Принципы конструирования интеллектуальных систем
Принципы интеллектуального анализа данных, этапы данного процесса и оценка полученных результатов. Метод автоматического порождения гипотез, содержащий ключевые показатели эффективности. Практика и условия применения соответствующих рассуждений.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 17.01.2018 |
Размер файла | 179,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ Ю.М. Арский, В.К. Финн
Размещено на http://www.allbest.ru/
96 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ 4/2008
Размещено на http://www.allbest.ru/
Принципы конструирования интеллектуальных систем
Стратегия развития информационного общества в России, проект которой был одобрен на заседании Совета Безопасности РФ в июле 2007 года, предусматривает, в частности, совершенствование информационной инфраструктуры, расширение и использование информационных и телекоммуникационных технологий в жизни общества. Технологии же рождаются в результате взаимодействия науки и промышленности, поэтому наука, как один из «родителей» технологий, ответственна за их высокие качества и эффективность применения. Информационные системы, информационно-вычислительные системы и интеллектуальные системы являются инструментами информационных технологий, широко применяемыми для решения задач управления, обороны, медицины, образования и поддержки научных исследований. В процессе информатизации общества особую роль играют интеллектуальные системы - основной продукт направления исследований «искусственный интеллект». Целью «искусственного интеллекта» является имитация и усиление рационального поведения человека, основанного на анализе данных, порождении гипотез и поддержки принимаемых решений.
В научно-популярной литературе «искусственный интеллект» часто понимается метафорически как устройство равносильное разуму человека, способное порождать поведение подобное рациональному поведению людей. Однако научные задачи направления исследований «искусственный интеллект» (ИИ) в настоящее время являются более скромными и реалистичными.
Для понимания задач ИИ прежде всего следует уточнить феномен естественного интеллекта. ИИ как направление исследований является аппроксимацией интеллекта естественного, точнее, совокупности способностей, образующих его реальный феномен. Таковыми являются:
(1) способность выделять существенное в наличных знаниях, т.е. упорядочивать их (она - необходимый аспект интуиции);
(2) способность к целеполаганию и планированию поведения - порождение последовательностей «цель план действие»;
(3) способность к отбору знаний (посылок выводов, релевантных цели рассуждения);
(4) способность извлекать следствия из имеющихся знаний, т.е. способность к рассуждению, которое может содержать как правдоподобные выводы, используемые для выдвижения гипотез, так и достоверные выводы (следовательно, под рассуждением понимается последовательность правдоподобных и достоверных выводов);
(5) способность к аргументированному принятию решений, использующему упорядоченные знания (представление знаний) и результаты рассуждений, соответствующие поставленной цели;
(6) способность к рефлексии - оценке знаний и действий;
(7) наличие познавательного любопытства: познающий субъект должен быть способен задавать вопрос «что такое» и искать на него ответ;
(8) способность и потребность находить объяснение (не обязательно дедуктивное!), как ответ на вопрос «почему?»;
(9) способность к синтезу познавательных процедур, образующих эвристику решения задач и рассмотрения проблем, например, таковой является взаимодействие индукции, аналогии и абдукции (с учетом фальсификации выдвигаемых гипотез посредством поиска контрпримеров) с последующим применением дедукции;
(10) способность к обучению и использованию памяти;
(11) способность к рационализации идей: стремление уточнить их как понятия;
(12) способность к созданию целостной картины относительно предмета мышления, объединяющей знания, релевантные поставленной цели (т.е. формирование, по крайней мере, приближенной «теории» предметной области);
(13) способность к адаптации в условиях изменения жизненных ситуаций и знаний, что означает коррекцию «теорий» и поведения.
Главным продуктом научных исследований являются компьютерные системы, осуществляющие конструктивное приближение и имитацию способностей (1) - (13), представляющих феноменологию познавательной деятельности человека (она охарактеризована как «идеальный тип интеллекта»). «Ядром» приближенного отображения познавательных способностей человека, охарактеризованных в перечне (1) - (13), являются способности, необходимые для реализации рассуждений и представления знаний, к которым они применимы. Таковыми являются способности (1), (3), (4), (5), (6), (8), (9) и (10), которые конструктивно имитируются в современных системах ИИ в автоматическом режиме работы, способности же (2), (7), (12) и (13) могут имитироваться лишь в интерактивном режиме с участием человека.
Однако следует отметить, что приведенная выше характеризация феномена естественного интеллекта является лишь идеальным типом в смысле Макса Вебера, выражающим существенные черты феномена рационалистического интеллекта (разумеется, не всегда присущего конкретному индивиду).
Термин «интеллектуальный» стал весьма употребляемым словом, но, к сожалению, его употребление далеко не всегда имеет определенный смысл, выразимый в соответствующей понятийной системе компьютерной науки.
Процедуры, имитирующие способности идеального типа интеллекта, которые реализованы в компьютерных программах, будем называть интеллектуальными. Заметим, что не каждая вычислительная процедура может в этом смысле считаться интеллектуальной. Таковой будет процедура, реализующая познавательные способности из перечня (1) - (13).
Познавательная деятельность, осуществляемая компьютерными средствами, имеет три необходимых аспекта: представление данных и знаний, рассуждения и вычисления, комфорт для пользователя, обеспечивающий доступное и удобное общение с компьютером.
Два первых упомянутых аспекта существенным образом определяют «интеллектуальность» компьютерной системы - возможность получения нового знания посредством использования наличного знания в качестве посылок рассуждения (это предполагает реализацию способностей (1) - (6) и (8) - (10)). Дедуктивное рассуждение подчинено принципу переноса истинности посылок на заключение, а также переносу ложности заключения на посылки: если посылки истинны, то результатом дедуктивного вывода будет истинное заключение; если же заключение ложно, то результатом дедуктивного вывода будет ложность посылок. Такова природа дедукции, а адекватным способом представления знаний для дедукции являются аксиоматические системы (системы аксиом и правил вывода, выраженные в логических языках [1], [2]).
Автоматическое выведение следствий из посылок и автоматическое доказательство теорем является разработанной областью прикладной логики и искусственного интеллекта [3, 4].
Аксиоматические системы и автоматизация дедукции используют представление знаний 0 «замкнутых мирах»: предполагается, что предметная область охарактеризована аксиомами (правда, допускается добавление посылок в качестве гипотез и выводимость из них следствий посредством аксиом и правил вывода). Однако имеются многочисленные проблемы и задачи такие, что знания о соответствующих предметных областях открыты (т.е. постоянно пополняются), а для них требуется выдвинуть гипотезы, допускающие проверку и фальсификацию. В свою очередь выдвижение гипотез (как рациональных догадок) требует создания формализованных методов их порождения из множеств эмпирических фактов с использованием имеющегося знания. Следовательно, возникает потребность разработки формализованных эвристик, допускающих автоматизацию в компьютерных системах, таких, что они содержат различные познавательные процедуры для извлечения нового знания из имеющихся фактов (баз фактов) с использованием наличных знаний (баз знаний). Таким образом, мы приходим к заключению, что имеется необходимость разрабатывать компьютерные системы, содержащие как средства извлечения знаний из баз фактов (knowledge discovery), так и средства порождения гипотез и способы объяснения имеющихся фактов с использованием порожденных гипотез. Это означает, что имеется необходимость в реализации способностей (8) - (10), упомянутых выше как обязательных черт идеального типа интеллекта.
Итак, анализ данных посредством автоматизированных познавательных процедур с использованием баз фактов и баз знаний, автоматическое порождение гипотез, процедуры объяснения исходного состояния баз фактов с целью оправдания и принятия гипотезы, наконец, дедуктивный вывод из имеющихся ранее знаний и знаний, полученных в результате индуктивного обобщения сходных фактов из баз фактов (т.е. машинного обучения), реализованные в компьютерной системе, дают основание охарактеризовать ее как интеллектуальную.
Рассуждения, применяемые для формализации эвристик решения задач в компьютерной системе таких, что необходимо выдвижение гипотез (рациональных догадок), согласующихся с базой фактов, будем называть правдоподобными рассуждениями.
Правдоподобные выводы, содержащиеся в правдоподобных рассуждениях, не подчиняются принципу дедукции, ибо из истинных посылок в правдоподобных выводах могут следовать неистинные заключения. Таковыми, например, являются индуктивные обобщения сходных фактов (результат процедуры индукции), а также выводы по аналогии, применяемые при решении творческих задач. Заключения правдоподобных выводов имеют оценку некоторой степени правдоподобия. Задачей формализации правдоподобных выводов является построение средств конструктивного порождения степени правдоподобия выводов и формулирование критериев принятия гипотез, являющихся результатом правдоподобного рассуждения.
Формализованные эвристики, применяемые в современных компьютерных системах для решения различных классов задач (соответствующих «целям» рассуждения, представляющих способность к целеполаганию идеального типа интеллекта (2)), формулируются как взаимодействие некоторых познавательных процедур. Примером такой формализованной эвристики является взаимодействие индукции, аналогии и абдукции (принятия гипотез посредством объяснения исходного множества фактов) [6,7].
Подчеркнем еще раз, что общей характеристикой правдоподобных выводов является их не дедуктивный характер: из истинности посылок не вытекает истинность следствия, следствие является лишь правдоподобным высказыванием. Следовательно, рассуждения, содержащие правдоподобные выводы, имеют лишь правдоподобные следствия. Правдоподобные выводы, следствия которых есть результат догадки, оформленной в виде некоторого правила, называют амплиативными выводами (этот термин использовал автор идеи абдукции американский математик и философ Ч.С. Пирс).
Охарактеризуем теперь класс правдоподобных рассуждений, называемых когнитивными правдоподобными рассуждениями (КП-рассуждениями).
КП-рассуждения подразделяются на три подкласса: вероятностные (например, использующие байесовские правила); приближенные (например, использующие аппарат нечетких множеств [8]); правдоподобные рассуждения, являющиеся организацией различных взаимодействующих познавательных процедур.
Сформулируем некоторый подкласс КП-рассуждений, который будем называть когнитивными правдоподобными эмпирическими рассуждениями (КПЭ-рассуждениями), характеризуемыми утверждениями А1 - А9. КПЭ - рассуждения являются эффективным инструментом для компьютерной имитации интеллектуальных способностей (1) - (13). Заметим, что в современных компьютерных системах, реализующих методы искусственного интеллекта, используются все указанные выше подклассы правдоподобных рассуждений, а также автоматизированные дедуктивные выводы.
Применение рассуждений в компьютерных системах не является делом произвольного выбора, ибо их эффективность зависит от соответствия приведенных выше подклассов правдоподобных рассуждений типам предметных областей W («миров»). Можно выделить три типа предметных областей W, знания о которых используются в компьютерных системах, имитирующих интеллектуальную активность человека, охарактеризованную посредством способностей (1) - (13):
(а) предметные области W («миры», «универсумы») такие, что факты, принадлежащие им, являются случайными событиями; соответственно, правила вывода, применяемые в рассуждениях о W, используют аппарат теории вероятностей (в том числе различные статистические методы анализа данных);
(в) предметные области W такие, что факты, принадлежащие W, причинно обусловлены; соответственно, правила вывода, применяемые в рассуждениях о W, порождают гипотезы о причинно-следственных зависимостях и основанные на них обобщения;
(с) предметные области W такие, что факты, принадлежащие W, могут быть как причинно обусловленными, так и случайными событиями. Это означает, что W является объединением «миров» (а) и (в); а рассуждения, применяемые к знаниям о W, должны использовать правила, порождающие гипотезы о зависимостях причинно-следственного типа с учетом вероятностных соображений (например, частоты появления причинно-следственного эффекта).
Приведем ниже утверждения А1 - А9, характеризующие КПЭ-рассуждения.
А1. Знания, используемые в КПЭ-рассуждениях, должны некоторым образом соответствовать типам предметных областей (в) и (с), содержащих зависимости причинно-следственного типа (т.е. детерминациям изучаемых эффектов).
А2. Знания, используемые в КПЭ-рассуждениях, являются открытым множеством высказываний. Это знание пополняется в соответствии с некоторым критерием, контролирующим принятие гипотез, полученных посредством амплиативных выводов.
А3. КПЭ-рассуждения являются синтезом некоторых познавательных процедур, включающих индукцию. Индукция используется для сравнения фактов установления их сходства и порождения гипотез о причинно-следственных зависимостях. Примером такого синтеза может служить взаимодействие индукции, аналогии и абдукции [7].
А4. Индуктивные процедуры, реализующие идею индукции (порождение обобщения сходства рассматриваемых фактов), представимы в виде специальных правил амплиативного вывода, отличных от перечислительной индукции.
А5. При формализации КПЭ-рассуждений используется неклассическая концепция истины такая, что:
(1) различаются оценки фактов, гипотез и металогических утверждений о них [9];
(2) оценки гипотез есть некоторые степени правдоподобия, эффективно порождаемые посредством амплиативных правил;
(3) используемые металогические утверждения имеют истинностные значения «истина» или «ложь» двузначной логики.
А6. Правила амплиативных выводов формулируются в аргументативном языке [10] так, что порождаемые гипотезы проверяются на наличие аргументов за их принятие и аргументов против их принятия (контраргументов).
А7. Утверждение А6 предполагает, что в «мирах» W типа (в) или (с) существуют как положительные примеры (факты) исследуемого эффекта ((+)-примеры), так и отрицательные примеры (факты) (()-примеры), а порожденные гипотезы о зависимостях причинно-следственного типа являются аргументами или контраргументами для предсказания наличия или отсутствия изучаемого эффекта у соответствующих объектов из имеющегося массива фактов. Это означает, что в процессе реализации КПЭ-рассуждений автоматически порождаются фальсификаторы гипотез.
А8. Исходными данными КПЭ-рассуждений (в компьютерной системе они образуют базу фактов (БФ)) являются множества высказываний, представляющих факты, т.е. результаты эмпирического исследования (например, описание экспериментов или наблюдений). Эти факты содержат объекты со сложной структурой (множества, кортежи, графы, системы отношений и т.п.), характеризуемые как качественными, так и количественными параметрами. Отсюда следует невозможность манипулирования (в том числе - установление сходства) массивами этих фактов в реальное время без применения компьютерных систем.
А9. Исходные данные КПЭ-рассуждений (т.е. начальные состояния БФ компьютерных систем) расширяются в зависимости от полученных результатов и выполнимости критерия принятия гипотез (в соответствии с А2). Это расширение является динамическим формированием БФ достаточно информативной для того, чтобы порожденные гипотезы объясняли начальное состояние БФ и были приняты.
Утверждения А1-А9 характеризуют класс формализованных эвристик, реализуемых в компьютерных системах посредством КПЭ-рассуждений, которые содержат индуктивные процедуры. Эти процедуры основаны на установлении сходства фактов, имеющего осмысленную интерпретацию. При этом осуществляется принцип качественного анализа данных: сходство фактов влечет наличие (отсутствие) изучаемого эффекта и его повторяемость.
Компьютерные системы, которые являются средством автоматизации способностей (1) - (13), представляющих явную характеризацию феномена естественного интеллекта (они образуют идею интеллекта как идеального типа) будем называть интеллектуальными системами (ИС), если они имеют специфическую архитектуру, допускающую определенные вариации. Схематически эта архитектура может быть представлена следующим образом:
ИС = Решатель задач + Информационная среда + Интеллектуальный интерфейс. Решатель задач = Рассуждатель + Вычислитель + Синтезатор. Информационная среда = База фактов (БФ) + База знаний (БЗ). Интеллектуальный интерфейс состоит из средств представления результатов (в том числе графического), диалога на естественном языке и научения работе с компьютерной системой. Существенной особенностью ИС является реализация в Рассуждателе КПЭ-рассуждений в интерактивном режиме с целью соответствующего пополнения БФ для формирования информативности представлений изучаемых эффектов и подбора посылок, релевантных цели рассуждения. Обратим внимание на соответствие этого подбора посылок КПЭ-рассуждений способностям (1) - (13) в характеризации интеллекта как идеального типа.
Подбор посылок, релевантных цели рассуждения, возможен в ИС благодаря процедурам КПЭ-рассуждения (индукции и аналогии, использующих сходство фактов в БФ и сходство знаний в БЗ).
БЗ в ИС задана посредством процедур, реализуемых Рассуждателем и Вычислителем, аксиом структур данных (например, аксиом булевой алгебры, если объекты и их свойства, содержащиеся в БФ, представлены множествами элементов), а также дескриптивных аксиом, характеризующих соответствующую предметную область.
Архитектура ИС является структурой, соответствующей следующим основным функциям ИС: представлению данных и знаний в компьютерной системе; осуществлению рассуждений и вычислений для решения класса задач, представляющего цель познавательного процесса, реализуемого в ИС; а также комфортному для пользователя интерфейсу.
ИС, осуществляющие КПЭ-рассуждения, способны анализировать данные, порождать гипотезы о зависимостях между параметрами представленных в БФ фактах посредством выдвинутых гипотез ИС, способны объяснять наличие или отсутствие эффектов, которыми обладают объекты из БФ, имеющей структуру «объект - эффект». Порожденные Решателем задач гипотезы используются для предсказания эффектов, содержащихся в БФ, которая соответствует определенному классу задач.
Анализ данных посредством ИС будем называть интеллектуальным анализом данных (ИАД).
2. Принципы конструирования интеллектуальных систем и интеллектуальный анализ данных
Сформулируем принципы интеллектуального анализа данных, образующих методологию извлечения знаний из БФ. Формулируемые принципы ИАД естественным образом соответствуют характеризации КПЭ-рассуждений посредством условий А1 - А9, так как КПЭ-рассуждения являются логическим средством извлечения знаний из объединения БФ и БЗ.
Принцип I (цель ИС)
Для создания ИС должна быть сформулирована проблема Р1, которой соответствует класс формализуемых задач.
Примерами Р1 являются медицинская диагностика по клиническим данным и выбор наилучшего способа лечения, предсказание биологической активности химических соединений (в том числе токсичности и канцерогенности), планирование и интерпретация химических экспериментов, контроль загрязнения окружающей среды, техническая диагностика, поддержка принятия решений с использованием предыдущего опыта, предсказание социального поведения (действий, установок, мнений) и распознавание его рациональности, формирование типологии преступлений на основе базы прецедентов с последующим распознаванием типа конкретного преступления (например, преступлений рецидивистов и т.п.), автоматическая классификация текстов, выбор решения роботом посредством анализа ситуации, принятие решений в многоагентных системах и т.д.
Принцип II (типы «миров» и представление знаний о них)
Ранее были охарактеризованы три типа предметных областей W («миров») (а), (в) и (с) такие, что факты, принадлежащие W и знания о W используются в ИС: цель Р1 ИАД формулируется посредством представления знаний в соответствии с типами W (а), (в) и (с).
Принцип III (адекватность предметной области W и Решателя для Р1)
Рассуждатель и Вычислитель должны содержать методы рассуждений и вычислений, соответствующие типам W (а), (в) и (с).
Очевидно, что для типа (а) адекватнымии методами анализа данных будут статистические методы, а для W типа (в) адекватными методами рассуждений будут правдоподобные рассуждения, формализующие анализ отношений причинно-следственного типа.
Принцип IV (условие применимости ИС для ИАД)
Этот принцип является развитием Принципов II и III. Он сосотоит в том, что условия применимости Решателя задач должны быть точно сформулированы. Например, для миров типа (в) может быть охарактеризован класс каузальных моделей, к которым применим метод автоматического порождения гипотез, осуществляемый посредством КПЭ-рассуждений [7] соответствующим Рассуждателем. БФ, представляющая предметные области W типа (в), должна содержать позитивные и негативные примеры изучаемого эффекта. В БФ в неявном виде должны содержаться причинно-следственные зависимости как позитивные (вынуждающие наличие эффекта), так и негативные (вынуждающие отсутствие эффекта). Кроме того, структура данных, используемая для представления фактов в БФ, должна быть пригодна для формализации структурного сходства фактов. Это обстоятельство делает возможным реализацию условия: сходство фактов влечет сходство эффектов и их повторяемость (это условие лежит в основе формализованного качественного анализа данных).
Примером цели Р1 и ИАД в БФ является предсказание токсичности химических соединений в БФ такой, что в ней представлено отношение «химическое соединение - токсичность» [13]. ИАД состоит в том, что ИС посредством Рассуждателя порождает гипотезы о фрагментах химических соединений, которые ответственны за наличие (отсутствие) эффекта токсичности. Позитивные гипотезы ((+)-гипотезы) о причинах наличия токсичности и негативные гипотезы (()-гипотезы) о причинах отсутствия токсичности порождаются как индуктивные обобщения сходства позитивных и негативных фактов, соответственно, представленных в БФ. Порожденные индукцией (+)-гипотезы и ()-гипотезы образуют автоматически образованный фрагмент БЗ в соответствии с условием - «сходство фактов влечет сходство эффектов и их повторяемость».
Другим примером БФ типа (в) для ИАД является база историй болезней для диагностики двух заболеваний глаз - дегенеративного ретиношизиса и наследственных витреоретинальных дистрофий, созданная в Лаборатории клинической физиологии зрения МНИИ глазных болезней им. Гельмгольца. В соответствии с приведенным выше условием установления сходства посредством индуктивных обобщений Рассуждатель порождает (+)-гипотезы и ()-гипотезы, являющиеся достаточными условиями для диагностики указанных глазных заболеваний (эти гипотезы образуют фрагмент БЗ соответствующей ИС).
Принцип V (синтез познавательных процедур для ИАД в БФ)
ИС, используемые для ИАД в соответствии с Принципом IV, применяются для предметных областей W таких, что знания о них слабо формализованы, а данные (факты) пригодны для структурирования для установления сходства. Поэтому для достижения цели ИАД необходима соответствующая W формализованная эвристика. В силу этого актуален следующий принцип: формализованная эвристика для решения задач посредством ИС, соответствующих цели (проблеме) Р1, должна быть синтезом познавательных процедур, применение которого к объединению БФ и БЗ (БФБЗ) порождает новые знания, расширяющие БЗ.
Решатель задач, осуществляющий этот синтез посредством своих подсистем Рассуждателя, Вычислителя и Синтезатора, использует эвристики в соответствии с Принципом III при условии выполнимости Принципа IV.
Принцип V соответствует интеллектуальной способности (9) - возможности синтеза познавательных процедур, образующих эвристику для решения определенного класса задач.
Примером синтеза познавательных процедур является эвристика, объединяющая процедуры индукции, аналогии и абдукции (принятие порожденных гипотез посредством объяснения начального состояния БФ). Эта эвристика реализуется посредством КПЭ-рассуждений типа «индукция + аналогия + абдукция», используемых в ДСМ-методе автоматического порождения гипотез [7, 15, 16].
Принцип VI (фальсифицируемость и аргументируемость результатов работы Решателя)
Уточним предварительно идею «знание в компьютерной системе». Знания в компьютерной системе (КС) подразделяются на процедурные и декларативные. Под процедурными знаниями понимают задание алгоритмов и их комбинаций, применяемых в Решателе для достижения цели, и представимой классом задач. Процедурными знаниями являются стратегии решения задач, образованные посредством комбинирования различных видов рассуждений и вычислений, которые, соответственно, осуществляются Рассуждателем и Вычислителем. Взаимодействие же Рассуждателя и Вычислителя производится Синтезатором.
Под декларативным знанием понимают систему утверждений, которая определяет класс решаемых задач. Таковыми утверждениями являются дескриптивные утверждения, характеризующие как предметную область, так и структуру данных, представленных, в частности, в БФ (примерами структур данных являются булевские структуры, а также структуры данных, в которых объектами являются графы, пространственные графы, системы отношений и т.п.).
Декларативными знаниями в ИС являются также утверждения, выражающие в импликативном виде (если …, то …) правила правдоподобного вывода Рассуждателя (в том числе правила вывода в КПЭ-рассуждениях для индукции и аналогии). Эти утверждения входят в метатеорию ИС и создают возможность исследования процесса функционирования ИС на логическом уровне. Если КС есть ИС, то цель Р1 достигается посредством осуществления Принципа V, применяемого к БФ и БЗ.
Обозначим множество декларативных знаний ИС посредством , тогда применение Решателя к объединению и БФ представим как Решатель (БФ)= [R], где R=БФ, Решатель - упорядоченная пара, называемая каркасом ИС, а [R] - множество всех результатов применения Решателя к БФ.
Принцип VI состоит в том, что в ИС должны содержаться средства фальсификации результатов применения Решателя к БФ. Таковыми могут быть утверждения из , которые накладывают ограничения на [R], или же автоматически порожденные фальсификаторы, которые извлекаются из отрицательных примеров БФ и запрещают некоторые гипотезы, порождаемые Решателем.
Аргументируемость результатов из [R] означает, что порождаемые Решателем гипотезы имеют аргументы за их применение и не имеют контраргументов, их запрещающих. Очевидно, что этот принцип ИАД соответствует интеллектуальной способности (5) и свойству А6 КПЭ-рассуждений.
Принцип VII (синтез теорий истины)
Для ИС, аппроксимирующих базисные
способности интеллекта (1) - (13) (в том числе выделение существенных факторов, синтез познавательных процедур, правдоподобные рассуждения и порождение гипотез, машинное обучение на примерах из БФ) неадекватной оказывается аристотелевская теория истины как теория соответствия, формализованная А. Тарским средствами двузначной логики для дедуктивных наук [17] (см. также [18], глава 9). Дело в том, что порождаемые Решателем гипотезы либо правдоподобны, если порождены Рассуждателем посредством правдоподобных рассуждений [19], либо имеют некоторую вероятность, если порождены Решателем с использованием статистических методов. Однако и в том, и в другом случае имеются критерии принятия гипотез на основе БФ и БЗ.
Уточним строение БЗ. Напомним, что Решатель (БФ)= [R]. Применение Решателя к БФ порождает множество высказываний [R], но так как Решатель имеет три подсистемы - Рассуждатель, Вычислитель и Синтезатор, то он использует для решения проблемы Р1 (цели ИС) множество правил правдоподобного и достоверного (дедуктивного) вывода Г и множество вычислительных процедур С. Правила из Г и процедуры из С реализуются в Рассуждателе и Вычислителе, соответственно, а их комбинирование осуществляет Синтезатор (напомним, что Решатель = Рассуждатель + Вычислитель + Синтезатор).
Если результат работы Решателя, содержащейся в [R], получен с применением Синтезатора и Вычислителя и является высказыванием, то он принадлежит , где [R]. Если же результаты получены только применением Рассуждателя, то все такие высказывания обозначим посредством , где =Рассуждатель (БФ), а .
Теперь можно охарактеризовать строение БЗ для ИС, осуществляющей ИАД для решения проблемы Р1:
интеллектуальный автоматический рассуждение
БЗ=, , Г, С.
Отметим, что - вторая компонента этой упорядоченной четверки, является открытым множеством, ибо последовательное применение Решателя с изменением БФ или изменением стратегий решения Р1 изменяет .
Таким образом, применение Решателя к БФ и использование БЗ, содержащей гипотезы, принятые посредством соответствующих критериев, порождают оценки вновь полученных знаний в силу согласованности с имеющимися знаниями в БЗ и посредством правил правдоподобного вывода. Следовательно, теория соответствия Аристотеля - Тарского недостаточна для понимания истинностных оценок высказываний из . В связи с этим фактически в ИС используется теория истины, называемая теорией когерентности [18], в которой значения истинности высказываний основаны на имеющихся знаниях, а не на соответствии реальности.
Наконец, результаты работы ИС могут иметь практическую полезность, хотя их истинность не была установлена. В этом случае можно говорить о применимости прагматической теории истины [18]: истинно то, что полезно.
Таким образом, когнитивный процесс порождения нового знания в ИС, включающий ИАД и выдвижения гипотез, может быть охарактеризован посредством трех теорий истины - теории соответствия, теории когерентности и прагматической теории. В самом деле, БФ формируется при соблюдении теории соответствия, гипотезы оцениваются согласно теории когерентности, а результаты работы ИС могут быть оправданы согласно прагматической теории истины. Таков Принцип VII для ИС, использующих автоматическое порождение гипотез и машинное обучение.
Принцип VIII (инвариантность структуры Рассуждателя относительно варьируемости предметных областей и структур данных)
Если Рассуждатель используется для решения некоторого класса задач посредством синтеза познавательных процедур согласно Принципу V, то структура Рассуждателя не изменяется при применении его к различным предметным областям W и различным структурам данных таким, что они удовлетворяют Принципу IV - условию применимости ИС. Таким образом, при варьировании W и структур данных не изменяется тип правил правдоподобного вывода и тип рассуждения. Например, сохраняется синтез познавательных процедур типа «индукция + аналогия + абдукция» с последующим применением дедукции, осуществляемый посредством КПЭ - рассуждений.
Это означает, что может быть задан класс интеллектуальных систем ИСj, соответствующих проблемам Р1(j), j=1, …, k, решения которых осуществляются одним типом формализованных эвристик. Этому классу эвристик соответствует один и тот же тип Рассуждателя и аналогичные условия его применимости, характеризуемые Принципами III и IV. Будем этот класс формализованных эвристик называть «ядром» Решателя. Очевидно, что конкретная ИСj есть «ядро» + его спецификация относительно предметной области W и проблемы Р1(j).
Класс проблем Р1, имеющих «ядро» интеллектуальных систем ИСj, будем называть суперпроблемой (очевидно, что Р1(j)Р1). Например, суперпроблемой Р1 является прогнозирование каких-либо эффектов посредством порождения гипотез о причинно-следственных зависимостях в БФ, а конкретными проблемами Р(1)1, Р(2)1 и Р(3)1 являются проблемы, соответственно, прогнозирования биологической активности химических соединений с помощью гипотез о фармакофорах (предполагаемых причин биологической активности химических соединений - их подструктур), прогнозирования электорального поведения посредством некоторых детерминант, содержащихся в описаниях индивидуальных социальных субъектов, а также прогнозирования диагноза посредством гипотез, полученных на основании сравнений историй болезней.
Принцип IX (наличие метауровня ИС)
Пусть заданы каркас ИС R=БФ, Решатель, Решатель (БФ)=[R] и Рассуждатель (БФ)= и БЗ=, , Г, С, где [R], выраженные посредством формального языка представления знаний L, выразительная сила которого не слабее языка логики предикатов 1-го порядка [1]. Будем полагать, что имеются метаматематические средства МL такие, что в языке МL можно формулировать дедуктивную имитацию Рассуждателя [20] и осуществлять анализ алгоритмов, соответствующих процедурам Решателя [21]. Из этого следует, в частности, возможность выбора стратегий решения задачи Р(j)1 на логическом уровне. Отметим, что изменение стратегии может иметь место после препроцессинга и экспериментальных (пробных) применений ИС. Принцип IX соответствует интеллектуальной способности (13) (адаптация в связи с изменением ситуаций и знаний). Кроме того, следует отметить, что этот принцип предполагает интерактивное использование ИС как человеко-машинной системы.
Таким образом, осуществление Принципа IX создает возможность планирования и выбора стратегии решения задачи в компьютерной системе на логическом уровне.
Принцип X (абдуктивное объяснение результатов ИАД посредством ИС)
Однако, эта схема дедуктивного объяснения не охватывает случаев открытых теорий, для которых предметная область может быть охарактеризована аксиомами лишь частично, а массив экспериментальных данных расширяется, что может порождать новые обобщения. не принадлежащие ранее принятым утверждениям. В ИС этой ситуации открытости знаний о предметной области соответствуют процедуры машинного обучения в БФ посредством КПЭ - рассуждений, содержащих индукцию, выявляющую сходство фактов.
Если D есть БФ, НРешатель (БФ), отношение «Н объясняют БФ» формализуемо относительно предметной области [7], то абдуктивное принятие гипотез завершает синтез познавательных процедур в соответствии с Принципом VI (Н могут порождаться, например, посредством индукции и аналогии, что осуществлено в ДСМ-методе автоматического порождения гипотез [15, 16]).
Таким образом, объяснение результатов работы Решателя порождает принятие нового знания (гипотез из Н), извлеченного из БФ. В приведенной выше схеме абдукции Ч.С. Пирса следует уточнить: способы порождения гипотез h из множества Н, отношение объяснения гипотезами из Н множеств фактов D (т.е. БФ), способы установления оценок правдоподобия гипотез h. Заметим также, что сам Принцип X является уточнением интеллектуальной способности (8) из перечня способностей, образующих феноменологию интеллекта.
Последним принципом ИАД посредством ИС является
Принцип XI (эволюционная эпистемология решения задач в ИС)
Р1 ТТ ЕЕ Р2 является известной схемой роста знания К.Р. Поппера [10], где Р1 - решаемая проблема ТТ - пробная теория для ее решения, ЕЕ - устранение ошибок и коррекция ТТ после ее применения, а Р2 - вновь возникшая проблема после анализа результатов измененной (и более корректной) ТТ.
Принцип эволюционной эпистемологии для ИС с Рассуждателем, реализующим КПЭ -рассуждения с машинным обучением [24], может быть представлен следующим образом:
Р(j)1(БФ)ЕЕ Р(j)2,
где ЕЕ - коррекция и расширение БФ и, быть может, выбор другой стратегии для Рассуждателя; Р(j)2 - новая возникшая проблема, требующая продолжение ИАД в рамках суперпроблемы Р1 (или, быть может, требование перехода к другой суперпроблеме).
Следствием Принципа XI является необходимость включения ИС в реальный процесс исследования, управления или принятия решений, а также открытость БФ, что означает, что ИС является человеко-машинной (партнерской) компьютерной системой.
Основной продукт направления исследований «искусственный интеллект» - компьютерные системы, осуществляющие анализ данных и прогнозирование изучаемых эффектов, представленных в БФ. Имитация способностей (1) - (13), характеризующих интеллект (точнее, его феноменологию) посредством Решателя, является основанием для отнесения таких систем к классу интеллектуальных.
Принципы I - XI могут служить «кодексом интеллектуальности» компьютерной системы. Разумеется, что это отнесение компьютерной системы к классу ИС ограничивает произвол в квалификации компьютерных систем как интеллектуальных.
Из Принципов I - XI вытекают следствия, уточняющие смысл термина «интеллектуальная система».
Следствие 1. ИС должна быть партнерской человеко-машинной системой, способной функционировать как в интерактивном режиме, применяемой к открытым («мирам») предметным областям («мирам»), так и в автономном режиме, применяемой к «замкнутым мирам».
Следствие 2. Принципы I - XI образуют систему концептуальных знаний, управляющую созданием как подсистемы декларативных знаний ИС, так и подсистемы процедурных знаний ИС.
Следствие 3. Следствием Принципов III - VI, X и XI является взаимодействие Решателя, реализующего правдоподобные рассуждения и вычисления (Решатель = Рассуждатель + Вычислитель + Синтезатор), с информационной средой ИС - базой фактов (БФ) и базой знаний (БЗ). В силу открытости БФ и БЗ ИС имеет возможность их коррекции (ЕЕ - схеме роста знания Принципа XI), благодаря этому человеко-машинная система осуществляет адаптацию к изменившемуся состоянию ИС. Это создает возможность сформулировать новую проблему Р2 (в схеме роста знания).
Следовательно, строение и возможности Рассуждателя и Вычислителя компьютерной системы, обладающей Решателем, определяют тип анализа данных в БФ и получение нового знания, включаемого в БЗ. Можно выделить три основных типа Решателей для анализа данных и получения нового знания.
1. Решатель= Вычислитель + Синтезатор, Рассуждатель отсутствует, а Вычислитель осуществляет различные процедуры над числовыми данными, Синтезатор же объединяет различные вычислительные методы, реализуемые Вычислителем. Компьютерную систему с таким Решателем будем называть вычислительной.
2. Решатель= Рассуждатель + Вычислитель + Синтезатор, где Рассуждатель осуществляет комбинаторные алгоритмы [25], а Синтезатор объединяет вычислительные методы Вычислителя и комбинаторные алгоритмы Рассуждателя. Компьютерную систему с таким Решателем будем называть комбинаторно-вычислительной.
3. Решатель= Рассуждатель + Вычислитель + Синтезатор, где Рассуждатель реализует правдоподобные рассуждения, а Синтезатор формирует стратегии решения задач, объединяющие рассуждения, вычисления и комбинаторные алгоритмы. Однако рассуждения являются управляющей процедурой выполняемой стратегии решения задачи, что соответствует способностям (2) - (4), характеризующих интеллект как идеальный тип.
Заметим, что наиболее адекватными для получения нового знания являются КПЭ-рассуждения, характеризуемые утверждениями А1 - А9.
Следствие 4. Из Принципов I - XI вытекает интерпретируемость результатов работы Рассуждателя относительно БФ, где = Рассуждатель (БФ). Эта интерпретируемость основана на Принципах I (цель ИС Р1), II (выделение и характеризация предметной области W), III (адекватность W и Р1, где Р1 - суперпроблема, IV (условие применимости ИС), V (синтез познавательных процедур для интеллектуального анализа данных), VI (фальсифицируемость и аргументируемость [R] - результатов работы Решателя) и X (принцип абдуктивного объяснения результатов ИС) и, наконец, XI (эволюционная эпистемология решения задач в ИС, включающая ЕЕ - коррекцию результатов и исправление ошибок).
Следствие 5. Следствием сформулированных выше Принципов I - XI, согласно которым создаются БФ, БЗ и Решатель, является возможность извлекать из результатов работы ИС не только «образцы», добываемые из данных в смысле «data mining» [11], но порождать гипотезы о закономерностях (в том числе о зависимостях причинно-следственного типа), обнаруженных в расширяемых последовательностях БФ в интерактивном режиме работы ИС.
Уточним теперь понятие интеллектуальной системы (ИС). Компьютерную систему с Решателем типа 3 (Следствие 3), БФ и
БЗ=, , Г, С будем называть интеллектуальной, если , где = Рассуждатель (БФ).
Пусть - разность множеств и , где [R]=Решатель (БФ), т.е. = \ . Следовательно, - множество всех результатов Решателя, полученных с использованием Вычислителя. ИС будем называть интегрированной, если .
ИС будем называть гибридной, если исходные данные, представленные в БФ, имеют различные структуры - множества (булевские структуры), графы, системы отношений и т.п. Естественной ИС для поддержки научных исследований является ИС такая, что она - интегрированная, гибридная с исходными данными, содержащими как числовые, так и нечисловые (качественные) параметры.
Таким образом, интегрированной ИС является ИС такая, что результаты работы ее Решателя получены с использованием Рассуждателя и Вычислителя.
ИС осуществляет анализ данных и прогнозирование изучаемых эффектов, представленных в БФ, посредством взаимодействия трех типов знаний - концептуального (в соответствии с Принципами I - XI), декларативного и процедурного.
Выделение ИС как особого класса компьютерных систем оправдано необходимостью имитации и усиления интеллектуальной деятельности человека в различных областях науки, медицины управления, обороны, правовой сферы и образования. ИС необходимы для создания роботов, способных к обучению и рассуждению в связи с наблюдением различных ситуаций [26].
Компьютерные системы с Решателями задач, логическими средствами которых являются системы продукции «если Х, то Y», называются экспертными системами [27]. Экспертные системы, как правило, не содержат подсистем машинного обучения, а их базы знаний формируются для представления знаний и опыта экспертов соответствующей предметной области. Экспертные системы можно считать интеллектуальными системами с ограниченными логическими возможностями [28].
3. ДСМ-метод автоматического порождения гипотез и интеллектуальные системы типа ДСМ
Примером интеллектуальных систем, реализующих КПЭ - рассуждения, является класс интеллектуальных систем типа ДСМ (ДСМ - системы), применяемых в различных предметных областях - фармакологии, медицинской диагностике, технической диагностике, социологии и криминалистике.
ДСМ-системы реализуют ДСМ-метод автоматического порождения гипотез (ДСМ-метод АПГ), который состоит из: условий применимости (они могут быть охарактеризованы точным образом [7]), автоматизированных КПЭ-рассуждений, представления знаний в виде квазиаксиоматических теорий (КАТ), дедуктивной имитации КПЭ-рассуждений (она обеспечивает корректность ДСМ-метода АПГ) и, наконец, интеллектуальных систем типа ДСМ.
ДСМ - метода АПГ является формализованной эвристикой для установления причин наличия или отсутствия изучаемых эффектов, представленных в открытых (пополняемых) базах структурированных фактов, сходство которых выявляется посредством автоматизированных правдоподобных рассуждений - КПЭ - рассуждений, удовлетворяющих условиям А1 - А9. ДСМ - метода АПГ состоит из трех познавательных процедур: эмпирической индукции (порождение причин эффектов на основе обнаруженных сходств фактов), аналогии (правдоподобных выводов, использующих наличие положительных или отрицательных причин в фактах с неопределенной оценкой, требующей уточнения - наличия или отсутствия изучаемого эффекта) и, наконец, абдукции [23, 30] (принятие гипотез посредством объяснения начального состояния базы фактов с помощью () - причин, то есть гипотез, ответственных за наличие эффекта ((+) - причины) и за отсутствие эффекта (() причины)). ДСМ-системы (как интеллектуальные системы) используются в качестве средства интеллектуального анализа данных. ДСМ - метод, будучи нестатистическим методом анализа данных, в состоянии учитывать индивидуальные особенности изучаемых объектов исследования, если их структура представлена информативно так, что используемые параметры достаточны для вявления сходства - условия порождения эффекта (то есть причины изучаемого явления).
Второй важной особенностью ДСМ - метода является его способность порождать полезные гипотезы на малых массивах данных благодаря выявленному сходству объектов, характеризуемых существенными параметрами.
Третья особенность ДСМ - метода анализа данных состоит в том, что он работает с открытыми массивами данных в Бф, распознавая необходимость расширения БФ, если таковая возникает в результате объяснения ее начального состояния, что соответствует интеллектуальной способности (8) (способность находить объяснение и отвечать на вопрос «почему?») и Принципу Х (абдуктивное объяснение результатов ИАД посредством ИС).
Примерами применения ДСМ - систем является прогнозирование биологических активностей химических соединений [29, 13] (в том числе прогнозирование токсичности и канцерогенности), диагностика глазных заболеваний и диагностика нефрологических заболеваний, качественный анализ социологических данных [33], использование ДСМ - систем для реализации адаптивного поведения роботов [26, 31].
Охарактеризуем теперь ДСМ - метод АПГ как метод ИАД и прогнозирования зависимостей причинно-следственного типа.
Условиями применимости ДСМ - метода АПГ, а, следовательно, и ДСМ - систем являются условия (а), (в) и (с).
(а) Для применимости ДСМ - метода АПГ знания могут быть слабо формализованы, но данные в БФ должны быть хорошо структурированы, а это означает, соответственно:
1. что предметная область описана неполно и возможна лишь частичная ее аксиоматизация посредством представления знаний в виде квазоаксиоматической теории (КАТ);
2. что определена операция, устанавливающая сходство исследуемых фактов (в БФ) (например, описаний клинических данных или химических соединений, имеющих изучаемые биологические активности и т.п.), такая, что ее результат имеет осмысленную интерпретацию.
(в) Предметная область W, сведения о которой представлены в БФ, должна содержать позитивные факты ((+)-факты), негативные факты (()-факты) и примеры неопределенности изучаемого эффекта (() - факты) (соответственно, наличие или отсутствие биологической активности химических соединений или симптомов исследуемого заболевания в клинических данных).
БФ в ИС для ДСМ - метода АПГ образована фактоподобными высказываниями вида «объект С имеет множество свойств Q», которым приписаны оценки: «фактически истинно» - (1), «фактически ложно» - (-1), «фактически противоречиво» (0), «неопределенно» ().
Таким образом, фактом (в БФ) будем называть фактоподобные высказывания с приписанными типами оценок - 1, -1, 0, .
(с) В БФ в неявном виде содержатся зависимости причинно-следственного типа, которые могут быть представлены высказываниями вида «подобъект (часть объекта) С есть причина наличия (отсутствия) множества свойств Q».
Условие (с) является весьма существенным для нестатического анализа данных (то есть фактов из БФ). Оно характеризует предметную область W посредством следующего допущения о ее природе: всякий позитивный факт ((+) - факт) имеет причину, в силу которой объект обладает соответствующим эффектом (множеством свойств); аналогично, всякий негативный факт из БФ (()-факт) имеет причину, в силу которой объект не обладает соответствующим эффектом (множеством свойств). Эти допущения о позитивных и негативных (( - причинах) будем называть аксиомами каузальной полноты (АКП ()). Очевидно, что АКП () в соответствии с Принципом II (типы «миров» и представление знаний о нем) специфицирует предметные области типа (в) и содержится в качестве аксиомы в квазиаксиоматической теории, характеризующей предметную область, что соответствует суперпроблеме Р1 из Принципа XI.
БФ такую, что для нее выполняются АКП (), будем называть каузально полной. Очевидно, что это идеальный случай, ибо в БФ содержатся сведения об изучаемом эффекте, представленные достаточно информативно, что делает возможным порождение гипотез о причинно-следственных зависимостях. Посредством этих гипотез может быть предсказано наличие или отсутствие эффектов у фактов из БФ. Это означает, что осуществляется Принцип X (абдуктивное объяснение результатов ИАД посредством ИС): множество гипотез Н объясняет начальное состояние БФ, где Н= Н+Н, Н+ - множество всех гипотез о позитивных причинах ((+) - причинах), а Н - множество всех гипотез о негативных причинах (() - причинах). Предикаты Е(Н+, БФ+) и Е(Н, БФ) означают, что (+) - причины объясняют (+) - факты из БФ, а () - причины, соответственно, объясняют () - факты из БФ, где БФ= БФ+БФ.
...Подобные документы
Синтез и реализация процедур управления объектами как главная идея интеллектуального управления. Основные определения, степени интеллектуальности. Свойства интеллектуальных систем управления (ИСУ) с "интеллектуальностью в целом", принципы их организации.
презентация [51,8 K], добавлен 25.06.2013Интеллектуальный анализ данных как метод поддержки принятия решений, основанный на анализе зависимостей между данными, его роль, цели и условия применения. Сущность основных задач интеллектуального анализа: классификации, регрессии, прогнозирования.
контрольная работа [25,8 K], добавлен 08.08.2013Понятие и направления анализа акций. Изучение принципов работы нейросети с использованием программы "Нейросимулятор". Создание оптимально работающей нейросети для прогнозирования котировок акций, этапы данного процесса и оценка полученных результатов.
презентация [42,3 K], добавлен 19.08.2013Описание ДСМ-метода автоматического порождения гипотез. Исследование результатов влияния компонентов ДСМ-метода на качество определения тональности текстов. Алгоритм поиска пересечений. N-кратный скользящий контроль. Программная реализация ДСМ-метода.
курсовая работа [727,0 K], добавлен 12.01.2014Теория автоматического управления как наука, предмет и методика ее изучения. Классификация систем автоматического управления по различным признакам, их математические модели. Дифференциальные уравнения систем автоматического управления, их решения.
контрольная работа [104,1 K], добавлен 06.08.2009Методы организации процесса обработки информации; основные направления реализации внутримашинного информационного обеспечения. Принципы построения и эффективного применения технологий баз и банков данных как основных компонентов автоматизированных систем.
дипломная работа [186,8 K], добавлен 30.05.2013Концепция защиты информации на предприятии, ее основное содержание и критерии оценки практической эффективности. Принципы организации соответствующей системы, этапы и направления ее внедрения на исследуемом предприятии, оценка полученных результатов.
контрольная работа [565,5 K], добавлен 05.12.2014Анализ серверных операционных систем на базе ядра Linux. Подходы к построению маршрутизации и оценка полученных результатов. Установка операционной системы CentOS 6.6 и закономерности ее настройки. Принципы и основные этапы тестирования созданного шлюза.
курсовая работа [2,9 M], добавлен 19.11.2015Разработка комплекса интеллектуального анализа данных, получаемых в процессе работы коммерческого предприятия розничной торговли. Исследование стационарности ассоциаций, выявление частоты появления ассоциаций. Скрипты для создания баз данных и таблиц.
курсовая работа [706,3 K], добавлен 07.08.2013Понятие, виды и структура интеллектуальных поисковых систем. Российская интеллектуальная поисковая система Нигма: интерфейс и главные особенности. Математическая и химическая система Нигма. Понятие кластеризации как интеллектуального анализа данных.
презентация [291,0 K], добавлен 21.08.2011Достоинства слайдовой презентации, принципы ее рационального конструирования. Психолого-физиологическая рациональность. Принципы оптимальности и лаконичности, последовательности и соотносительности, унификации и акцента. Функции цвета для слайдов.
реферат [19,5 K], добавлен 13.11.2014Разработка программного обеспечения для анализа полученных из хранилища данных. Система SAS Enterprise Miner и система Weka. Расчёт капитальных затрат на создание ПМК для анализа полученных из хранилища данных с использованием библиотеки XELOPES.
дипломная работа [1,4 M], добавлен 07.06.2012Понятия в области метрологии. Представление знаний в интеллектуальных системах. Методы описания нечетких знаний в интеллектуальных системах. Классификация интеллектуальных систем, их структурная организация. Нечеткие системы автоматического управления.
курсовая работа [768,2 K], добавлен 16.02.2015Сущность и содержание двоичного кодирования, цели и задачи, этапы реализации данного процесса, оценка его эффективности. Принципы и особенности кодирования чисел и символов, а также рисунков и звука. Используемые методы и приемы, применяемые инструменты.
презентация [756,5 K], добавлен 29.10.2013Технология программных агентов. Форматы метаданных, использующиеся для описания электронных ресурсов. Разработка интеллектуальных агентов. Среда разработки Jadex для построения интеллектуальных агентов. BDI модель интеллектуального агента ресурсов.
курсовая работа [279,8 K], добавлен 20.02.2011Создание моделей процесса в BPwin, Aris Express, MS Visio, IBM Rational Rose и в соответствии с требованиями ГОСТ 19.701-90. Создание данных в Erwin и базы данных в MS Access. Расчет экономической эффективности реинжиниринга данного процесса в BPwin.
курсовая работа [2,3 M], добавлен 12.07.2015Общая характеристика предприятия и структура его отдела кадров. Назначение и область применения программы, основные требования к ее функциональности, оценка возможностей. Базы данных и системы управления ими, этапы и принципы проектирования, значение.
дипломная работа [1,2 M], добавлен 03.07.2015Принципы реализации программы проверки статистических гипотез с использованием t-критерия Стьюдента, ее общий алгоритм. Особенности применения двухвыборочного критерия для независимых выборок. Функциональные модели решения задачи для различных функций.
курсовая работа [644,2 K], добавлен 25.01.2010Понятие искусственного интеллекта и интеллектуальной системы. Этапы развития интеллектуальных систем. Модели представления знаний, процедурный (алгоритмический) и декларативный способы их формализации. Построение концептуальной модели предметной области.
презентация [80,5 K], добавлен 29.10.2013Технология конструирования программного обеспечения, надежно и эффективно работающего в реальных компьютерах. Модель быстрой разработки приложений (Rapid Application Development) как один из примеров применения инкрементной стратегии конструирования.
реферат [666,5 K], добавлен 24.06.2009