn-1 - суммы ряда, вычисленные на текущем и предыдущем шагах цикла, а значение е задается малым числом, от 10-6 и ниже. Для вычисления x2n введем переменную xn, которую на каждом шаге цикла будем домножать на x2, аналогично, для вычисления текущего значения факториала используем переменную nf. Иной подход потребовал бы большого количества повторных вычислений на каждом шаге цикла, плюс был бы чреват большими потерями точности. Для вычисления (-1)n было бы странно использовать формулу ax=exln a - вполне достаточно завести целочисленную переменную znak, равную 1, которая на каждом шаге цикла будет менять свое значение на противоположное оператором znak:=-znak;. Кроме того, так как требуемое число шагов заранее неизвестно, используем для всех основных переменных более точный тип double вместо real.

Реализуем все сказанное в следующей программе:

{$N+} {Совместимость с процессором 80287 -

для использования double}

var x,sn,sn1,xn,nf,eps:double;

k,n:longint;

znak:integer;

begin

writeln ('Введите значение x:');

read (x);

writeln ('Введите требуемую точность:');

read (eps);

sn1:=0;

sn:=0;

k:=0;

n:=0;

xn:=1;

nf:=1;

znak:=1;

repeat

sn1:=sn; {Текущая сумма стала

предыдущей для следующего шага}

sn:=sn+znak*xn/nf; {Выполняем шаг цикла}

{Меняем переменные для следующего шага:}

znak:=-znak;

xn:=xn*sqr(x);

nf:=nf*(n+1)*(n+2);

n:=n+2;

k:=k+1;

until abs(sn1-sn)<eps;

writeln ('Значение =',cos(x):20:16);

writeln ('Предыдущая сумма=',sn1:20:16);

writeln ('Текущая сумма=',sn:20:16);

writeln ('Число шагов=',k);

reset (input); readln;

end.

Даже не владея приемами работы с графикой (см. гл. 25), можно наглядно проиллюстрировать результаты своих расчетов. Рассмотрим в качестве примера задачу.

Сформировать на экране изображение функции

f(x)= cos(x)+ln(x)

на интервале [1, 5] с шагом 0.2.

Программа с комментариями приводится далее.

var x,y,{ Значение аргумента и функции }

a,b,{ Интервал }

ymin,ymax:real; { Мин. и макс. y }

cy, { Позиция столбца на экране }

i:integer;

begin

a:=1;

b:=5;

{ Первый цикл нужен, чтобы определить

минимальное и максимальное значения

функции на заданном интервале }

x:=a;

ymin:=1e20; ymax:=1e-20;

while x<=b do begin

y:=cos(x)+ln(x);

if y<ymin then ymin:=y

else if y>ymax then ymax:=y;

x:=x+0.2;

end;

{ Во втором цикле обработки можно выводить

на экран значения функции }

x:=a;

while x<=b do begin

y:=cos(x)+ln(x);

cy:=round(8+(y-ymin)*(70/(ymax-ymin)));

{ Чтобы пересчитать y из границ

[ymin,ymax] в границы [8,78] (столбцы

экрана, в которые выводим график),

используем формулу cy= 8 + (y-ymin)*

(78-8)/(ymax - ymin) }

writeln;

write (x:7:3,' ');

{ Выводим очередной x и пробел }

for i:=8 to cy do write ('*');

{ Рисуем звездочками значение y }

x:=x+0.2; { Переходим к следующему x }

end;

end.

В заключительном примере этого пункта проверим, является ли введенное положительное целое число N простым.

Простое число делится без остатка только на единицу и само на себя. В цикле последовательно проверим остатки от деления N на числа 2, 3, ... ,N/2. Если найден хотя бы один остаток, равный нулю, число не является простым и дальнейшие проверки бессмысленны. Ясно также, что не имеет смысла проверять, есть ли целые делители, которые больше половины исходного числа, поэтому верхняя граница цикла = N/2 (для деления используем операцию div). Обратите внимание на использование логической переменной-флага s в этой программе.

var n,i:longint; s:boolean;

begin

write ('N='); readln (n);

s:=true;

for i:=2 to n div 2 do

if n mod i = 0 then begin

s:=false; break;

end;

if s=true then writeln ('простое')

else writeln ('НЕ простое');

end.

14. Одномерные массивы. Описание, ввод, вывод и обработка массивов на Паскале

Массивом называют упорядоченный набор однотипных переменных (элементов). Каждый элемент имеет целочисленный порядковый номер, называемый индексом. Число элементов в массиве называют его размерностью. Массивы используются там, где нужно обработать сразу несколько переменных одного типа - например, оценки всех 20 студентов группы или координаты 10 точек на плоскости. Строку текста можно рассматривать как массив символов, а текст на странице - как массив строк.

Массив описывается в разделе var оператором следующего вида:

var ИмяМассива: array [НИ .. ВИ] of Тип;

Здесь

НИ (нижний индекс) - целочисленный номер 1-го элемента массива;

.. - оператор диапазона Паскаля (см. п. 7.8);

ВИ (верхний индекс) - целочисленный номер последнего элемента;

Тип - любой из известных типов данных Паскаля. Каждый элемент массива будет рассматриваться как переменная соответствующего типа.

Опишем несколько массивов разного назначения.

var a: array [1..20] of integer;

Здесь мы описали массив с именем A, состоящий из 20 целочисленных элементов;

var x,y : array [1..10] of real;

Описаны 2 массива с именами x и y, содержащие по 10 вещественных элементов;

var t : array [0..9] of string;

Массив t состоит из 10 строк, которые занумерованы с нуля.

Легко увидеть, что размерность (число элементов) массива вычисляется как ВИ - НИ + 1.

Для обращения к отдельному элементу массива используется оператор вида ИмяМассива [Индекс].

Здесь Индекс - целочисленный номер элемента (может быть целочисленным выражением или константой). Индекс не должен быть меньше значения нижнего или больше верхнего индекса массива, иначе возникнет ошибка "Constant out of range". Отдельный элемент массива можно использовать так же, как переменную соответствующего типа, например:

A[1]:=1;

x[1]:=1.5; y[1]:=x[1]+1;

t[0]:='Hello';

В этой главе мы изучаем одномерные массивы, в которых каждый элемент имеет один номер (индекс), характеризующий его положение в массиве. В математике понятию одномерного массива из n элементов соответствует понятие вектора из n компонент: A = {Ai}, i=1, 2 ,..., n.

Как правило, ввод, обработка и вывод массива осуществляются поэлементно, с использованием цикла for.

Простейший способ ввода - ввод массива с клавиатуры:

const n = 10;

var a: array [1..n] of real;

i:integer;

begin

writeln ('Введите элементы массива');

for i:=1 to n do read (A[i]);

Размерность массива определена константой n, элементы вводятся по одному в цикле for - при запуске этой программы пользователю придется ввести 10 числовых значений. При решении учебных задач вводить массивы "вручную", особенно если их размерность велика, не всегда удобно. Существуют, как минимум, два альтернативных решения.

Описание массива констант удобно, если элементы массива не должны изменяться в процессе выполнения программы. Как и другие константы, массивы констант описываются в разделе const. Приведем пример такого описания:

const a:array [1..5] of real=(

3.5, 2, -5, 4, 11.7

);

Как видно из примера, элементы массива перечисляются в круглых скобках через запятую, их количество должно соответствовать его размерности.

Формирование массива из случайных значений уместно, если при решении задачи массив служит лишь для иллюстрации того или иного алгоритма, а конкретные значения элементов несущественны. Для того чтобы получить очередное случайное значение, используется стандартная функция random(N), где параметром N передается значение порядкового типа. Она вернет случайное число того же типа, что тип аргумента и лежащее в диапазоне от 0 до N-1 включительно. Например, оператор вида a[1]:=random(100); запишет в a[1] случайное число из диапазона [0,99].

Для того чтобы при каждом запуске программы цепочка случайных чисел была новой, перед первым вызовом random следует вызвать стандартную процедуру randomize;, запускающую генератор случайных чисел. Приведем пример заполнения массива из 20 элементов случайными числами, лежащими в диапазоне от -10 до 10:

var a:array [1..20] of integer;

i:integer;

begin

randomize;

for i:=1 to 20 do begin

a[i]:=random(21)-10;

write (a[i]:4);

end;

end.

Еще более удобный путь - чтение элементов массива из текстового или двоичного файла. Об этом рассказывается в гл. 21 и 22.

К массивам применимы все типовые алгоритмы, изученные в теме "Циклы". Приведем один пример, в котором вычисляется сумма s положительных элементов массива.

var b:array [1..5] of real;

s:real; i:integer;

begin

writeln ('Введите 5 элементов массива');

for i:=1 to 5 do read (b[i]);

s:=0;

for i:=1 to 5 do if b[i]>0 then s:=s+b[i];

Вывод массива на экран также делается с помощью цикла for.

for i:=1 to 5 do write (b[i]:6:2);

Здесь 5 элементов массива b напечатаны в одну строку. Для вывода одного элемента на одной строке можно было бы использовать оператор writeln вместо write.

Существенно то, что если обработка массива осуществляется последовательно, по 1 элементу, циклы ввода и обработки зачастую можно объединить, как в следующем примере.

Найти арифметическое среднее элементов вещественного массива t размерностью 6 и значение его минимального элемента.

var b:array [1..6] of real;

s, min:real;

i:integer;

begin

s:=0; min:=1e30;

writeln ('Ввод B[6]');

for i:=1 to 6 do begin

read (b[i]);

s:=s+b[i];

if b[i]<min then min := b[i];

end;

writeln ('min=',min,' s=', s/6);

end.

Теоретически в этой программе можно было бы обойтись и без массива - ведь элементы b[i] используются только для накопления суммы и поиска максимума, так что описание массива вполне можно было заменить описанием вещественной переменной b. Однако, в реальных задачах данные, как правило, обрабатываются неоднократно и без массивов обойтись трудно. Приведем пример учебной задачи, где использование массива дает выигрыш за счет уменьшения объема вычислений, выполняемых программой.

Задана последовательность Ti = max {sin i, cos i}, i= -5, -4, ..., 5. Найти элемент последовательности, имеющий минимальное отклонение от арифметического среднего положительных элементов.

Здесь в первом цикле можно сформировать массив по заданному правилу и найти арифметическое среднее положительных элементов. Во втором цикле, когда среднее известно, можно искать отклонение. Без использования массива нам пришлось бы считать элементы последовательности дважды.

var t : array [-5..5] of real;

i,k:integer;

s, ot : real;

begin

s:=0; k:=0;

for i:=-5 to 5 do begin

t[i]:=sin(i);

if t[i]<cos(i) then t[i]:=cos(i);

if t[i]>0 then begin

k:=k+1; s:=s+t[i];

end;

end;

s:=s/k;

ot:=1e30;

for i:=-5 to 5 do begin

if abs(t[i]-s)<ot then ot:= abs(t[i]-s);

end;

writeln ('Ot=', ot:8:2);

end.

Распространена обработка в одной задаче сразу нескольких массивов. Приведем пример.

Координаты 10 точек на плоскости заданы массивами x={xi}, y={yi}, i=1, 2, ..., 10. Найти длину ломаной, проходящей через точки (x1, y1), (x2, y2), ..., (x10, y10), а также номер точки, лежащей дальше всего от начала координат.

При решении задачи используем формулу для нахождения расстояния между 2 точками на плоскости, заданными координатами (x1,y1) и (x2,y2): .

Обозначим через r расстояние между текущей точкой и следующей, Len искомую длину ломаной, Dist - расстояние от текущей точки до начала координат, max - максимальное из этих расстояний, Num - искомый номер точки.

var x,y : array [1..10] of real;

...

Подобные документы

  • Язык программирования Турбо Паскаль. Запись алгоритма на языке программирования и отладка программы. Правила записи арифметических выражений. Стандартное расширение имени файла, созданного системным редактором. Составной оператор и вложенные условия.

    курсовая работа [75,0 K], добавлен 21.03.2013

  • Особенности программирования на языке Паскаль в среде Турбо Паскаль. Линейные алгоритмы, процедуры и функции. Структура данных: массивы, строки, записи. Модульное программирование, прямая и косвенная рекурсия. Бинарный поиск, организация списков.

    отчет по практике [913,8 K], добавлен 21.07.2012

  • Иерархическая структура производного типа данных в языке Паскаль. Определение массива как упорядоченного набора фиксированного количества некоторых значений. Сортировка одномерных и двумерных массивов методом простых обменов, простым выбором и включением.

    курсовая работа [48,8 K], добавлен 27.11.2010

  • История и основы структурного программирования в среде Turbo Pascal. Работа с различными типами данных. Операторы языка. Работа с символьными и строковыми переменами, одномерным, двумерным массивами. Классификация компьютерных игр. Игры на языке Паскаль.

    курсовая работа [28,8 K], добавлен 06.05.2014

  • Логические конструкции в системе программирования Паскаль. Команды языка программирования, использование функций, процедур. Постановка и решение задач механики в среде системы Паскаль. Задачи статики, кинематики, динамики решаемые с помощью языка Паскаль.

    курсовая работа [290,9 K], добавлен 05.12.2008

  • Общая характеристика языков программирования. Описание языка Паскаль: основные субъекты языка; структура Паскаль-программы; типизация и объявление данных. Операторы присваивания и выражения. Структурные операторы, организация ветвлений и циклов.

    дипломная работа [276,6 K], добавлен 26.01.2011

  • Сравнительный анализ языков программирования высокого уровня Си и Паскаль. Реализация алгоритма обработки данных. Тестирование и отладка программы или пакета программ. Структура программы на языке Турбо Паскаль. Указатели и векторные типы данных.

    курсовая работа [233,5 K], добавлен 14.12.2012

  • Изучение символьных и строковых типов данных, алгоритма задачи на языке программирования Паскаль. Описания получения и установки отдельного символа строки, изменения регистра символов. Анализ создания и просмотра файла, поиска и сортировки информации.

    курсовая работа [440,7 K], добавлен 13.06.2011

  • Совместимость и преобразование типов данных. Создание информационно-поисковой системы на языке программирования Паскаль. Описание интерфейса, каждого блока программы "Картотека больных". Рассмотрение результатов работы программы, сортирования данных.

    курсовая работа [368,9 K], добавлен 18.05.2015

  • Изучение основных конструкций и способов написания программ на языке Паскаль. Обзор принципов работы и интерфейса написанной программы. Обработка и модификация двумерных массивов. Файловые структуры данных. Текстовые файлы. Элементы машинной графики.

    курсовая работа [761,7 K], добавлен 11.03.2015

  • Приобретение теоретических и практических навыков программирования на языке Паскаль. Математическая формулировка задачи и выбор метода обработки информации. Разработка алгоритма и его описание. Описание программы. Форма представления исходных данных.

    курсовая работа [224,3 K], добавлен 11.02.2016

  • Основные сведения о системе программирования Турбо Паскаль. Структура программы на Паскале и ее компоненты. Особенности и элементы языка Турбо Паскаль. Порядок выполнения операций в арифметическом выражении, стандартные функции и оператор присваивания.

    лекция [55,7 K], добавлен 21.05.2009

  • Рассмотрение общих сведений и уровней языков программирования. Ознакомление с историей развития, использования языков программирования. Обзор достоинств и недостатков таких языков как Ассемблер, Паскаль, Си, Си++, Фортран, Кобол, Бейсик, SQL, HTML, Java.

    курсовая работа [759,5 K], добавлен 04.11.2014

  • Выбор метода проектирования транслятора с языка Паскаль на язык Си, разработка и кодирование алгоритма программы. Использование допустимых операторов в исходном тексте, определение типов переменных и синтаксиса логических и арифметических выражений.

    курсовая работа [1,0 M], добавлен 03.07.2011

  • Основы создания фрактальных композиций при помощи среды программирования Паскаль. Сущность и основа фрактальной графики. Графические возможности и операторы для рисования геометрических фигур в среде Паскаль. Примеры обозначения цветов на языке Паскаль.

    лабораторная работа [15,7 K], добавлен 12.06.2010

  • Понятие программы и ее основные составляющие. Операторы ввода и вывода. Разветвляющиеся алгоритмы. Цикл как многократное выполнение одинаковых действий. Особенности использования оператора выбора. Графики функций и системы координат. Рекурсия и анимация.

    презентация [663,7 K], добавлен 24.12.2010

  • Изучение организации диалоговой программы и закрепления основных элементов программирования на языке Паскаль и Си (Delphi, C++ Builder). Описание представления информации в программах на языках высокого уровня. Сравнительная характеристика Delphi и C++.

    курсовая работа [3,1 M], добавлен 27.02.2015

  • Алгоритмы и алфавит языка Турбо Паскаль. Основные типы данных. Операторы присваивания, перехода и выбора. Понятие массива в Паскале. Особенности работы со строками в программе. Использование линейного поиска и поиска с барьером. Основные виды сортировок.

    учебное пособие [53,2 K], добавлен 09.11.2009

  • Создание транслятора, обрабатывающего код программы на языке Паскаль и за счет эквивалентных операторов генерирующего программу на Си. Особенности внешней спецификации и работы лексического анализатора. Структура программы, вывод результатов на экран.

    курсовая работа [254,0 K], добавлен 02.07.2011

  • Расчет на устойчивость в системе программирования Турбо Паскаль. Определение критического напряжения стержня по формуле Ясинского, предельной гибкости в зависимости от материала. Программирование алгоритма расчета. Порядок ввода исходных данных.

    курсовая работа [1,0 M], добавлен 27.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.